메뉴 건너뛰기




Volumn 26, Issue 4, 2016, Pages 272-288

Transcriptional Control of Somatic Cell Reprogramming

Author keywords

Epigenetic remodeling; Genome architecture; Pioneer transcription factors; Somatic cell reprogramming; Transcriptional regulation

Indexed keywords

MYC PROTEIN; KRUPPEL LIKE FACTOR; KRUPPEL LIKE FACTOR 4; MYC PROTEIN, HUMAN; OCTAMER TRANSCRIPTION FACTOR 4; POU5F1 PROTEIN, HUMAN; SOX2 PROTEIN, HUMAN; TRANSCRIPTION FACTOR SOX;

EID: 84954304849     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.12.003     Document Type: Review
Times cited : (33)

References (168)
  • 1
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 2
    • 84881186856 scopus 로고    scopus 로고
    • Genetic and epigenetic variations in iPSCs: potential causes and implications for application
    • Liang G., Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013, 13:149-159.
    • (2013) Cell Stem Cell , vol.13 , pp. 149-159
    • Liang, G.1    Zhang, Y.2
  • 3
    • 84886859638 scopus 로고    scopus 로고
    • Chromatin dynamics during cellular reprogramming
    • Apostolou E., Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013, 502:462-471.
    • (2013) Nature , vol.502 , pp. 462-471
    • Apostolou, E.1    Hochedlinger, K.2
  • 4
    • 77951878056 scopus 로고    scopus 로고
    • Induced pluripotent stem cells and senescence: learning the biology to improve the technology
    • Banito A., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep. 2010, 11:353-359.
    • (2010) EMBO Rep. , vol.11 , pp. 353-359
    • Banito, A.1    Gil, J.2
  • 5
    • 77957551870 scopus 로고    scopus 로고
    • A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
    • Li R., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7:51-63.
    • (2010) Cell Stem Cell , vol.7 , pp. 51-63
    • Li, R.1
  • 6
    • 77956320116 scopus 로고    scopus 로고
    • Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
    • Samavarchi-Tehrani P., et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010, 7:64-77.
    • (2010) Cell Stem Cell , vol.7 , pp. 64-77
    • Samavarchi-Tehrani, P.1
  • 7
    • 0035917865 scopus 로고    scopus 로고
    • Cooperation and competition in the evolution of ATP-producing pathways
    • Pfeiffer T., et al. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292:504-507.
    • (2001) Science , vol.292 , pp. 504-507
    • Pfeiffer, T.1
  • 8
    • 84868351585 scopus 로고    scopus 로고
    • Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
    • Zhang J., et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11:589-595.
    • (2012) Cell Stem Cell , vol.11 , pp. 589-595
    • Zhang, J.1
  • 9
    • 38649094609 scopus 로고    scopus 로고
    • Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
    • Brambrink T., et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008, 2:151-159.
    • (2008) Cell Stem Cell , vol.2 , pp. 151-159
    • Brambrink, T.1
  • 10
    • 39149115929 scopus 로고    scopus 로고
    • Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
    • Stadtfeld M., et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008, 2:230-240.
    • (2008) Cell Stem Cell , vol.2 , pp. 230-240
    • Stadtfeld, M.1
  • 11
    • 84937203002 scopus 로고    scopus 로고
    • Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
    • Cacchiarelli D., et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 2015, 162:412-424.
    • (2015) Cell , vol.162 , pp. 412-424
    • Cacchiarelli, D.1
  • 12
    • 84871586080 scopus 로고    scopus 로고
    • A molecular roadmap of reprogramming somatic cells into iPS cells
    • Polo J.M., et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012, 151:1617-1632.
    • (2012) Cell , vol.151 , pp. 1617-1632
    • Polo, J.M.1
  • 13
    • 54949105021 scopus 로고    scopus 로고
    • Promotion of reprogramming to ground state pluripotency by signal inhibition
    • Silva J., et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008, 6:e253.
    • (2008) PLoS Biol. , vol.6
    • Silva, J.1
  • 14
    • 84870948470 scopus 로고    scopus 로고
    • A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network
    • Golipour A., et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 2012, 11:769-782.
    • (2012) Cell Stem Cell , vol.11 , pp. 769-782
    • Golipour, A.1
  • 15
    • 46449094276 scopus 로고    scopus 로고
    • Dissecting direct reprogramming through integrative genomic analysis
    • Mikkelsen T.S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49-55.
    • (2008) Nature , vol.454 , pp. 49-55
    • Mikkelsen, T.S.1
  • 17
    • 84902212007 scopus 로고    scopus 로고
    • The 3D genome in transcriptional regulation and pluripotency
    • Gorkin D.U., et al. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 2014, 14:762-775.
    • (2014) Cell Stem Cell , vol.14 , pp. 762-775
    • Gorkin, D.U.1
  • 18
    • 80455144479 scopus 로고    scopus 로고
    • Pioneer transcription factors: establishing competence for gene expression
    • Zaret K.S., Carroll J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011, 25:2227-2241.
    • (2011) Genes Dev. , vol.25 , pp. 2227-2241
    • Zaret, K.S.1    Carroll, J.S.2
  • 19
    • 84870058502 scopus 로고    scopus 로고
    • Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
    • SoufiA., et al. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 2012, 151:994-1004.
    • (2012) Cell , vol.151 , pp. 994-1004
    • Soufi, A.1
  • 20
    • 84937532893 scopus 로고    scopus 로고
    • Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming
    • SoufiA., et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015, 161:555-568.
    • (2015) Cell , vol.161 , pp. 555-568
    • Soufi, A.1
  • 21
    • 84875940444 scopus 로고    scopus 로고
    • Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm
    • Aksoy I., et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 2013, 32:938-953.
    • (2013) EMBO J. , vol.32 , pp. 938-953
    • Aksoy, I.1
  • 22
    • 84884152388 scopus 로고    scopus 로고
    • Chemical approaches to stem cell biology and therapeutics
    • Li W., et al. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 2013, 13:270-283.
    • (2013) Cell Stem Cell , vol.13 , pp. 270-283
    • Li, W.1
  • 23
    • 73049112178 scopus 로고    scopus 로고
    • Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
    • Esteban M.A., et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010, 6:71-79.
    • (2010) Cell Stem Cell , vol.6 , pp. 71-79
    • Esteban, M.A.1
  • 24
    • 82755187396 scopus 로고    scopus 로고
    • The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
    • Wang T., et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011, 9:575-587.
    • (2011) Cell Stem Cell , vol.9 , pp. 575-587
    • Wang, T.1
  • 25
    • 84859328372 scopus 로고    scopus 로고
    • Vitamin C improves the quality of somatic cell reprogramming
    • Esteban M.A., Pei D. Vitamin C improves the quality of somatic cell reprogramming. Nat. Genet. 2012, 44:366-367.
    • (2012) Nat. Genet. , vol.44 , pp. 366-367
    • Esteban, M.A.1    Pei, D.2
  • 26
    • 37549008674 scopus 로고    scopus 로고
    • C-Myc is dispensable for direct reprogramming of mouse fibroblasts
    • Wernig M., et al. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008, 2:10-12.
    • (2008) Cell Stem Cell , vol.2 , pp. 10-12
    • Wernig, M.1
  • 27
    • 38049028459 scopus 로고    scopus 로고
    • Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
    • Nakagawa M., et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26:101-106.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 101-106
    • Nakagawa, M.1
  • 28
    • 0032963671 scopus 로고    scopus 로고
    • C-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function
    • Cheng S.W., et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 1999, 22:102-105.
    • (1999) Nat. Genet. , vol.22 , pp. 102-105
    • Cheng, S.W.1
  • 29
    • 79953323442 scopus 로고    scopus 로고
    • Reprogramming of mouse and human somatic cells by high-performance engineered factors
    • Wang Y., et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep. 2011, 12:373-378.
    • (2011) EMBO Rep. , vol.12 , pp. 373-378
    • Wang, Y.1
  • 30
    • 80052001018 scopus 로고    scopus 로고
    • Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD
    • Hirai H., et al. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells 2011, 29:1349-1361.
    • (2011) Stem Cells , vol.29 , pp. 1349-1361
    • Hirai, H.1
  • 31
    • 84954364809 scopus 로고    scopus 로고
    • Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming
    • Published online September 21, 2015
    • Wu Y., et al. Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming. Stem Cells 2015, Published online September 21, 2015. 10.1002/stem.2209.
    • (2015) Stem Cells
    • Wu, Y.1
  • 32
    • 66049143859 scopus 로고    scopus 로고
    • Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
    • Kim D., et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009, 4:472-476.
    • (2009) Cell Stem Cell , vol.4 , pp. 472-476
    • Kim, D.1
  • 33
    • 66049135249 scopus 로고    scopus 로고
    • Generation of induced pluripotent stem cells using recombinant proteins
    • Zhou H., et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009, 4:381-384.
    • (2009) Cell Stem Cell , vol.4 , pp. 381-384
    • Zhou, H.1
  • 34
    • 77955437362 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation
    • Cho H.J., et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 2010, 116:386-395.
    • (2010) Blood , vol.116 , pp. 386-395
    • Cho, H.J.1
  • 35
    • 84868007347 scopus 로고    scopus 로고
    • Activation of innate immunity is required for efficient nuclear reprogramming
    • Lee J., et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012, 151:547-558.
    • (2012) Cell , vol.151 , pp. 547-558
    • Lee, J.1
  • 36
    • 84866369892 scopus 로고    scopus 로고
    • Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
    • Buganim Y., et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012, 150:1209-1222.
    • (2012) Cell , vol.150 , pp. 1209-1222
    • Buganim, Y.1
  • 37
    • 84879879314 scopus 로고    scopus 로고
    • High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
    • O'Malley J., et al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells. Nature 2013, 499:88-91.
    • (2013) Nature , vol.499 , pp. 88-91
    • O'Malley, J.1
  • 38
    • 84876904061 scopus 로고    scopus 로고
    • Class IIa histone deacetylases and myocyte enhancer factor 2 proteins regulate the mesenchymal-to-epithelial transition of somatic cell reprogramming
    • Zhuang Q., et al. Class IIa histone deacetylases and myocyte enhancer factor 2 proteins regulate the mesenchymal-to-epithelial transition of somatic cell reprogramming. J. Biol. Chem. 2013, 288:12022-12031.
    • (2013) J. Biol. Chem. , vol.288 , pp. 12022-12031
    • Zhuang, Q.1
  • 39
    • 84933045261 scopus 로고    scopus 로고
    • Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion
    • Zhu S., et al. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat. Protoc. 2015, 10:959-973.
    • (2015) Nat. Protoc. , vol.10 , pp. 959-973
    • Zhu, S.1
  • 40
    • 84938324710 scopus 로고    scopus 로고
    • Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage
    • Bar-Nur O., et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat. Biotechnol. 2015, 33:761-768.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 761-768
    • Bar-Nur, O.1
  • 41
    • 84938400166 scopus 로고    scopus 로고
    • Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors
    • Maza I., et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 2015, 33:769-774.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 769-774
    • Maza, I.1
  • 42
    • 84878273239 scopus 로고    scopus 로고
    • Induction of pluripotency in mouse somatic cells with lineage specifiers
    • Shu J., et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013, 153:963-975.
    • (2013) Cell , vol.153 , pp. 963-975
    • Shu, J.1
  • 43
    • 84884131429 scopus 로고    scopus 로고
    • Reprogramming of human fibroblasts to pluripotency with lineage specifiers
    • Montserrat N., et al. Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 2013, 13:341-350.
    • (2013) Cell Stem Cell , vol.13 , pp. 341-350
    • Montserrat, N.1
  • 44
    • 79953847687 scopus 로고    scopus 로고
    • A precarious balance: pluripotency factors as lineage specifiers
    • Loh K.M., Lim B. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 2011, 8:363-369.
    • (2011) Cell Stem Cell , vol.8 , pp. 363-369
    • Loh, K.M.1    Lim, B.2
  • 45
    • 58249085824 scopus 로고    scopus 로고
    • Role of the murine reprogramming factors in the induction of pluripotency
    • Sridharan R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009, 136:364-377.
    • (2009) Cell , vol.136 , pp. 364-377
    • Sridharan, R.1
  • 46
    • 84943423371 scopus 로고    scopus 로고
    • Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming
    • Rao R.A., et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci. Rep. 2015, 5:8229.
    • (2015) Sci. Rep. , vol.5 , pp. 8229
    • Rao, R.A.1
  • 47
    • 84928928863 scopus 로고    scopus 로고
    • Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC
    • Thomas L.R., et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 2015, 58:440-452.
    • (2015) Mol. Cell , vol.58 , pp. 440-452
    • Thomas, L.R.1
  • 48
    • 79954414897 scopus 로고    scopus 로고
    • Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
    • Ang Y.S., et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011, 145:183-197.
    • (2011) Cell , vol.145 , pp. 183-197
    • Ang, Y.S.1
  • 49
    • 84885619736 scopus 로고    scopus 로고
    • Deterministic direct reprogramming of somatic cells to pluripotency
    • Rais Y., et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013, 502:65-70.
    • (2013) Nature , vol.502 , pp. 65-70
    • Rais, Y.1
  • 50
    • 84877978530 scopus 로고    scopus 로고
    • Mechanisms and models of somatic cell reprogramming
    • Buganim Y., et al. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 2013, 14:427-439.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 427-439
    • Buganim, Y.1
  • 51
    • 84879968102 scopus 로고    scopus 로고
    • NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells
    • Luo M., et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 2013, 31:1278-1286.
    • (2013) Stem Cells , vol.31 , pp. 1278-1286
    • Luo, M.1
  • 52
    • 84930224978 scopus 로고    scopus 로고
    • Early reprogramming regulators identified by prospective isolation and mass cytometry
    • Lujan E., et al. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 2015, 521:352-356.
    • (2015) Nature , vol.521 , pp. 352-356
    • Lujan, E.1
  • 53
    • 84904050254 scopus 로고    scopus 로고
    • MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner
    • dos Santos R.L., et al. MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 2014, 15:102-110.
    • (2014) Cell Stem Cell , vol.15 , pp. 102-110
    • dos Santos, R.L.1
  • 54
    • 78650996389 scopus 로고    scopus 로고
    • Reprogramming factor expression initiates widespread targeted chromatin remodeling
    • Koche R.P., et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 2011, 8:96-105.
    • (2011) Cell Stem Cell , vol.8 , pp. 96-105
    • Koche, R.P.1
  • 55
    • 84949799777 scopus 로고    scopus 로고
    • The histone chaperone CAF-1 safeguards somatic cell identity
    • CheloufiS., et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2015, 528:218-224.
    • (2015) Nature , vol.528 , pp. 218-224
    • Cheloufi, S.1
  • 56
    • 83255188897 scopus 로고    scopus 로고
    • Polycomb-repressed genes have permissive enhancers that initiate reprogramming
    • Taberlay P.C., et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 2011, 147:1283-1294.
    • (2011) Cell , vol.147 , pp. 1283-1294
    • Taberlay, P.C.1
  • 57
    • 84865486793 scopus 로고    scopus 로고
    • Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
    • Doege C.A., et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012, 488:652-655.
    • (2012) Nature , vol.488 , pp. 652-655
    • Doege, C.A.1
  • 58
    • 84893155560 scopus 로고    scopus 로고
    • Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming
    • Zhang H., et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 2013, 13:30-35.
    • (2013) Cell Stem Cell , vol.13 , pp. 30-35
    • Zhang, H.1
  • 59
    • 84887835943 scopus 로고    scopus 로고
    • Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency
    • Wei Z., et al. Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 2013, 13:36-47.
    • (2013) Cell Stem Cell , vol.13 , pp. 36-47
    • Wei, Z.1
  • 60
    • 84863986133 scopus 로고    scopus 로고
    • Functions of DNA methylation: islands, start sites, gene bodies and beyond
    • Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13:484-492.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 484-492
    • Jones, P.A.1
  • 61
    • 84908221069 scopus 로고    scopus 로고
    • Epigenetics: enhancers under TET control
    • Baumann K. Epigenetics: enhancers under TET control. Nat. Rev. Mol. Cell Biol. 2014, 15:699.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 699
    • Baumann, K.1
  • 62
    • 84875923762 scopus 로고    scopus 로고
    • Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
    • Gao Y., et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013, 12:453-469.
    • (2013) Cell Stem Cell , vol.12 , pp. 453-469
    • Gao, Y.1
  • 63
    • 84893969121 scopus 로고    scopus 로고
    • C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells
    • Di Stefano B., et al. C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 2014, 506:235-239.
    • (2014) Nature , vol.506 , pp. 235-239
    • Di Stefano, B.1
  • 64
    • 84893968621 scopus 로고    scopus 로고
    • Genome regulation at the peripheral zone: lamina associated domains in development and disease
    • Luperchio T.R., et al. Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev. 2014, 25:50-61.
    • (2014) Curr. Opin. Genet. Dev. , vol.25 , pp. 50-61
    • Luperchio, T.R.1
  • 65
    • 77952576224 scopus 로고    scopus 로고
    • Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
    • Peric-Hupkes D., et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 2010, 38:603-613.
    • (2010) Mol. Cell , vol.38 , pp. 603-613
    • Peric-Hupkes, D.1
  • 66
    • 84887852466 scopus 로고    scopus 로고
    • Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming
    • Apostolou E., et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 2013, 12:699-712.
    • (2013) Cell Stem Cell , vol.12 , pp. 699-712
    • Apostolou, E.1
  • 67
    • 85027929606 scopus 로고    scopus 로고
    • Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
    • Denholtz M., et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 2013, 13:602-616.
    • (2013) Cell Stem Cell , vol.13 , pp. 602-616
    • Denholtz, M.1
  • 68
    • 73349090560 scopus 로고    scopus 로고
    • Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
    • Schoenfelder S., et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 2010, 42:53-61.
    • (2010) Nat. Genet. , vol.42 , pp. 53-61
    • Schoenfelder, S.1
  • 69
    • 77957139539 scopus 로고    scopus 로고
    • Mediator and cohesin connect gene expression and chromatin architecture
    • Kagey M.H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467:430-435.
    • (2010) Nature , vol.467 , pp. 430-435
    • Kagey, M.H.1
  • 70
    • 84964898748 scopus 로고    scopus 로고
    • Influences of lamin A levels on induction of pluripotent stem cells
    • Zuo B., et al. Influences of lamin A levels on induction of pluripotent stem cells. Biol. Open 2012, 1:1118-1127.
    • (2012) Biol. Open , vol.1 , pp. 1118-1127
    • Zuo, B.1
  • 71
    • 84864251887 scopus 로고    scopus 로고
    • Navigating the epigenetic landscape of pluripotent stem cells
    • Li M., et al. Navigating the epigenetic landscape of pluripotent stem cells. Nat. Rev. Mol. Cell Biol. 2012, 13:524-535.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 524-535
    • Li, M.1
  • 72
    • 78650752402 scopus 로고    scopus 로고
    • Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
    • Polo J.M., et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 2010, 28:848-855.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 848-855
    • Polo, J.M.1
  • 73
    • 79954562232 scopus 로고    scopus 로고
    • Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells
    • Min I.M., et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 2011, 25:742-754.
    • (2011) Genes Dev. , vol.25 , pp. 742-754
    • Min, I.M.1
  • 74
    • 84922710322 scopus 로고    scopus 로고
    • Transcriptional pause release is a rate-limiting step for somatic cell reprogramming
    • Liu L., et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell 2014, 15:574-588.
    • (2014) Cell Stem Cell , vol.15 , pp. 574-588
    • Liu, L.1
  • 75
    • 77954763022 scopus 로고    scopus 로고
    • Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation
    • Goodrich J.A., Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. 2010, 11:549-558.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 549-558
    • Goodrich, J.A.1    Tjian, R.2
  • 76
    • 84875609093 scopus 로고    scopus 로고
    • A central role for TFIID in the pluripotent transcription circuitry
    • Pijnappel W.W., et al. A central role for TFIID in the pluripotent transcription circuitry. Nature 2013, 495:516-519.
    • (2013) Nature , vol.495 , pp. 516-519
    • Pijnappel, W.W.1
  • 77
    • 80052297694 scopus 로고    scopus 로고
    • Control of embryonic stem cell lineage commitment by core promoter factor, TAF3
    • Liu Z., et al. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 2011, 146:720-731.
    • (2011) Cell , vol.146 , pp. 720-731
    • Liu, Z.1
  • 78
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda N.J., et al. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1
  • 79
    • 0242361319 scopus 로고    scopus 로고
    • Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA
    • Yik J.H., et al. Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 2003, 12:971-982.
    • (2003) Mol. Cell , vol.12 , pp. 971-982
    • Yik, J.H.1
  • 80
    • 34250357662 scopus 로고    scopus 로고
    • The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation
    • Wu S.Y., Chiang C.M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 2007, 282:13141-13145.
    • (2007) J. Biol. Chem. , vol.282 , pp. 13141-13145
    • Wu, S.Y.1    Chiang, C.M.2
  • 81
    • 84924624635 scopus 로고    scopus 로고
    • The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression
    • Wu T., et al. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression. Stem Cell Rep. 2015, 4:390-403.
    • (2015) Stem Cell Rep. , vol.4 , pp. 390-403
    • Wu, T.1
  • 82
    • 77951920690 scopus 로고    scopus 로고
    • C-Myc regulates transcriptional pause release
    • Rahl P.B., et al. c-Myc regulates transcriptional pause release. Cell 2010, 141:432-445.
    • (2010) Cell , vol.141 , pp. 432-445
    • Rahl, P.B.1
  • 83
    • 44649117905 scopus 로고    scopus 로고
    • Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
    • Chen X., et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133:1106-1117.
    • (2008) Cell , vol.133 , pp. 1106-1117
    • Chen, X.1
  • 84
    • 77957757417 scopus 로고    scopus 로고
    • A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs
    • Kim J., et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010, 143:313-324.
    • (2010) Cell , vol.143 , pp. 313-324
    • Kim, J.1
  • 85
    • 40749104852 scopus 로고    scopus 로고
    • An extended transcriptional network for pluripotency of embryonic stem cells
    • Kim J., et al. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008, 132:1049-1061.
    • (2008) Cell , vol.132 , pp. 1049-1061
    • Kim, J.1
  • 86
    • 84904823447 scopus 로고    scopus 로고
    • Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles
    • Walz S., et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014, 511:483-487.
    • (2014) Nature , vol.511 , pp. 483-487
    • Walz, S.1
  • 87
    • 84904785973 scopus 로고    scopus 로고
    • Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis
    • Sabo A., et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014, 511:488-492.
    • (2014) Nature , vol.511 , pp. 488-492
    • Sabo, A.1
  • 88
    • 84875997644 scopus 로고    scopus 로고
    • Proliferation rate of somatic cells affects reprogramming efficiency
    • Xu Y., et al. Proliferation rate of somatic cells affects reprogramming efficiency. J. Biol. Chem. 2013, 288:9767-9778.
    • (2013) J. Biol. Chem. , vol.288 , pp. 9767-9778
    • Xu, Y.1
  • 89
    • 84876216563 scopus 로고    scopus 로고
    • Master transcription factors and Mediator establish super-enhancers at key cell identity genes
    • Whyte Warren A., et al. Master transcription factors and Mediator establish super-enhancers at key cell identity genes. Cell 2013, 153:307-319.
    • (2013) Cell , vol.153 , pp. 307-319
    • Whyte, W.A.1
  • 90
    • 84938692220 scopus 로고    scopus 로고
    • Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons
    • Li X., et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 2015, 17:195-203.
    • (2015) Cell Stem Cell , vol.17 , pp. 195-203
    • Li, X.1
  • 91
    • 84922577803 scopus 로고    scopus 로고
    • Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming
    • Nishimura K., et al. Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming. Stem Cell Rep. 2014, 3:915-929.
    • (2014) Stem Cell Rep. , vol.3 , pp. 915-929
    • Nishimura, K.1
  • 92
    • 84880329213 scopus 로고    scopus 로고
    • Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1gamma in reprogramming to pluripotency
    • Sridharan R., et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1gamma in reprogramming to pluripotency. Nat. Cell Biol. 2013, 15:872-882.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 872-882
    • Sridharan, R.1
  • 93
    • 84859218238 scopus 로고    scopus 로고
    • Chromatin-modifying enzymes as modulators of reprogramming
    • Onder T.T., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483:598-602.
    • (2012) Nature , vol.483 , pp. 598-602
    • Onder, T.T.1
  • 94
    • 84860543346 scopus 로고    scopus 로고
    • Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming
    • Liang G., et al. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 2012, 14:457-466.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 457-466
    • Liang, G.1
  • 95
    • 84934444500 scopus 로고    scopus 로고
    • The oncogene c-Jun impedes somatic cell reprogramming
    • Liu J., et al. The oncogene c-Jun impedes somatic cell reprogramming. Nat. Cell Biol. 2015, 17:856-867.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 856-867
    • Liu, J.1
  • 96
    • 36749043230 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines derived from human somatic cells
    • Yu J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
    • (2007) Science , vol.318 , pp. 1917-1920
    • Yu, J.1
  • 97
    • 84890559595 scopus 로고    scopus 로고
    • Long non-coding RNAs: new players in cell differentiation and development
    • Fatica A., Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 2014, 15:7-21.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 7-21
    • Fatica, A.1    Bozzoni, I.2
  • 98
    • 84924283323 scopus 로고    scopus 로고
    • M(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency
    • Chen T., et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015, 16:289-301.
    • (2015) Cell Stem Cell , vol.16 , pp. 289-301
    • Chen, T.1
  • 99
    • 84952638781 scopus 로고    scopus 로고
    • Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming
    • Aguilo F., et al. Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015, 17:689-704.
    • (2015) Cell Stem Cell , vol.17 , pp. 689-704
    • Aguilo, F.1
  • 100
    • 78649467088 scopus 로고    scopus 로고
    • Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
    • Loewer S., et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 2010, 42:1113-1117.
    • (2010) Nat. Genet. , vol.42 , pp. 1113-1117
    • Loewer, S.1
  • 101
    • 84920267059 scopus 로고    scopus 로고
    • The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters
    • Bao X., et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2015, 25:80-92.
    • (2015) Cell Res. , vol.25 , pp. 80-92
    • Bao, X.1
  • 102
    • 80052223272 scopus 로고    scopus 로고
    • An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming
    • Gabut M., et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 2011, 147:132-146.
    • (2011) Cell , vol.147 , pp. 132-146
    • Gabut, M.1
  • 103
    • 84887016186 scopus 로고    scopus 로고
    • Global splicing pattern reversion during somatic cell reprogramming
    • Ohta S., et al. Global splicing pattern reversion during somatic cell reprogramming. Cell Rep. 2013, 5:357-366.
    • (2013) Cell Rep. , vol.5 , pp. 357-366
    • Ohta, S.1
  • 104
    • 84904044398 scopus 로고    scopus 로고
    • Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells
    • Lu Y., et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell 2014, 15:92-101.
    • (2014) Cell Stem Cell , vol.15 , pp. 92-101
    • Lu, Y.1
  • 105
    • 84878995293 scopus 로고    scopus 로고
    • MBNL proteins repress ES-cell-specific alternative splicing and reprogramming
    • Han H., et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 2013, 498:241-245.
    • (2013) Nature , vol.498 , pp. 241-245
    • Han, H.1
  • 106
    • 84927768496 scopus 로고    scopus 로고
    • Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming
    • Hirsch C.L., et al. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes Dev. 2015, 29:803-816.
    • (2015) Genes Dev. , vol.29 , pp. 803-816
    • Hirsch, C.L.1
  • 107
    • 84920730997 scopus 로고    scopus 로고
    • Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming
    • Kim D.H., et al. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 2015, 16:88-101.
    • (2015) Cell Stem Cell , vol.16 , pp. 88-101
    • Kim, D.H.1
  • 108
    • 84905405443 scopus 로고    scopus 로고
    • Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
    • Smallwood S.A., et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 2014, 11:817-820.
    • (2014) Nat. Methods , vol.11 , pp. 817-820
    • Smallwood, S.A.1
  • 109
    • 84930006926 scopus 로고    scopus 로고
    • Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
    • Cusanovich D.A., et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 2015, 348:910-914.
    • (2015) Science , vol.348 , pp. 910-914
    • Cusanovich, D.A.1
  • 110
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 111
    • 84894078264 scopus 로고    scopus 로고
    • Nonstochastic reprogramming from a privileged somatic cell state
    • Guo S., et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 2014, 156:649-662.
    • (2014) Cell , vol.156 , pp. 649-662
    • Guo, S.1
  • 112
    • 77957270010 scopus 로고    scopus 로고
    • Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells
    • Chen J., et al. Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 2010, 285:31066-31072.
    • (2010) J. Biol. Chem. , vol.285 , pp. 31066-31072
    • Chen, J.1
  • 113
    • 64749083939 scopus 로고    scopus 로고
    • PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
    • Woltjen K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458:766-770.
    • (2009) Nature , vol.458 , pp. 766-770
    • Woltjen, K.1
  • 114
    • 70349093119 scopus 로고    scopus 로고
    • Senescence impairs successful reprogramming to pluripotent stem cells
    • Banito A., et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009, 23:2134-2139.
    • (2009) Genes Dev. , vol.23 , pp. 2134-2139
    • Banito, A.1
  • 115
    • 77957360239 scopus 로고    scopus 로고
    • Apoptotic caspases regulate induction of iPSCs from human fibroblasts
    • Li F., et al. Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell 2010, 7:508-520.
    • (2010) Cell Stem Cell , vol.7 , pp. 508-520
    • Li, F.1
  • 116
    • 79151470981 scopus 로고    scopus 로고
    • A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity
    • Ruiz S., et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr. Biol. 2011, 21:45-52.
    • (2011) Curr. Biol. , vol.21 , pp. 45-52
    • Ruiz, S.1
  • 117
    • 84874789264 scopus 로고    scopus 로고
    • Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination
    • Zhao W., et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 2013, 152:1037-1050.
    • (2013) Cell , vol.152 , pp. 1037-1050
    • Zhao, W.1
  • 118
    • 0036709213 scopus 로고    scopus 로고
    • Signalling, cell cycle and pluripotency in embryonic stem cells
    • Burdon T., et al. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002, 12:432-438.
    • (2002) Trends Cell Biol. , vol.12 , pp. 432-438
    • Burdon, T.1
  • 119
    • 77949383744 scopus 로고    scopus 로고
    • Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1
    • Edel M.J., et al. Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes Dev. 2010, 24:561-573.
    • (2010) Genes Dev. , vol.24 , pp. 561-573
    • Edel, M.J.1
  • 120
    • 77957607058 scopus 로고    scopus 로고
    • Epithelial plasticity, stemness and pluripotency
    • Ocana O.H., Nieto M.A. Epithelial plasticity, stemness and pluripotency. Cell Res. 2010, 20:1086-1088.
    • (2010) Cell Res. , vol.20 , pp. 1086-1088
    • Ocana, O.H.1    Nieto, M.A.2
  • 121
    • 84892598278 scopus 로고    scopus 로고
    • Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells
    • Ji J., et al. Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells. Stem Cell Rep. 2014, 2:44-51.
    • (2014) Stem Cell Rep. , vol.2 , pp. 44-51
    • Ji, J.1
  • 122
    • 84894554252 scopus 로고    scopus 로고
    • HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2
    • Prigione A., et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 2014, 32:364-376.
    • (2014) Stem Cells , vol.32 , pp. 364-376
    • Prigione, A.1
  • 123
    • 84899919010 scopus 로고    scopus 로고
    • Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency
    • Mathieu J., et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 2014, 14:592-605.
    • (2014) Cell Stem Cell , vol.14 , pp. 592-605
    • Mathieu, J.1
  • 124
    • 77953727663 scopus 로고    scopus 로고
    • Chromatin-remodeling components of the BAF complex facilitate reprogramming
    • Singhal N., et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010, 141:943-955.
    • (2010) Cell , vol.141 , pp. 943-955
    • Singhal, N.1
  • 125
    • 84941911839 scopus 로고    scopus 로고
    • Knockdown of Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells
    • Jiang Z., et al. Knockdown of Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells. Stem Cells Dev. 2015, 24:2328-2336.
    • (2015) Stem Cells Dev. , vol.24 , pp. 2328-2336
    • Jiang, Z.1
  • 126
    • 84942323889 scopus 로고    scopus 로고
    • CHD1L regulated PARP1-driven pluripotency and chromatin remodeling during the early-stage cell reprogramming
    • Jiang B.H., et al. CHD1L regulated PARP1-driven pluripotency and chromatin remodeling during the early-stage cell reprogramming. Stem Cells 2015, 33:2961-2972.
    • (2015) Stem Cells , vol.33 , pp. 2961-2972
    • Jiang, B.H.1
  • 127
    • 84875787631 scopus 로고    scopus 로고
    • Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming
    • Lee M.R., et al. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 2013, 31:666-681.
    • (2013) Stem Cells , vol.31 , pp. 666-681
    • Lee, M.R.1
  • 128
    • 84899742411 scopus 로고    scopus 로고
    • INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development
    • Wang L., et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell 2014, 14:575-591.
    • (2014) Cell Stem Cell , vol.14 , pp. 575-591
    • Wang, L.1
  • 129
    • 80052437236 scopus 로고    scopus 로고
    • Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
    • Moon J.H., et al. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res. 2011, 21:1305-1315.
    • (2011) Cell Res. , vol.21 , pp. 1305-1315
    • Moon, J.H.1
  • 130
    • 73049086022 scopus 로고    scopus 로고
    • Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2
    • Li W., et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 2009, 27:2992-3000.
    • (2009) Stem Cells , vol.27 , pp. 2992-3000
    • Li, W.1
  • 131
    • 84871990064 scopus 로고    scopus 로고
    • H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
    • Chen J., et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 2013, 45:34-42.
    • (2013) Nat. Genet. , vol.45 , pp. 34-42
    • Chen, J.1
  • 132
    • 44349103591 scopus 로고    scopus 로고
    • A combined chemical and genetic approach for the generation of induced pluripotent stem cells
    • Shi Y., et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008, 2:525-528.
    • (2008) Cell Stem Cell , vol.2 , pp. 525-528
    • Shi, Y.1
  • 133
    • 84939975318 scopus 로고    scopus 로고
    • Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways
    • Tran K.A., et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat. Commun. 2015, 6:6188.
    • (2015) Nat. Commun. , vol.6 , pp. 6188
    • Tran, K.A.1
  • 134
    • 84904559751 scopus 로고    scopus 로고
    • Systematic identification of barriers to human iPSC generation
    • Qin H., et al. Systematic identification of barriers to human iPSC generation. Cell 2014, 158:449-461.
    • (2014) Cell , vol.158 , pp. 449-461
    • Qin, H.1
  • 135
    • 84865112255 scopus 로고    scopus 로고
    • The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
    • Mansour A.A., et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012, 488:409-413.
    • (2012) Nature , vol.488 , pp. 409-413
    • Mansour, A.A.1
  • 136
    • 84893059822 scopus 로고    scopus 로고
    • Extended self-renewal and accelerated reprogramming in the absence of Kdm5b
    • Kidder B.L., et al. Extended self-renewal and accelerated reprogramming in the absence of Kdm5b. Mol. Cell. Biol. 2013, 33:4793-4810.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 4793-4810
    • Kidder, B.L.1
  • 137
    • 84908031698 scopus 로고    scopus 로고
    • Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming
    • Vidal S.E., et al. Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Rep. 2014, 3:574-584.
    • (2014) Stem Cell Rep. , vol.3 , pp. 574-584
    • Vidal, S.E.1
  • 138
    • 84920943947 scopus 로고    scopus 로고
    • PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53
    • Chu Z., et al. PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif. 2015, 48:29-38.
    • (2015) Cell Prolif. , vol.48 , pp. 29-38
    • Chu, Z.1
  • 139
    • 84936887985 scopus 로고    scopus 로고
    • An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells
    • Wei T., et al. An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Res. 2015, 43:5409-5422.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 5409-5422
    • Wei, T.1
  • 140
    • 84931568535 scopus 로고    scopus 로고
    • Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming
    • Mu W.L., et al. Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming. Stem Cells 2015, 33:2135-2147.
    • (2015) Stem Cells , vol.33 , pp. 2135-2147
    • Mu, W.L.1
  • 141
    • 84866691285 scopus 로고    scopus 로고
    • Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways
    • Lee Y.L., et al. Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways. PloS ONE 2012, 7:e45633.
    • (2012) PloS ONE , vol.7
    • Lee, Y.L.1
  • 142
    • 84880068090 scopus 로고    scopus 로고
    • The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
    • Sharma A., et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 2013, 288:18439-18447.
    • (2013) J. Biol. Chem. , vol.288 , pp. 18439-18447
    • Sharma, A.1
  • 143
    • 84874590585 scopus 로고    scopus 로고
    • A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells
    • Bhutani N., et al. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J. 2013, 27:1107-1113.
    • (2013) FASEB J. , vol.27 , pp. 1107-1113
    • Bhutani, N.1
  • 144
    • 77649104794 scopus 로고    scopus 로고
    • Reprogramming towards pluripotency requires AID-dependent DNA demethylation
    • Bhutani N., et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010, 463:1042-1047.
    • (2010) Nature , vol.463 , pp. 1042-1047
    • Bhutani, N.1
  • 145
    • 84881476513 scopus 로고    scopus 로고
    • AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes
    • Kumar R., et al. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 2013, 500:89-92.
    • (2013) Nature , vol.500 , pp. 89-92
    • Kumar, R.1
  • 146
    • 84897989106 scopus 로고    scopus 로고
    • Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming
    • Hu X., et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014, 14:512-522.
    • (2014) Cell Stem Cell , vol.14 , pp. 512-522
    • Hu, X.1
  • 147
    • 84923217903 scopus 로고    scopus 로고
    • The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells
    • Chen J., et al. The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells. Stem Cells 2015, 33:686-698.
    • (2015) Stem Cells , vol.33 , pp. 686-698
    • Chen, J.1
  • 148
    • 84875370281 scopus 로고    scopus 로고
    • NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
    • Costa Y., et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013, 495:370-374.
    • (2013) Nature , vol.495 , pp. 370-374
    • Costa, Y.1
  • 149
    • 84888372386 scopus 로고    scopus 로고
    • Vitamin C modulates TET1 function during somatic cell reprogramming
    • Chen J., et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 2013, 45:1504-1509.
    • (2013) Nat. Genet. , vol.45 , pp. 1504-1509
    • Chen, J.1
  • 150
    • 84906266342 scopus 로고    scopus 로고
    • Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming
    • Gonzalez-Munoz E., et al. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming. Science 2014, 345:822-825.
    • (2014) Science , vol.345 , pp. 822-825
    • Gonzalez-Munoz, E.1
  • 151
    • 84872442222 scopus 로고    scopus 로고
    • Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency
    • Pasque V., et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 2012, 125:6094-6104.
    • (2012) J. Cell Sci. , vol.125 , pp. 6094-6104
    • Pasque, V.1
  • 152
    • 84875887547 scopus 로고    scopus 로고
    • MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
    • Gaspar-Maia A., et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 2013, 4:1565.
    • (2013) Nat. Commun. , vol.4 , pp. 1565
    • Gaspar-Maia, A.1
  • 153
    • 84876979661 scopus 로고    scopus 로고
    • Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency
    • Barrero M.J., et al. Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep. 2013, 3:1005-1011.
    • (2013) Cell Rep. , vol.3 , pp. 1005-1011
    • Barrero, M.J.1
  • 154
    • 84893744088 scopus 로고    scopus 로고
    • Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells
    • Shinagawa T., et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014, 14:217-227.
    • (2014) Cell Stem Cell , vol.14 , pp. 217-227
    • Shinagawa, T.1
  • 155
    • 79955458691 scopus 로고    scopus 로고
    • RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency
    • Yang P., et al. RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 2011, 29:791-801.
    • (2011) Stem Cells , vol.29 , pp. 791-801
    • Yang, P.1
  • 156
    • 59649105969 scopus 로고    scopus 로고
    • Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb
    • Feng B., et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol. 2009, 11:197-203.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 197-203
    • Feng, B.1
  • 157
    • 75349088911 scopus 로고    scopus 로고
    • The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells
    • Heng J.C., et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 2010, 6:167-174.
    • (2010) Cell Stem Cell , vol.6 , pp. 167-174
    • Heng, J.C.1
  • 158
    • 79958292714 scopus 로고    scopus 로고
    • Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1
    • Maekawa M., et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011, 474:225-229.
    • (2011) Nature , vol.474 , pp. 225-229
    • Maekawa, M.1
  • 159
    • 77958549136 scopus 로고    scopus 로고
    • Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A
    • Picanco-Castro V., et al. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev. 2011, 20:169-180.
    • (2011) Stem Cells Dev. , vol.20 , pp. 169-180
    • Picanco-Castro, V.1
  • 160
    • 79959929522 scopus 로고    scopus 로고
    • E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
    • Redmer T., et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011, 12:720-726.
    • (2011) EMBO Rep , vol.12 , pp. 720-726
    • Redmer, T.1
  • 161
    • 69349100455 scopus 로고    scopus 로고
    • Linking the p53 tumour suppressor pathway to somatic cell reprogramming
    • Kawamura T., et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009, 460:1140-1144.
    • (2009) Nature , vol.460 , pp. 1140-1144
    • Kawamura, T.1
  • 162
    • 84877930075 scopus 로고    scopus 로고
    • MicroRNAs in somatic cell reprogramming
    • Bao X., et al. MicroRNAs in somatic cell reprogramming. Curr. Opin. Cell Biol. 2013, 25:208-214.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 208-214
    • Bao, X.1
  • 163
    • 79953881831 scopus 로고    scopus 로고
    • Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
    • Anokye-Danso F., et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8:376-388.
    • (2011) Cell Stem Cell , vol.8 , pp. 376-388
    • Anokye-Danso, F.1
  • 164
    • 79957855262 scopus 로고    scopus 로고
    • Reprogramming of mouse and human cells to pluripotency using mature microRNAs
    • Miyoshi N., et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011, 8:633-638.
    • (2011) Cell Stem Cell , vol.8 , pp. 633-638
    • Miyoshi, N.1
  • 165
    • 84881256653 scopus 로고    scopus 로고
    • Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds
    • Hou P., et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341:651-654.
    • (2013) Science , vol.341 , pp. 651-654
    • Hou, P.1
  • 166
    • 84943449479 scopus 로고    scopus 로고
    • Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells
    • Long Y., et al. Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res. 2015, 25:1171-1174.
    • (2015) Cell Res. , vol.25 , pp. 1171-1174
    • Long, Y.1
  • 167
    • 78650515020 scopus 로고    scopus 로고
    • Direct reprogramming of fibroblasts into epiblast stem cells
    • Han D.W., et al. Direct reprogramming of fibroblasts into epiblast stem cells. Nat. Cell Biol. 2011, 13:66-71.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 66-71
    • Han, D.W.1
  • 168
    • 84920743310 scopus 로고    scopus 로고
    • Divergent reprogramming routes lead to alternative stem-cell states
    • Tonge P.D., et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 2014, 516:192-197.
    • (2014) Nature , vol.516 , pp. 192-197
    • Tonge, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.