-
1
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
2
-
-
84881186856
-
Genetic and epigenetic variations in iPSCs: potential causes and implications for application
-
Liang G., Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013, 13:149-159.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 149-159
-
-
Liang, G.1
Zhang, Y.2
-
3
-
-
84886859638
-
Chromatin dynamics during cellular reprogramming
-
Apostolou E., Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013, 502:462-471.
-
(2013)
Nature
, vol.502
, pp. 462-471
-
-
Apostolou, E.1
Hochedlinger, K.2
-
4
-
-
77951878056
-
Induced pluripotent stem cells and senescence: learning the biology to improve the technology
-
Banito A., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep. 2010, 11:353-359.
-
(2010)
EMBO Rep.
, vol.11
, pp. 353-359
-
-
Banito, A.1
Gil, J.2
-
5
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li R., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7:51-63.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
-
6
-
-
77956320116
-
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani P., et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010, 7:64-77.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
-
7
-
-
0035917865
-
Cooperation and competition in the evolution of ATP-producing pathways
-
Pfeiffer T., et al. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292:504-507.
-
(2001)
Science
, vol.292
, pp. 504-507
-
-
Pfeiffer, T.1
-
8
-
-
84868351585
-
Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
-
Zhang J., et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11:589-595.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 589-595
-
-
Zhang, J.1
-
9
-
-
38649094609
-
Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
-
Brambrink T., et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008, 2:151-159.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 151-159
-
-
Brambrink, T.1
-
10
-
-
39149115929
-
Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
-
Stadtfeld M., et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008, 2:230-240.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 230-240
-
-
Stadtfeld, M.1
-
11
-
-
84937203002
-
Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
-
Cacchiarelli D., et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 2015, 162:412-424.
-
(2015)
Cell
, vol.162
, pp. 412-424
-
-
Cacchiarelli, D.1
-
12
-
-
84871586080
-
A molecular roadmap of reprogramming somatic cells into iPS cells
-
Polo J.M., et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012, 151:1617-1632.
-
(2012)
Cell
, vol.151
, pp. 1617-1632
-
-
Polo, J.M.1
-
13
-
-
54949105021
-
Promotion of reprogramming to ground state pluripotency by signal inhibition
-
Silva J., et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008, 6:e253.
-
(2008)
PLoS Biol.
, vol.6
-
-
Silva, J.1
-
14
-
-
84870948470
-
A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network
-
Golipour A., et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 2012, 11:769-782.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 769-782
-
-
Golipour, A.1
-
15
-
-
46449094276
-
Dissecting direct reprogramming through integrative genomic analysis
-
Mikkelsen T.S., et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49-55.
-
(2008)
Nature
, vol.454
, pp. 49-55
-
-
Mikkelsen, T.S.1
-
17
-
-
84902212007
-
The 3D genome in transcriptional regulation and pluripotency
-
Gorkin D.U., et al. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 2014, 14:762-775.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 762-775
-
-
Gorkin, D.U.1
-
18
-
-
80455144479
-
Pioneer transcription factors: establishing competence for gene expression
-
Zaret K.S., Carroll J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011, 25:2227-2241.
-
(2011)
Genes Dev.
, vol.25
, pp. 2227-2241
-
-
Zaret, K.S.1
Carroll, J.S.2
-
19
-
-
84870058502
-
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
-
SoufiA., et al. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 2012, 151:994-1004.
-
(2012)
Cell
, vol.151
, pp. 994-1004
-
-
Soufi, A.1
-
20
-
-
84937532893
-
Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming
-
SoufiA., et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015, 161:555-568.
-
(2015)
Cell
, vol.161
, pp. 555-568
-
-
Soufi, A.1
-
21
-
-
84875940444
-
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm
-
Aksoy I., et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 2013, 32:938-953.
-
(2013)
EMBO J.
, vol.32
, pp. 938-953
-
-
Aksoy, I.1
-
22
-
-
84884152388
-
Chemical approaches to stem cell biology and therapeutics
-
Li W., et al. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 2013, 13:270-283.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 270-283
-
-
Li, W.1
-
23
-
-
73049112178
-
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
-
Esteban M.A., et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010, 6:71-79.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 71-79
-
-
Esteban, M.A.1
-
24
-
-
82755187396
-
The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
-
Wang T., et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011, 9:575-587.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 575-587
-
-
Wang, T.1
-
25
-
-
84859328372
-
Vitamin C improves the quality of somatic cell reprogramming
-
Esteban M.A., Pei D. Vitamin C improves the quality of somatic cell reprogramming. Nat. Genet. 2012, 44:366-367.
-
(2012)
Nat. Genet.
, vol.44
, pp. 366-367
-
-
Esteban, M.A.1
Pei, D.2
-
26
-
-
37549008674
-
C-Myc is dispensable for direct reprogramming of mouse fibroblasts
-
Wernig M., et al. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008, 2:10-12.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 10-12
-
-
Wernig, M.1
-
27
-
-
38049028459
-
Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
-
Nakagawa M., et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26:101-106.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 101-106
-
-
Nakagawa, M.1
-
28
-
-
0032963671
-
C-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function
-
Cheng S.W., et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 1999, 22:102-105.
-
(1999)
Nat. Genet.
, vol.22
, pp. 102-105
-
-
Cheng, S.W.1
-
29
-
-
79953323442
-
Reprogramming of mouse and human somatic cells by high-performance engineered factors
-
Wang Y., et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep. 2011, 12:373-378.
-
(2011)
EMBO Rep.
, vol.12
, pp. 373-378
-
-
Wang, Y.1
-
30
-
-
80052001018
-
Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD
-
Hirai H., et al. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells 2011, 29:1349-1361.
-
(2011)
Stem Cells
, vol.29
, pp. 1349-1361
-
-
Hirai, H.1
-
31
-
-
84954364809
-
Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming
-
Published online September 21, 2015
-
Wu Y., et al. Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming. Stem Cells 2015, Published online September 21, 2015. 10.1002/stem.2209.
-
(2015)
Stem Cells
-
-
Wu, Y.1
-
32
-
-
66049143859
-
Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
-
Kim D., et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009, 4:472-476.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 472-476
-
-
Kim, D.1
-
33
-
-
66049135249
-
Generation of induced pluripotent stem cells using recombinant proteins
-
Zhou H., et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009, 4:381-384.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 381-384
-
-
Zhou, H.1
-
34
-
-
77955437362
-
Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation
-
Cho H.J., et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 2010, 116:386-395.
-
(2010)
Blood
, vol.116
, pp. 386-395
-
-
Cho, H.J.1
-
35
-
-
84868007347
-
Activation of innate immunity is required for efficient nuclear reprogramming
-
Lee J., et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012, 151:547-558.
-
(2012)
Cell
, vol.151
, pp. 547-558
-
-
Lee, J.1
-
36
-
-
84866369892
-
Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
-
Buganim Y., et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012, 150:1209-1222.
-
(2012)
Cell
, vol.150
, pp. 1209-1222
-
-
Buganim, Y.1
-
37
-
-
84879879314
-
High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
-
O'Malley J., et al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells. Nature 2013, 499:88-91.
-
(2013)
Nature
, vol.499
, pp. 88-91
-
-
O'Malley, J.1
-
38
-
-
84876904061
-
Class IIa histone deacetylases and myocyte enhancer factor 2 proteins regulate the mesenchymal-to-epithelial transition of somatic cell reprogramming
-
Zhuang Q., et al. Class IIa histone deacetylases and myocyte enhancer factor 2 proteins regulate the mesenchymal-to-epithelial transition of somatic cell reprogramming. J. Biol. Chem. 2013, 288:12022-12031.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 12022-12031
-
-
Zhuang, Q.1
-
39
-
-
84933045261
-
Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion
-
Zhu S., et al. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat. Protoc. 2015, 10:959-973.
-
(2015)
Nat. Protoc.
, vol.10
, pp. 959-973
-
-
Zhu, S.1
-
40
-
-
84938324710
-
Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage
-
Bar-Nur O., et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat. Biotechnol. 2015, 33:761-768.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 761-768
-
-
Bar-Nur, O.1
-
41
-
-
84938400166
-
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors
-
Maza I., et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 2015, 33:769-774.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 769-774
-
-
Maza, I.1
-
42
-
-
84878273239
-
Induction of pluripotency in mouse somatic cells with lineage specifiers
-
Shu J., et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013, 153:963-975.
-
(2013)
Cell
, vol.153
, pp. 963-975
-
-
Shu, J.1
-
43
-
-
84884131429
-
Reprogramming of human fibroblasts to pluripotency with lineage specifiers
-
Montserrat N., et al. Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 2013, 13:341-350.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 341-350
-
-
Montserrat, N.1
-
44
-
-
79953847687
-
A precarious balance: pluripotency factors as lineage specifiers
-
Loh K.M., Lim B. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 2011, 8:363-369.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 363-369
-
-
Loh, K.M.1
Lim, B.2
-
45
-
-
58249085824
-
Role of the murine reprogramming factors in the induction of pluripotency
-
Sridharan R., et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009, 136:364-377.
-
(2009)
Cell
, vol.136
, pp. 364-377
-
-
Sridharan, R.1
-
46
-
-
84943423371
-
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming
-
Rao R.A., et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci. Rep. 2015, 5:8229.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8229
-
-
Rao, R.A.1
-
47
-
-
84928928863
-
Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC
-
Thomas L.R., et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 2015, 58:440-452.
-
(2015)
Mol. Cell
, vol.58
, pp. 440-452
-
-
Thomas, L.R.1
-
48
-
-
79954414897
-
Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
-
Ang Y.S., et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011, 145:183-197.
-
(2011)
Cell
, vol.145
, pp. 183-197
-
-
Ang, Y.S.1
-
49
-
-
84885619736
-
Deterministic direct reprogramming of somatic cells to pluripotency
-
Rais Y., et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013, 502:65-70.
-
(2013)
Nature
, vol.502
, pp. 65-70
-
-
Rais, Y.1
-
50
-
-
84877978530
-
Mechanisms and models of somatic cell reprogramming
-
Buganim Y., et al. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 2013, 14:427-439.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 427-439
-
-
Buganim, Y.1
-
51
-
-
84879968102
-
NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells
-
Luo M., et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 2013, 31:1278-1286.
-
(2013)
Stem Cells
, vol.31
, pp. 1278-1286
-
-
Luo, M.1
-
52
-
-
84930224978
-
Early reprogramming regulators identified by prospective isolation and mass cytometry
-
Lujan E., et al. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 2015, 521:352-356.
-
(2015)
Nature
, vol.521
, pp. 352-356
-
-
Lujan, E.1
-
53
-
-
84904050254
-
MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner
-
dos Santos R.L., et al. MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 2014, 15:102-110.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 102-110
-
-
dos Santos, R.L.1
-
54
-
-
78650996389
-
Reprogramming factor expression initiates widespread targeted chromatin remodeling
-
Koche R.P., et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 2011, 8:96-105.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 96-105
-
-
Koche, R.P.1
-
55
-
-
84949799777
-
The histone chaperone CAF-1 safeguards somatic cell identity
-
CheloufiS., et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2015, 528:218-224.
-
(2015)
Nature
, vol.528
, pp. 218-224
-
-
Cheloufi, S.1
-
56
-
-
83255188897
-
Polycomb-repressed genes have permissive enhancers that initiate reprogramming
-
Taberlay P.C., et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 2011, 147:1283-1294.
-
(2011)
Cell
, vol.147
, pp. 1283-1294
-
-
Taberlay, P.C.1
-
57
-
-
84865486793
-
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
-
Doege C.A., et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012, 488:652-655.
-
(2012)
Nature
, vol.488
, pp. 652-655
-
-
Doege, C.A.1
-
58
-
-
84893155560
-
Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming
-
Zhang H., et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 2013, 13:30-35.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 30-35
-
-
Zhang, H.1
-
59
-
-
84887835943
-
Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency
-
Wei Z., et al. Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 2013, 13:36-47.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 36-47
-
-
Wei, Z.1
-
60
-
-
84863986133
-
Functions of DNA methylation: islands, start sites, gene bodies and beyond
-
Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13:484-492.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
61
-
-
84908221069
-
Epigenetics: enhancers under TET control
-
Baumann K. Epigenetics: enhancers under TET control. Nat. Rev. Mol. Cell Biol. 2014, 15:699.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 699
-
-
Baumann, K.1
-
62
-
-
84875923762
-
Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
-
Gao Y., et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013, 12:453-469.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 453-469
-
-
Gao, Y.1
-
63
-
-
84893969121
-
C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells
-
Di Stefano B., et al. C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 2014, 506:235-239.
-
(2014)
Nature
, vol.506
, pp. 235-239
-
-
Di Stefano, B.1
-
64
-
-
84893968621
-
Genome regulation at the peripheral zone: lamina associated domains in development and disease
-
Luperchio T.R., et al. Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev. 2014, 25:50-61.
-
(2014)
Curr. Opin. Genet. Dev.
, vol.25
, pp. 50-61
-
-
Luperchio, T.R.1
-
65
-
-
77952576224
-
Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
-
Peric-Hupkes D., et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 2010, 38:603-613.
-
(2010)
Mol. Cell
, vol.38
, pp. 603-613
-
-
Peric-Hupkes, D.1
-
66
-
-
84887852466
-
Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming
-
Apostolou E., et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 2013, 12:699-712.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 699-712
-
-
Apostolou, E.1
-
67
-
-
85027929606
-
Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
-
Denholtz M., et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 2013, 13:602-616.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 602-616
-
-
Denholtz, M.1
-
68
-
-
73349090560
-
Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
-
Schoenfelder S., et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 2010, 42:53-61.
-
(2010)
Nat. Genet.
, vol.42
, pp. 53-61
-
-
Schoenfelder, S.1
-
69
-
-
77957139539
-
Mediator and cohesin connect gene expression and chromatin architecture
-
Kagey M.H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467:430-435.
-
(2010)
Nature
, vol.467
, pp. 430-435
-
-
Kagey, M.H.1
-
70
-
-
84964898748
-
Influences of lamin A levels on induction of pluripotent stem cells
-
Zuo B., et al. Influences of lamin A levels on induction of pluripotent stem cells. Biol. Open 2012, 1:1118-1127.
-
(2012)
Biol. Open
, vol.1
, pp. 1118-1127
-
-
Zuo, B.1
-
71
-
-
84864251887
-
Navigating the epigenetic landscape of pluripotent stem cells
-
Li M., et al. Navigating the epigenetic landscape of pluripotent stem cells. Nat. Rev. Mol. Cell Biol. 2012, 13:524-535.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 524-535
-
-
Li, M.1
-
72
-
-
78650752402
-
Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
-
Polo J.M., et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 2010, 28:848-855.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 848-855
-
-
Polo, J.M.1
-
73
-
-
79954562232
-
Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells
-
Min I.M., et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 2011, 25:742-754.
-
(2011)
Genes Dev.
, vol.25
, pp. 742-754
-
-
Min, I.M.1
-
74
-
-
84922710322
-
Transcriptional pause release is a rate-limiting step for somatic cell reprogramming
-
Liu L., et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell 2014, 15:574-588.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 574-588
-
-
Liu, L.1
-
75
-
-
77954763022
-
Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation
-
Goodrich J.A., Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. 2010, 11:549-558.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 549-558
-
-
Goodrich, J.A.1
Tjian, R.2
-
76
-
-
84875609093
-
A central role for TFIID in the pluripotent transcription circuitry
-
Pijnappel W.W., et al. A central role for TFIID in the pluripotent transcription circuitry. Nature 2013, 495:516-519.
-
(2013)
Nature
, vol.495
, pp. 516-519
-
-
Pijnappel, W.W.1
-
77
-
-
80052297694
-
Control of embryonic stem cell lineage commitment by core promoter factor, TAF3
-
Liu Z., et al. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 2011, 146:720-731.
-
(2011)
Cell
, vol.146
, pp. 720-731
-
-
Liu, Z.1
-
78
-
-
70249104647
-
Defining mechanisms that regulate RNA polymerase II transcription in vivo
-
Fuda N.J., et al. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461:186-192.
-
(2009)
Nature
, vol.461
, pp. 186-192
-
-
Fuda, N.J.1
-
79
-
-
0242361319
-
Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA
-
Yik J.H., et al. Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 2003, 12:971-982.
-
(2003)
Mol. Cell
, vol.12
, pp. 971-982
-
-
Yik, J.H.1
-
80
-
-
34250357662
-
The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation
-
Wu S.Y., Chiang C.M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 2007, 282:13141-13145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 13141-13145
-
-
Wu, S.Y.1
Chiang, C.M.2
-
81
-
-
84924624635
-
The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression
-
Wu T., et al. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression. Stem Cell Rep. 2015, 4:390-403.
-
(2015)
Stem Cell Rep.
, vol.4
, pp. 390-403
-
-
Wu, T.1
-
82
-
-
77951920690
-
C-Myc regulates transcriptional pause release
-
Rahl P.B., et al. c-Myc regulates transcriptional pause release. Cell 2010, 141:432-445.
-
(2010)
Cell
, vol.141
, pp. 432-445
-
-
Rahl, P.B.1
-
83
-
-
44649117905
-
Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
-
Chen X., et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133:1106-1117.
-
(2008)
Cell
, vol.133
, pp. 1106-1117
-
-
Chen, X.1
-
84
-
-
77957757417
-
A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs
-
Kim J., et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010, 143:313-324.
-
(2010)
Cell
, vol.143
, pp. 313-324
-
-
Kim, J.1
-
85
-
-
40749104852
-
An extended transcriptional network for pluripotency of embryonic stem cells
-
Kim J., et al. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008, 132:1049-1061.
-
(2008)
Cell
, vol.132
, pp. 1049-1061
-
-
Kim, J.1
-
86
-
-
84904823447
-
Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles
-
Walz S., et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014, 511:483-487.
-
(2014)
Nature
, vol.511
, pp. 483-487
-
-
Walz, S.1
-
87
-
-
84904785973
-
Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis
-
Sabo A., et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014, 511:488-492.
-
(2014)
Nature
, vol.511
, pp. 488-492
-
-
Sabo, A.1
-
88
-
-
84875997644
-
Proliferation rate of somatic cells affects reprogramming efficiency
-
Xu Y., et al. Proliferation rate of somatic cells affects reprogramming efficiency. J. Biol. Chem. 2013, 288:9767-9778.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 9767-9778
-
-
Xu, Y.1
-
89
-
-
84876216563
-
Master transcription factors and Mediator establish super-enhancers at key cell identity genes
-
Whyte Warren A., et al. Master transcription factors and Mediator establish super-enhancers at key cell identity genes. Cell 2013, 153:307-319.
-
(2013)
Cell
, vol.153
, pp. 307-319
-
-
Whyte, W.A.1
-
90
-
-
84938692220
-
Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons
-
Li X., et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 2015, 17:195-203.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 195-203
-
-
Li, X.1
-
91
-
-
84922577803
-
Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming
-
Nishimura K., et al. Manipulation of KLF4 expression generates iPSCs paused at successive stages of reprogramming. Stem Cell Rep. 2014, 3:915-929.
-
(2014)
Stem Cell Rep.
, vol.3
, pp. 915-929
-
-
Nishimura, K.1
-
92
-
-
84880329213
-
Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1gamma in reprogramming to pluripotency
-
Sridharan R., et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1gamma in reprogramming to pluripotency. Nat. Cell Biol. 2013, 15:872-882.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 872-882
-
-
Sridharan, R.1
-
93
-
-
84859218238
-
Chromatin-modifying enzymes as modulators of reprogramming
-
Onder T.T., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483:598-602.
-
(2012)
Nature
, vol.483
, pp. 598-602
-
-
Onder, T.T.1
-
94
-
-
84860543346
-
Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming
-
Liang G., et al. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 2012, 14:457-466.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 457-466
-
-
Liang, G.1
-
95
-
-
84934444500
-
The oncogene c-Jun impedes somatic cell reprogramming
-
Liu J., et al. The oncogene c-Jun impedes somatic cell reprogramming. Nat. Cell Biol. 2015, 17:856-867.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 856-867
-
-
Liu, J.1
-
96
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
-
97
-
-
84890559595
-
Long non-coding RNAs: new players in cell differentiation and development
-
Fatica A., Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 2014, 15:7-21.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 7-21
-
-
Fatica, A.1
Bozzoni, I.2
-
98
-
-
84924283323
-
M(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency
-
Chen T., et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015, 16:289-301.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 289-301
-
-
Chen, T.1
-
99
-
-
84952638781
-
Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming
-
Aguilo F., et al. Coordination of mA mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015, 17:689-704.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 689-704
-
-
Aguilo, F.1
-
100
-
-
78649467088
-
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
-
Loewer S., et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 2010, 42:1113-1117.
-
(2010)
Nat. Genet.
, vol.42
, pp. 1113-1117
-
-
Loewer, S.1
-
101
-
-
84920267059
-
The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters
-
Bao X., et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2015, 25:80-92.
-
(2015)
Cell Res.
, vol.25
, pp. 80-92
-
-
Bao, X.1
-
102
-
-
80052223272
-
An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming
-
Gabut M., et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 2011, 147:132-146.
-
(2011)
Cell
, vol.147
, pp. 132-146
-
-
Gabut, M.1
-
103
-
-
84887016186
-
Global splicing pattern reversion during somatic cell reprogramming
-
Ohta S., et al. Global splicing pattern reversion during somatic cell reprogramming. Cell Rep. 2013, 5:357-366.
-
(2013)
Cell Rep.
, vol.5
, pp. 357-366
-
-
Ohta, S.1
-
104
-
-
84904044398
-
Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells
-
Lu Y., et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell 2014, 15:92-101.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 92-101
-
-
Lu, Y.1
-
105
-
-
84878995293
-
MBNL proteins repress ES-cell-specific alternative splicing and reprogramming
-
Han H., et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 2013, 498:241-245.
-
(2013)
Nature
, vol.498
, pp. 241-245
-
-
Han, H.1
-
106
-
-
84927768496
-
Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming
-
Hirsch C.L., et al. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes Dev. 2015, 29:803-816.
-
(2015)
Genes Dev.
, vol.29
, pp. 803-816
-
-
Hirsch, C.L.1
-
107
-
-
84920730997
-
Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming
-
Kim D.H., et al. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 2015, 16:88-101.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 88-101
-
-
Kim, D.H.1
-
108
-
-
84905405443
-
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
-
Smallwood S.A., et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 2014, 11:817-820.
-
(2014)
Nat. Methods
, vol.11
, pp. 817-820
-
-
Smallwood, S.A.1
-
109
-
-
84930006926
-
Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
-
Cusanovich D.A., et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 2015, 348:910-914.
-
(2015)
Science
, vol.348
, pp. 910-914
-
-
Cusanovich, D.A.1
-
110
-
-
84885617426
-
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
-
Nagano T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
-
(2013)
Nature
, vol.502
, pp. 59-64
-
-
Nagano, T.1
-
111
-
-
84894078264
-
Nonstochastic reprogramming from a privileged somatic cell state
-
Guo S., et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 2014, 156:649-662.
-
(2014)
Cell
, vol.156
, pp. 649-662
-
-
Guo, S.1
-
112
-
-
77957270010
-
Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells
-
Chen J., et al. Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 2010, 285:31066-31072.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31066-31072
-
-
Chen, J.1
-
113
-
-
64749083939
-
PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
-
Woltjen K., et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458:766-770.
-
(2009)
Nature
, vol.458
, pp. 766-770
-
-
Woltjen, K.1
-
114
-
-
70349093119
-
Senescence impairs successful reprogramming to pluripotent stem cells
-
Banito A., et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009, 23:2134-2139.
-
(2009)
Genes Dev.
, vol.23
, pp. 2134-2139
-
-
Banito, A.1
-
115
-
-
77957360239
-
Apoptotic caspases regulate induction of iPSCs from human fibroblasts
-
Li F., et al. Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell 2010, 7:508-520.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 508-520
-
-
Li, F.1
-
116
-
-
79151470981
-
A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity
-
Ruiz S., et al. A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr. Biol. 2011, 21:45-52.
-
(2011)
Curr. Biol.
, vol.21
, pp. 45-52
-
-
Ruiz, S.1
-
117
-
-
84874789264
-
Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination
-
Zhao W., et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 2013, 152:1037-1050.
-
(2013)
Cell
, vol.152
, pp. 1037-1050
-
-
Zhao, W.1
-
118
-
-
0036709213
-
Signalling, cell cycle and pluripotency in embryonic stem cells
-
Burdon T., et al. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002, 12:432-438.
-
(2002)
Trends Cell Biol.
, vol.12
, pp. 432-438
-
-
Burdon, T.1
-
119
-
-
77949383744
-
Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1
-
Edel M.J., et al. Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes Dev. 2010, 24:561-573.
-
(2010)
Genes Dev.
, vol.24
, pp. 561-573
-
-
Edel, M.J.1
-
120
-
-
77957607058
-
Epithelial plasticity, stemness and pluripotency
-
Ocana O.H., Nieto M.A. Epithelial plasticity, stemness and pluripotency. Cell Res. 2010, 20:1086-1088.
-
(2010)
Cell Res.
, vol.20
, pp. 1086-1088
-
-
Ocana, O.H.1
Nieto, M.A.2
-
121
-
-
84892598278
-
Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells
-
Ji J., et al. Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells. Stem Cell Rep. 2014, 2:44-51.
-
(2014)
Stem Cell Rep.
, vol.2
, pp. 44-51
-
-
Ji, J.1
-
122
-
-
84894554252
-
HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2
-
Prigione A., et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 2014, 32:364-376.
-
(2014)
Stem Cells
, vol.32
, pp. 364-376
-
-
Prigione, A.1
-
123
-
-
84899919010
-
Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency
-
Mathieu J., et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 2014, 14:592-605.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 592-605
-
-
Mathieu, J.1
-
124
-
-
77953727663
-
Chromatin-remodeling components of the BAF complex facilitate reprogramming
-
Singhal N., et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010, 141:943-955.
-
(2010)
Cell
, vol.141
, pp. 943-955
-
-
Singhal, N.1
-
125
-
-
84941911839
-
Knockdown of Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells
-
Jiang Z., et al. Knockdown of Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells. Stem Cells Dev. 2015, 24:2328-2336.
-
(2015)
Stem Cells Dev.
, vol.24
, pp. 2328-2336
-
-
Jiang, Z.1
-
126
-
-
84942323889
-
CHD1L regulated PARP1-driven pluripotency and chromatin remodeling during the early-stage cell reprogramming
-
Jiang B.H., et al. CHD1L regulated PARP1-driven pluripotency and chromatin remodeling during the early-stage cell reprogramming. Stem Cells 2015, 33:2961-2972.
-
(2015)
Stem Cells
, vol.33
, pp. 2961-2972
-
-
Jiang, B.H.1
-
127
-
-
84875787631
-
Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming
-
Lee M.R., et al. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 2013, 31:666-681.
-
(2013)
Stem Cells
, vol.31
, pp. 666-681
-
-
Lee, M.R.1
-
128
-
-
84899742411
-
INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development
-
Wang L., et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell 2014, 14:575-591.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 575-591
-
-
Wang, L.1
-
129
-
-
80052437236
-
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
-
Moon J.H., et al. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res. 2011, 21:1305-1315.
-
(2011)
Cell Res.
, vol.21
, pp. 1305-1315
-
-
Moon, J.H.1
-
130
-
-
73049086022
-
Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2
-
Li W., et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 2009, 27:2992-3000.
-
(2009)
Stem Cells
, vol.27
, pp. 2992-3000
-
-
Li, W.1
-
131
-
-
84871990064
-
H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
-
Chen J., et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 2013, 45:34-42.
-
(2013)
Nat. Genet.
, vol.45
, pp. 34-42
-
-
Chen, J.1
-
132
-
-
44349103591
-
A combined chemical and genetic approach for the generation of induced pluripotent stem cells
-
Shi Y., et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008, 2:525-528.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 525-528
-
-
Shi, Y.1
-
133
-
-
84939975318
-
Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways
-
Tran K.A., et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat. Commun. 2015, 6:6188.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6188
-
-
Tran, K.A.1
-
134
-
-
84904559751
-
Systematic identification of barriers to human iPSC generation
-
Qin H., et al. Systematic identification of barriers to human iPSC generation. Cell 2014, 158:449-461.
-
(2014)
Cell
, vol.158
, pp. 449-461
-
-
Qin, H.1
-
135
-
-
84865112255
-
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
-
Mansour A.A., et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012, 488:409-413.
-
(2012)
Nature
, vol.488
, pp. 409-413
-
-
Mansour, A.A.1
-
136
-
-
84893059822
-
Extended self-renewal and accelerated reprogramming in the absence of Kdm5b
-
Kidder B.L., et al. Extended self-renewal and accelerated reprogramming in the absence of Kdm5b. Mol. Cell. Biol. 2013, 33:4793-4810.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 4793-4810
-
-
Kidder, B.L.1
-
137
-
-
84908031698
-
Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming
-
Vidal S.E., et al. Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Rep. 2014, 3:574-584.
-
(2014)
Stem Cell Rep.
, vol.3
, pp. 574-584
-
-
Vidal, S.E.1
-
138
-
-
84920943947
-
PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53
-
Chu Z., et al. PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif. 2015, 48:29-38.
-
(2015)
Cell Prolif.
, vol.48
, pp. 29-38
-
-
Chu, Z.1
-
139
-
-
84936887985
-
An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells
-
Wei T., et al. An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Res. 2015, 43:5409-5422.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 5409-5422
-
-
Wei, T.1
-
140
-
-
84931568535
-
Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming
-
Mu W.L., et al. Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming. Stem Cells 2015, 33:2135-2147.
-
(2015)
Stem Cells
, vol.33
, pp. 2135-2147
-
-
Mu, W.L.1
-
141
-
-
84866691285
-
Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways
-
Lee Y.L., et al. Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways. PloS ONE 2012, 7:e45633.
-
(2012)
PloS ONE
, vol.7
-
-
Lee, Y.L.1
-
142
-
-
84880068090
-
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
-
Sharma A., et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 2013, 288:18439-18447.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18439-18447
-
-
Sharma, A.1
-
143
-
-
84874590585
-
A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells
-
Bhutani N., et al. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J. 2013, 27:1107-1113.
-
(2013)
FASEB J.
, vol.27
, pp. 1107-1113
-
-
Bhutani, N.1
-
144
-
-
77649104794
-
Reprogramming towards pluripotency requires AID-dependent DNA demethylation
-
Bhutani N., et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010, 463:1042-1047.
-
(2010)
Nature
, vol.463
, pp. 1042-1047
-
-
Bhutani, N.1
-
145
-
-
84881476513
-
AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes
-
Kumar R., et al. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 2013, 500:89-92.
-
(2013)
Nature
, vol.500
, pp. 89-92
-
-
Kumar, R.1
-
146
-
-
84897989106
-
Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming
-
Hu X., et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014, 14:512-522.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 512-522
-
-
Hu, X.1
-
147
-
-
84923217903
-
The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells
-
Chen J., et al. The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells. Stem Cells 2015, 33:686-698.
-
(2015)
Stem Cells
, vol.33
, pp. 686-698
-
-
Chen, J.1
-
148
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
Costa Y., et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013, 495:370-374.
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
-
149
-
-
84888372386
-
Vitamin C modulates TET1 function during somatic cell reprogramming
-
Chen J., et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 2013, 45:1504-1509.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1504-1509
-
-
Chen, J.1
-
150
-
-
84906266342
-
Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming
-
Gonzalez-Munoz E., et al. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming. Science 2014, 345:822-825.
-
(2014)
Science
, vol.345
, pp. 822-825
-
-
Gonzalez-Munoz, E.1
-
151
-
-
84872442222
-
Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency
-
Pasque V., et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 2012, 125:6094-6104.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 6094-6104
-
-
Pasque, V.1
-
152
-
-
84875887547
-
MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
-
Gaspar-Maia A., et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 2013, 4:1565.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1565
-
-
Gaspar-Maia, A.1
-
153
-
-
84876979661
-
Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency
-
Barrero M.J., et al. Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep. 2013, 3:1005-1011.
-
(2013)
Cell Rep.
, vol.3
, pp. 1005-1011
-
-
Barrero, M.J.1
-
154
-
-
84893744088
-
Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells
-
Shinagawa T., et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014, 14:217-227.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 217-227
-
-
Shinagawa, T.1
-
155
-
-
79955458691
-
RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency
-
Yang P., et al. RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 2011, 29:791-801.
-
(2011)
Stem Cells
, vol.29
, pp. 791-801
-
-
Yang, P.1
-
156
-
-
59649105969
-
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb
-
Feng B., et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol. 2009, 11:197-203.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 197-203
-
-
Feng, B.1
-
157
-
-
75349088911
-
The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells
-
Heng J.C., et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 2010, 6:167-174.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 167-174
-
-
Heng, J.C.1
-
158
-
-
79958292714
-
Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1
-
Maekawa M., et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011, 474:225-229.
-
(2011)
Nature
, vol.474
, pp. 225-229
-
-
Maekawa, M.1
-
159
-
-
77958549136
-
Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A
-
Picanco-Castro V., et al. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev. 2011, 20:169-180.
-
(2011)
Stem Cells Dev.
, vol.20
, pp. 169-180
-
-
Picanco-Castro, V.1
-
160
-
-
79959929522
-
E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
-
Redmer T., et al. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011, 12:720-726.
-
(2011)
EMBO Rep
, vol.12
, pp. 720-726
-
-
Redmer, T.1
-
161
-
-
69349100455
-
Linking the p53 tumour suppressor pathway to somatic cell reprogramming
-
Kawamura T., et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009, 460:1140-1144.
-
(2009)
Nature
, vol.460
, pp. 1140-1144
-
-
Kawamura, T.1
-
162
-
-
84877930075
-
MicroRNAs in somatic cell reprogramming
-
Bao X., et al. MicroRNAs in somatic cell reprogramming. Curr. Opin. Cell Biol. 2013, 25:208-214.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 208-214
-
-
Bao, X.1
-
163
-
-
79953881831
-
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
-
Anokye-Danso F., et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8:376-388.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 376-388
-
-
Anokye-Danso, F.1
-
164
-
-
79957855262
-
Reprogramming of mouse and human cells to pluripotency using mature microRNAs
-
Miyoshi N., et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011, 8:633-638.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 633-638
-
-
Miyoshi, N.1
-
165
-
-
84881256653
-
Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds
-
Hou P., et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341:651-654.
-
(2013)
Science
, vol.341
, pp. 651-654
-
-
Hou, P.1
-
166
-
-
84943449479
-
Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells
-
Long Y., et al. Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res. 2015, 25:1171-1174.
-
(2015)
Cell Res.
, vol.25
, pp. 1171-1174
-
-
Long, Y.1
-
167
-
-
78650515020
-
Direct reprogramming of fibroblasts into epiblast stem cells
-
Han D.W., et al. Direct reprogramming of fibroblasts into epiblast stem cells. Nat. Cell Biol. 2011, 13:66-71.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 66-71
-
-
Han, D.W.1
-
168
-
-
84920743310
-
Divergent reprogramming routes lead to alternative stem-cell states
-
Tonge P.D., et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 2014, 516:192-197.
-
(2014)
Nature
, vol.516
, pp. 192-197
-
-
Tonge, P.D.1
|