메뉴 건너뛰기




Volumn 95, Issue , 2016, Pages 2-10

Beyond starvation: An update on the autophagic machinery and its functions

Author keywords

Autophagic machinery; Autophagy; Lysophagy

Indexed keywords

INITIATION FACTOR; INITIATION FACTOR ULK1; UNCLASSIFIED DRUG;

EID: 84950140608     PISSN: 00222828     EISSN: 10958584     Source Type: Journal    
DOI: 10.1016/j.yjmcc.2015.12.005     Document Type: Review
Times cited : (40)

References (152)
  • 2
    • 84891745088 scopus 로고    scopus 로고
    • Historical landmarks of autophagy research
    • Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014, 24:9-23.
    • (2014) Cell Res. , vol.24 , pp. 9-23
    • Ohsumi, Y.1
  • 3
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333:169-174.
    • (1993) FEBS Lett. , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 4
    • 0028800171 scopus 로고
    • Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
    • Harding T.M., Morano K.A., Scott S.V., Klionsky D.J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131:591-602.
    • (1995) J. Cell Biol. , vol.131 , pp. 591-602
    • Harding, T.M.1    Morano, K.A.2    Scott, S.V.3    Klionsky, D.J.4
  • 6
    • 84891738225 scopus 로고    scopus 로고
    • Autophagy and human diseases
    • Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014, 24:69-79.
    • (2014) Cell Res. , vol.24 , pp. 69-79
    • Jiang, P.1    Mizushima, N.2
  • 7
    • 84891741302 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: roles in disease and aging
    • Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014, 24:92-104.
    • (2014) Cell Res. , vol.24 , pp. 92-104
    • Cuervo, A.M.1    Wong, E.2
  • 9
    • 84922789990 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms and pathways
    • Efeyan A., Comb W.C., Sabatini D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517:302-310.
    • (2015) Nature , vol.517 , pp. 302-310
    • Efeyan, A.1    Comb, W.C.2    Sabatini, D.M.3
  • 10
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 12
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5    Miura, Y.6
  • 14
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley I.G., Lam dH., Wang J., Ding X., Chen S., Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam, D.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 15
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5    Cao, J.6
  • 16
    • 84940550513 scopus 로고    scopus 로고
    • Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A
    • Wong P.M., Feng Y., Wang J., Shi R., Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun. 2015, 6:8048.
    • (2015) Nat. Commun. , vol.6 , pp. 8048
    • Wong, P.M.1    Feng, Y.2    Wang, J.3    Shi, R.4    Jiang, X.5
  • 17
    • 0027296748 scopus 로고
    • Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors
    • Holen I., Gordon P.B., Seglen P.O. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur. J. Biochem. 1993, 215:113-122.
    • (1993) Eur. J. Biochem. , vol.215 , pp. 113-122
    • Holen, I.1    Gordon, P.B.2    Seglen, P.O.3
  • 18
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 19
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., Shackelford D.B., Mihaylova M.M., Gelino S., Kohnz R.A., Mair W., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1    Shackelford, D.B.2    Mihaylova, M.M.3    Gelino, S.4    Kohnz, R.A.5    Mair, W.6
  • 21
    • 0014148066 scopus 로고
    • Participation of lysosomes in cellular autophagy induced in rat liver by glucagon
    • Deter R.L., Baudhuin P., De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 1967, 35:C11-C16.
    • (1967) J. Cell Biol. , vol.35 , pp. C11-C16
    • Deter, R.L.1    Baudhuin, P.2    De Duve, C.3
  • 22
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR-CREB axis
    • Seok S., Fu T., Choi S.E., Li Y., Zhu R., Kumar S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1    Fu, T.2    Choi, S.E.3    Li, Y.4    Zhu, R.5    Kumar, S.6
  • 23
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
    • Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 24
    • 11144219992 scopus 로고    scopus 로고
    • Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase
    • Kimball S.R., Siegfried B.A., Jefferson L.S. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J. Biol. Chem. 2004, 279:54103-54109.
    • (2004) J. Biol. Chem. , vol.279 , pp. 54103-54109
    • Kimball, S.R.1    Siegfried, B.A.2    Jefferson, L.S.3
  • 25
    • 68049109201 scopus 로고    scopus 로고
    • Glucagon acts in a dominant manner to repress insulin-induced mammalian target of rapamycin complex 1 signaling in perfused rat liver
    • Baum J.I., Kimball S.R., Jefferson L.S. Glucagon acts in a dominant manner to repress insulin-induced mammalian target of rapamycin complex 1 signaling in perfused rat liver. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E410-E415.
    • (2009) Am. J. Physiol. Endocrinol. Metab. , vol.297 , pp. E410-E415
    • Baum, J.I.1    Kimball, S.R.2    Jefferson, L.S.3
  • 26
    • 78650448754 scopus 로고    scopus 로고
    • Chemical modulators of autophagy as biological probes and potential therapeutics
    • Fleming A., Noda T., Yoshimori T., Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol. 2011, 7:9-17.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 9-17
    • Fleming, A.1    Noda, T.2    Yoshimori, T.3    Rubinsztein, D.C.4
  • 29
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M., Sabatini D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126:1713-1719.
    • (2013) J. Cell Sci. , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 31
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • Suzuki K., Kubota Y., Sekito T., Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12:209-218.
    • (2007) Genes Cells , vol.12 , pp. 209-218
    • Suzuki, K.1    Kubota, Y.2    Sekito, T.3    Ohsumi, Y.4
  • 32
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6:764-776.
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 33
    • 58149473473 scopus 로고    scopus 로고
    • Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism
    • Chan E.Y., Longatti A., McKnight N.C., Tooze S.A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 2009, 29:157-171.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 157-171
    • Chan, E.Y.1    Longatti, A.2    McKnight, N.C.3    Tooze, S.A.4
  • 34
    • 34548482499 scopus 로고    scopus 로고
    • SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
    • Chan E.Y., Kir S., Tooze S.A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 2007, 282:25464-25474.
    • (2007) J. Biol. Chem. , vol.282 , pp. 25464-25474
    • Chan, E.Y.1    Kir, S.2    Tooze, S.A.3
  • 35
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T., Takamura A., Kishi C., Iemura S., Natsume T., Guan J.L., et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181:497-510.
    • (2008) J. Cell Biol. , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3    Iemura, S.4    Natsume, T.5    Guan, J.L.6
  • 37
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19:5720-5728.
    • (2000) EMBO J. , vol.19 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3    Yamamoto, A.4    Kirisako, T.5    Noda, T.6
  • 38
    • 58049192897 scopus 로고    scopus 로고
    • Identification of Barkor as a mammalian autophagy-specific factor for beclin 1 and class III phosphatidylinositol 3-kinase
    • Sun Q., Fan W., Chen K., Ding X., Chen S., Zhong Q. Identification of Barkor as a mammalian autophagy-specific factor for beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:19211-19216.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19211-19216
    • Sun, Q.1    Fan, W.2    Chen, K.3    Ding, X.4    Chen, S.5    Zhong, Q.6
  • 39
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3    Brown, K.4    Kempkes, B.5    Hibshoosh, H.6
  • 40
    • 0035032723 scopus 로고    scopus 로고
    • Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
    • Kihara A., Kabeya Y., Ohsumi Y., Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001, 2:330-335.
    • (2001) EMBO Rep. , vol.2 , pp. 330-335
    • Kihara, A.1    Kabeya, Y.2    Ohsumi, Y.3    Yoshimori, T.4
  • 41
    • 34848899280 scopus 로고    scopus 로고
    • Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis
    • Takahashi Y., Coppola D., Matsushita N., Cualing H.D., Sun M., Sato Y., et al. Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007, 9:1142-1151.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1142-1151
    • Takahashi, Y.1    Coppola, D.2    Matsushita, N.3    Cualing, H.D.4    Sun, M.5    Sato, Y.6
  • 42
    • 67549096696 scopus 로고    scopus 로고
    • Bif-1/endophilin B1: a candidate for crescent driving force in autophagy
    • Takahashi Y., Meyerkord C.L., Wang H.G. Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ. 2009, 16:947-955.
    • (2009) Cell Death Differ. , vol.16 , pp. 947-955
    • Takahashi, Y.1    Meyerkord, C.L.2    Wang, H.G.3
  • 43
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson H.E., de Lartigue J., Rigden D.J., Reedijk M., Urbé S., Clague M.J., et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6:506-522.
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1    de Lartigue, J.2    Rigden, D.J.3    Reedijk, M.4    Urbé, S.5    Clague, M.J.6
  • 44
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182:685-701.
    • (2008) J. Cell Biol. , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5    Habermann, A.6
  • 45
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
    • Dooley H.C., Razi M., Polson H.E., Girardin S.E., Wilson M.I., Tooze S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 2014, 55:238-252.
    • (2014) Mol. Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1    Razi, M.2    Polson, H.E.3    Girardin, S.E.4    Wilson, M.I.5    Tooze, S.A.6
  • 46
    • 84923379607 scopus 로고    scopus 로고
    • WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1
    • Dooley H.C., Wilson M.I., Tooze S.A. WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy 2015, 11:190-191.
    • (2015) Autophagy , vol.11 , pp. 190-191
    • Dooley, H.C.1    Wilson, M.I.2    Tooze, S.A.3
  • 51
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima N., Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010, 12:823-830.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 52
    • 58149290220 scopus 로고    scopus 로고
    • An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
    • Fujita N., Hayashi-Nishino M., Fukumoto H., Omori H., Yamamoto A., Noda T., et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 2008, 19:4651-4659.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4651-4659
    • Fujita, N.1    Hayashi-Nishino, M.2    Fukumoto, H.3    Omori, H.4    Yamamoto, A.5    Noda, T.6
  • 53
    • 58149398233 scopus 로고    scopus 로고
    • Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy
    • Fujita N., Noda T., Yoshimori T. Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy. Autophagy 2009, 5:88-89.
    • (2009) Autophagy , vol.5 , pp. 88-89
    • Fujita, N.1    Noda, T.2    Yoshimori, T.3
  • 54
    • 34447099450 scopus 로고    scopus 로고
    • Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
    • Nakatogawa H., Ichimura Y., Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.
    • (2007) Cell , vol.130 , pp. 165-178
    • Nakatogawa, H.1    Ichimura, Y.2    Ohsumi, Y.3
  • 55
    • 47549092694 scopus 로고    scopus 로고
    • Atg8 controls phagophore expansion during autophagosome formation
    • Xie Z., Nair U., Klionsky D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 2008, 19:3290-3298.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3290-3298
    • Xie, Z.1    Nair, U.2    Klionsky, D.J.3
  • 56
    • 76149086512 scopus 로고    scopus 로고
    • FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
    • Pankiv S., Alemu E.A., Brech A., Bruun J.A., Lamark T., Overvatn A., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 2010, 188:253-269.
    • (2010) J. Cell Biol. , vol.188 , pp. 253-269
    • Pankiv, S.1    Alemu, E.A.2    Brech, A.3    Bruun, J.A.4    Lamark, T.5    Overvatn, A.6
  • 57
    • 47149089713 scopus 로고    scopus 로고
    • Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes
    • Kimura S., Noda T., Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 2008, 33:109-122.
    • (2008) Cell Struct. Funct. , vol.33 , pp. 109-122
    • Kimura, S.1    Noda, T.2    Yoshimori, T.3
  • 58
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H., Shvets E., Shpilka T., Shimron F., Shinder V., Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
    • (2010) EMBO J. , vol.29 , pp. 1792-1802
    • Weidberg, H.1    Shvets, E.2    Shpilka, T.3    Shimron, F.4    Shinder, V.5    Elazar, Z.6
  • 59
    • 84907042842 scopus 로고    scopus 로고
    • Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
    • Kishi-Itakura C., Koyama-Honda I., Itakura E., Mizushima N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 2014, 127:4089-4102.
    • (2014) J. Cell Sci. , vol.127 , pp. 4089-4102
    • Kishi-Itakura, C.1    Koyama-Honda, I.2    Itakura, E.3    Mizushima, N.4
  • 60
    • 77956414236 scopus 로고    scopus 로고
    • The origin of the autophagosomal membrane
    • Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane. Nat. Cell Biol. 2010, 12:831-835.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 831-835
    • Tooze, S.A.1    Yoshimori, T.2
  • 62
    • 77953507889 scopus 로고    scopus 로고
    • Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation
    • Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 2010, 6:301-303.
    • (2010) Autophagy , vol.6 , pp. 301-303
    • Hayashi-Nishino, M.1    Fujita, N.2    Noda, T.3    Yamaguchi, A.4    Yoshimori, T.5    Yamamoto, A.6
  • 64
    • 77953724278 scopus 로고    scopus 로고
    • Regulation of dsDNA-induced innate immune responses by membrane trafficking
    • Saitoh T., Fujita N., Yoshimori T., Akira S. Regulation of dsDNA-induced innate immune responses by membrane trafficking. Autophagy 2010, 6:430-432.
    • (2010) Autophagy , vol.6 , pp. 430-432
    • Saitoh, T.1    Fujita, N.2    Yoshimori, T.3    Akira, S.4
  • 65
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3    Yamamoto, A.4    Nakaya, H.5    Yoshimori, T.6
  • 66
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu M., Waguri S., Ueno T., Iwata J., Murata S., Tanida I., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169:425-434.
    • (2005) J. Cell Biol. , vol.169 , pp. 425-434
    • Komatsu, M.1    Waguri, S.2    Ueno, T.3    Iwata, J.4    Murata, S.5    Tanida, I.6
  • 67
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T., Fujita N., Jang M.H., Uematsu S., Yang B.G., Satoh T., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5    Satoh, T.6
  • 68
    • 84864991509 scopus 로고    scopus 로고
    • Atg9 vesicles are an important membrane source during early steps of autophagosome formation
    • Yamamoto H., Kakuta S., Watanabe T.M., Kitamura A., Sekito T., Kondo-Kakuta C., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 2012, 198:219-233.
    • (2012) J. Cell Biol. , vol.198 , pp. 219-233
    • Yamamoto, H.1    Kakuta, S.2    Watanabe, T.M.3    Kitamura, A.4    Sekito, T.5    Kondo-Kakuta, C.6
  • 69
    • 77957198526 scopus 로고    scopus 로고
    • An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
    • Mari M., Griffith J., Rieter E., Krishnappa L., Klionsky D.J., Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 2010, 190:1005-1022.
    • (2010) J. Cell Biol. , vol.190 , pp. 1005-1022
    • Mari, M.1    Griffith, J.2    Rieter, E.3    Krishnappa, L.4    Klionsky, D.J.5    Reggiori, F.6
  • 70
    • 33750366092 scopus 로고    scopus 로고
    • Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
    • Young A.R., Chan E.Y., Hu X.W., Köchl R., Crawshaw S.G., High S., et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 2006, 119:3888-3900.
    • (2006) J. Cell Sci. , vol.119 , pp. 3888-3900
    • Young, A.R.1    Chan, E.Y.2    Hu, X.W.3    Köchl, R.4    Crawshaw, S.G.5    High, S.6
  • 71
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
    • Orsi A., Razi M., Dooley H.C., Robinson D., Weston A.E., Collinson L.M., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 2012, 23:1860-1873.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1    Razi, M.2    Dooley, H.C.3    Robinson, D.4    Weston, A.E.5    Collinson, L.M.6
  • 72
    • 84940538301 scopus 로고    scopus 로고
    • CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
    • Mi N., Chen Y., Wang S., Chen M., Zhao M., Yang G., et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 2015.
    • (2015) Nat. Cell Biol.
    • Mi, N.1    Chen, Y.2    Wang, S.3    Chen, M.4    Zhao, M.5    Yang, G.6
  • 73
    • 84881506338 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge L., Melville D., Zhang M., Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2:e00947.
    • (2013) Elife , vol.2
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 74
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment
    • Ge L., Zhang M., Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife 2014, 3:e04135.
    • (2014) Elife , vol.3
    • Ge, L.1    Zhang, M.2    Schekman, R.3
  • 75
    • 84891841002 scopus 로고    scopus 로고
    • Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism
    • Suzuki H., Tabata K., Morita E., Kawasaki M., Kato R., Dobson R.C., et al. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure 2014, 22:47-58.
    • (2014) Structure , vol.22 , pp. 47-58
    • Suzuki, H.1    Tabata, K.2    Morita, E.3    Kawasaki, M.4    Kato, R.5    Dobson, R.C.6
  • 78
    • 84876570034 scopus 로고    scopus 로고
    • Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation
    • Morishita H., Eguchi S., Kimura H., Sasaki J., Sakamaki Y., Robinson M.L., et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J. Biol. Chem. 2013, 288:11436-11447.
    • (2013) J. Biol. Chem. , vol.288 , pp. 11436-11447
    • Morishita, H.1    Eguchi, S.2    Kimura, H.3    Sasaki, J.4    Sakamaki, Y.5    Robinson, M.L.6
  • 79
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E., Kishi-Itakura C., Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151:1256-1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 80
    • 84880907167 scopus 로고    scopus 로고
    • Syntaxin 17: the autophagosomal SNARE
    • Itakura E., Mizushima N. Syntaxin 17: the autophagosomal SNARE. Autophagy 2013, 9:917-919.
    • (2013) Autophagy , vol.9 , pp. 917-919
    • Itakura, E.1    Mizushima, N.2
  • 81
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • Jiang P., Nishimura T., Sakamaki Y., Itakura E., Hatta T., Natsume T., et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 2014, 25:1327-1337.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1327-1337
    • Jiang, P.1    Nishimura, T.2    Sakamaki, Y.3    Itakura, E.4    Hatta, T.5    Natsume, T.6
  • 82
    • 84938067616 scopus 로고    scopus 로고
    • LC3 is a novel substrate for the mammalian Hippo kinases, STK3/STK4
    • Wilkinson D.S., Hansen M. LC3 is a novel substrate for the mammalian Hippo kinases, STK3/STK4. Autophagy 2015, 11:856-857.
    • (2015) Autophagy , vol.11 , pp. 856-857
    • Wilkinson, D.S.1    Hansen, M.2
  • 84
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
    • McEwan D.G., Popovic D., Gubas A., Terawaki S., Suzuki H., Stadel D., et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 2015, 57:39-54.
    • (2015) Mol. Cell , vol.57 , pp. 39-54
    • McEwan, D.G.1    Popovic, D.2    Gubas, A.3    Terawaki, S.4    Suzuki, H.5    Stadel, D.6
  • 85
    • 78650114245 scopus 로고    scopus 로고
    • Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain
    • Tabata K., Matsunaga K., Sakane A., Sasaki T., Noda T., Yoshimori T. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 2010, 21:4162-4172.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4162-4172
    • Tabata, K.1    Matsunaga, K.2    Sakane, A.3    Sasaki, T.4    Noda, T.5    Yoshimori, T.6
  • 86
    • 0028788311 scopus 로고
    • The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance
    • Haas A., Scheglmann D., Lazar T., Gallwitz D., Wickner W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 1995, 14:5258-5270.
    • (1995) EMBO J. , vol.14 , pp. 5258-5270
    • Haas, A.1    Scheglmann, D.2    Lazar, T.3    Gallwitz, D.4    Wickner, W.5
  • 87
    • 34548077575 scopus 로고    scopus 로고
    • Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    • Kimura S., Noda T., Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3:452-460.
    • (2007) Autophagy , vol.3 , pp. 452-460
    • Kimura, S.1    Noda, T.2    Yoshimori, T.3
  • 89
    • 73949124443 scopus 로고    scopus 로고
    • Binding Rubicon to cross the Rubicon
    • Matsunaga K., Noda T., Yoshimori T. Binding Rubicon to cross the Rubicon. Autophagy 2009, 5:876-877.
    • (2009) Autophagy , vol.5 , pp. 876-877
    • Matsunaga, K.1    Noda, T.2    Yoshimori, T.3
  • 90
    • 64049086758 scopus 로고    scopus 로고
    • Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga K., Saitoh T., Tabata K., Omori H., Satoh T., Kurotori N., et al. Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11:385-396.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 385-396
    • Matsunaga, K.1    Saitoh, T.2    Tabata, K.3    Omori, H.4    Satoh, T.5    Kurotori, N.6
  • 91
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y., Wang Q.J., Li X., Yan Y., Backer J.M., Chait B.T., et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11:468-476.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5    Chait, B.T.6
  • 92
    • 78650936005 scopus 로고    scopus 로고
    • The RUN domain of Rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression
    • Sun Q., Zhang J., Fan W., Wong K.N., Ding X., Chen S., et al. The RUN domain of Rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression. J. Biol. Chem. 2011, 286:185-191.
    • (2011) J. Biol. Chem. , vol.286 , pp. 185-191
    • Sun, Q.1    Zhang, J.2    Fan, W.3    Wong, K.N.4    Ding, X.5    Chen, S.6
  • 93
    • 84921443304 scopus 로고    scopus 로고
    • MTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
    • Kim Y.M., Jung C.H., Seo M., Kim E.K., Park J.M., Bae S.S., et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 2015, 57:207-218.
    • (2015) Mol. Cell , vol.57 , pp. 207-218
    • Kim, Y.M.1    Jung, C.H.2    Seo, M.3    Kim, E.K.4    Park, J.M.5    Bae, S.S.6
  • 94
    • 84930226935 scopus 로고    scopus 로고
    • Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth
    • Sun T., Li X., Zhang P., Chen W.D., Zhang H.L., Li D.D., et al. Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 2015, 6:7215.
    • (2015) Nat. Commun. , vol.6 , pp. 7215
    • Sun, T.1    Li, X.2    Zhang, P.3    Chen, W.D.4    Zhang, H.L.5    Li, D.D.6
  • 95
    • 84920945138 scopus 로고    scopus 로고
    • A kinase-independent role for EGF receptor in autophagy initiation
    • Tan X., Thapa N., Sun Y., Anderson R.A. A kinase-independent role for EGF receptor in autophagy initiation. Cell 2015, 160:145-160.
    • (2015) Cell , vol.160 , pp. 145-160
    • Tan, X.1    Thapa, N.2    Sun, Y.3    Anderson, R.A.4
  • 96
    • 84926451754 scopus 로고    scopus 로고
    • HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication
    • Wang L., Tian Y., Ou J.H. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 2015, 11:e1004764.
    • (2015) PLoS Pathog. , vol.11
    • Wang, L.1    Tian, Y.2    Ou, J.H.3
  • 97
    • 3242721268 scopus 로고    scopus 로고
    • MTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells
    • Murakami M., Ichisaka T., Maeda M., Oshiro N., Hara K., Edenhofer F., et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 2004, 24:6710-6718.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6710-6718
    • Murakami, M.1    Ichisaka, T.2    Maeda, M.3    Oshiro, N.4    Hara, K.5    Edenhofer, F.6
  • 99
    • 84934287492 scopus 로고    scopus 로고
    • Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
    • Martinez J., Malireddi R.K., Lu Q., Cunha L.D., Pelletier S., Gingras S., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 2015, 17:893-906.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 893-906
    • Martinez, J.1    Malireddi, R.K.2    Lu, Q.3    Cunha, L.D.4    Pelletier, S.5    Gingras, S.6
  • 100
    • 0028230738 scopus 로고
    • Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization
    • Baba M., Takeshige K., Baba N., Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 1994, 124:903-913.
    • (1994) J. Cell Biol. , vol.124 , pp. 903-913
    • Baba, M.1    Takeshige, K.2    Baba, N.3    Ohsumi, Y.4
  • 101
    • 84903817207 scopus 로고    scopus 로고
    • Receptor-mediated mitophagy in yeast and mammalian systems
    • Liu L., Sakakibara K., Chen Q., Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014, 24:787-795.
    • (2014) Cell Res. , vol.24 , pp. 787-795
    • Liu, L.1    Sakakibara, K.2    Chen, Q.3    Okamoto, K.4
  • 102
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto K., Kondo-Okamoto N., Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 2009, 17:87-97.
    • (2009) Dev. Cell , vol.17 , pp. 87-97
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 103
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • Kanki T., Wang K., Cao Y., Baba M., Klionsky D.J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 2009, 17:98-109.
    • (2009) Dev. Cell , vol.17 , pp. 98-109
    • Kanki, T.1    Wang, K.2    Cao, Y.3    Baba, M.4    Klionsky, D.J.5
  • 104
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L., Feng D., Chen G., Chen M., Zheng Q., Song P., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 2012, 14:177-185.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3    Chen, M.4    Zheng, Q.5    Song, P.6
  • 105
  • 106
    • 84861733247 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
    • Hanna R.A., Quinsay M.N., Orogo A.M., Giang K., Rikka S., Gustafsson Å. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 2012, 287:19094-19104.
    • (2012) J. Biol. Chem. , vol.287 , pp. 19094-19104
    • Hanna, R.A.1    Quinsay, M.N.2    Orogo, A.M.3    Giang, K.4    Rikka, S.5    Gustafsson, Å.6
  • 107
    • 84899912073 scopus 로고    scopus 로고
    • A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
    • Chen G., Han Z., Feng D., Chen Y., Chen L., Wu H., et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 2014, 54:362-377.
    • (2014) Mol. Cell , vol.54 , pp. 362-377
    • Chen, G.1    Han, Z.2    Feng, D.3    Chen, Y.4    Chen, L.5    Wu, H.6
  • 108
    • 84936132577 scopus 로고    scopus 로고
    • Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
    • Murakawa T., Yamaguchi O., Hashimoto A., Hikoso S., Takeda T., Oka T., et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 2015, 6:7527.
    • (2015) Nat. Commun. , vol.6 , pp. 7527
    • Murakawa, T.1    Yamaguchi, O.2    Hashimoto, A.3    Hikoso, S.4    Takeda, T.5    Oka, T.6
  • 110
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano F., Okatsu K., Kosako H., Tamura Y., Go E., Kimura M., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014, 510:162-166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1    Okatsu, K.2    Kosako, H.3    Tamura, Y.4    Go, E.5    Kimura, M.6
  • 111
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli C., Kazlauskaite A., Zhang N., Woodroof H.I., Campbell D.G., Gourlay R., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012, 2:120080.
    • (2012) Open Biol. , vol.2
    • Kondapalli, C.1    Kazlauskaite, A.2    Zhang, N.3    Woodroof, H.I.4    Campbell, D.G.5    Gourlay, R.6
  • 112
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima K., Imai Y., Yoshida S., Ishihama Y., Kanao T., Sato S., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2012, 2:1002.
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1    Imai, Y.2    Yoshida, S.3    Ishihama, Y.4    Kanao, T.5    Sato, S.6
  • 113
  • 114
  • 115
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • Mochida K., Oikawa Y., Kimura Y., Kirisako H., Hirano H., Ohsumi Y., et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015, 522:359-362.
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1    Oikawa, Y.2    Kimura, Y.3    Kirisako, H.4    Hirano, H.5    Ohsumi, Y.6
  • 117
    • 84880108306 scopus 로고    scopus 로고
    • Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
    • Hung Y.H., Chen L.M., Yang J.Y., Yang W.Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 2013, 4:2111.
    • (2013) Nat. Commun. , vol.4 , pp. 2111
    • Hung, Y.H.1    Chen, L.M.2    Yang, J.Y.3    Yang, W.Y.4
  • 118
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • Maejima I., Takahashi A., Omori H., Kimura T., Takabatake Y., Saitoh T., et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013, 32:2336-2347.
    • (2013) EMBO J. , vol.32 , pp. 2336-2347
    • Maejima, I.1    Takahashi, A.2    Omori, H.3    Kimura, T.4    Takabatake, Y.5    Saitoh, T.6
  • 122
    • 84905460026 scopus 로고    scopus 로고
    • Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity
    • Rivera J.F., Costes S., Gurlo T., Glabe C.G., Butler P.C. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 2014, 124:3489-3500.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3489-3500
    • Rivera, J.F.1    Costes, S.2    Gurlo, T.3    Glabe, C.G.4    Butler, P.C.5
  • 123
    • 84905460021 scopus 로고    scopus 로고
    • Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy
    • Shigihara N., Fukunaka A., Hara A., Komiya K., Honda A., Uchida T., et al. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J. Clin. Invest. 2014, 124:3634-3644.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3634-3644
    • Shigihara, N.1    Fukunaka, A.2    Hara, A.3    Komiya, K.4    Honda, A.5    Uchida, T.6
  • 124
    • 84905492806 scopus 로고    scopus 로고
    • Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes
    • Kim J., Cheon H., Jeong Y.T., Quan W., Kim K.H., Cho J.M., et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J. Clin. Invest. 2014, 124:3311-3324.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3311-3324
    • Kim, J.1    Cheon, H.2    Jeong, Y.T.3    Quan, W.4    Kim, K.H.5    Cho, J.M.6
  • 126
    • 84876722731 scopus 로고    scopus 로고
    • Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis
    • Freeman D., Cedillos R., Choyke S., Lukic Z., McGuire K., Marvin S., et al. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS ONE 2013, 8:e62143.
    • (2013) PLoS ONE , vol.8
    • Freeman, D.1    Cedillos, R.2    Choyke, S.3    Lukic, Z.4    McGuire, K.5    Marvin, S.6
  • 127
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G., Bauernfeind F.G., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464:1357-1361.
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1    Kono, H.2    Rayner, K.J.3    Sirois, C.M.4    Vladimer, G.5    Bauernfeind, F.G.6
  • 129
    • 17044440789 scopus 로고    scopus 로고
    • Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)
    • Nishino I., Fu J., Tanji K., Yamada T., Shimojo S., Koori T., et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000, 406:906-910.
    • (2000) Nature , vol.406 , pp. 906-910
    • Nishino, I.1    Fu, J.2    Tanji, K.3    Yamada, T.4    Shimojo, S.5    Koori, T.6
  • 130
    • 53049094306 scopus 로고    scopus 로고
    • Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2
    • Fehrenbacher N., Bastholm L., Kirkegaard-Sørensen T., Rafn B., Bøttzauw T., Nielsen C., et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008, 68:6623-6633.
    • (2008) Cancer Res. , vol.68 , pp. 6623-6633
    • Fehrenbacher, N.1    Bastholm, L.2    Kirkegaard-Sørensen, T.3    Rafn, B.4    Bøttzauw, T.5    Nielsen, C.6
  • 131
    • 0036710928 scopus 로고    scopus 로고
    • Lipofuscin: mechanisms of age-related accumulation and influence on cell function
    • Brunk U.T., Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 2002, 33:611-619.
    • (2002) Free Radic. Biol. Med. , vol.33 , pp. 611-619
    • Brunk, U.T.1    Terman, A.2
  • 132
    • 84860705893 scopus 로고    scopus 로고
    • Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
    • Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485:251-255.
    • (2012) Nature , vol.485 , pp. 251-255
    • Oka, T.1    Hikoso, S.2    Yamaguchi, O.3    Taneike, M.4    Takeda, T.5    Tamai, T.6
  • 133
    • 77955342581 scopus 로고    scopus 로고
    • Inhibition of autophagy in the heart induces age-related cardiomyopathy
    • Taneike M., Yamaguchi O., Nakai A., Hikoso S., Takeda T., Mizote I., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010, 6:600-606.
    • (2010) Autophagy , vol.6 , pp. 600-606
    • Taneike, M.1    Yamaguchi, O.2    Nakai, A.3    Hikoso, S.4    Takeda, T.5    Mizote, I.6
  • 134
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 2007, 13:619-624.
    • (2007) Nat. Med. , vol.13 , pp. 619-624
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3    Higuchi, Y.4    Hikoso, S.5    Taniike, M.6
  • 135
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston T.L., Wandel M.P., von Muhlinen N., Foeglein A., Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1    Wandel, M.P.2    von Muhlinen, N.3    Foeglein, A.4    Randow, F.5
  • 136
    • 84886897936 scopus 로고    scopus 로고
    • Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
    • Fujita N., Morita E., Itoh T., Tanaka A., Nakaoka M., Osada Y., et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 2013, 203:115-128.
    • (2013) J. Cell Biol. , vol.203 , pp. 115-128
    • Fujita, N.1    Morita, E.2    Itoh, T.3    Tanaka, A.4    Nakaoka, M.5    Osada, Y.6
  • 137
    • 68349143052 scopus 로고    scopus 로고
    • Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
    • Dupont N., Lacas-Gervais S., Bertout J., Paz I., Freche B., Van Nhieu G.T., et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009, 6:137-149.
    • (2009) Cell Host Microbe , vol.6 , pp. 137-149
    • Dupont, N.1    Lacas-Gervais, S.2    Bertout, J.3    Paz, I.4    Freche, B.5    Van Nhieu, G.T.6
  • 138
    • 84930413971 scopus 로고    scopus 로고
    • A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion
    • Miao Y., Li G., Zhang X., Xu H., Abraham S.N. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 2015, 161:1306-1319.
    • (2015) Cell , vol.161 , pp. 1306-1319
    • Miao, Y.1    Li, G.2    Zhang, X.3    Xu, H.4    Abraham, S.N.5
  • 140
    • 84937763318 scopus 로고    scopus 로고
    • Escape of non-enveloped virus from intact cells
    • Bird S.W., Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology 2015, 479-480:444-449.
    • (2015) Virology , vol.479-480 , pp. 444-449
    • Bird, S.W.1    Kirkegaard, K.2
  • 141
    • 80255137555 scopus 로고    scopus 로고
    • The role of lysosomes in iron metabolism and recycling
    • Kurz T., Eaton J.W., Brunk U.T. The role of lysosomes in iron metabolism and recycling. Int. J. Biochem. Cell Biol. 2011, 43:1686-1697.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1686-1697
    • Kurz, T.1    Eaton, J.W.2    Brunk, U.T.3
  • 142
    • 84903815977 scopus 로고    scopus 로고
    • Identifying specific receptors for cargo-mediated autophagy
    • Goodall M., Thorburn A. Identifying specific receptors for cargo-mediated autophagy. Cell Res. 2014, 24:783-784.
    • (2014) Cell Res. , vol.24 , pp. 783-784
    • Goodall, M.1    Thorburn, A.2
  • 143
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • Mancias J.D., Wang X., Gygi S.P., Harper J.W., Kimmelman A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509:105-109.
    • (2014) Nature , vol.509 , pp. 105-109
    • Mancias, J.D.1    Wang, X.2    Gygi, S.P.3    Harper, J.W.4    Kimmelman, A.C.5
  • 144
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5    Peng, J.6
  • 145
    • 79956346329 scopus 로고    scopus 로고
    • Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
    • Rong Y., McPhee C.K., McPhee C., Deng S., Huang L., Chen L., et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:7826-7831.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 7826-7831
    • Rong, Y.1    McPhee, C.K.2    McPhee, C.3    Deng, S.4    Huang, L.5    Chen, L.6
  • 146
    • 84865776097 scopus 로고    scopus 로고
    • Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation
    • Rong Y., Liu M., Ma L., Du W., Zhang H., Tian Y., et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 2012, 14:924-934.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 924-934
    • Rong, Y.1    Liu, M.2    Ma, L.3    Du, W.4    Zhang, H.5    Tian, Y.6
  • 147
    • 79955588367 scopus 로고    scopus 로고
    • Cell sensitivity to oxidative stress is influenced by ferritin autophagy
    • Kurz T., Gustafsson B., Brunk U.T. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic. Biol. Med. 2011, 50:1647-1658.
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 1647-1658
    • Kurz, T.1    Gustafsson, B.2    Brunk, U.T.3
  • 148
    • 84879780600 scopus 로고    scopus 로고
    • Autophagy: shaping the tumor microenvironment and therapeutic response
    • Maes H., Rubio N., Garg A.D., Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 2013, 19:428-446.
    • (2013) Trends Mol. Med. , vol.19 , pp. 428-446
    • Maes, H.1    Rubio, N.2    Garg, A.D.3    Agostinis, P.4
  • 149
    • 84871940714 scopus 로고    scopus 로고
    • Chloroquine in cancer therapy: a double-edged sword of autophagy
    • Kimura T., Takabatake Y., Takahashi A., Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 2013, 73:3-7.
    • (2013) Cancer Res. , vol.73 , pp. 3-7
    • Kimura, T.1    Takabatake, Y.2    Takahashi, A.3    Isaka, Y.4
  • 150
    • 84880585829 scopus 로고    scopus 로고
    • Cellular iron metabolism in prognosis and therapy of breast cancer
    • Torti S.V., Torti F.M. Cellular iron metabolism in prognosis and therapy of breast cancer. Crit. Rev. Oncog. 2013, 18:435-448.
    • (2013) Crit. Rev. Oncog. , vol.18 , pp. 435-448
    • Torti, S.V.1    Torti, F.M.2
  • 151
    • 77951228508 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy: cell death or cell survival?
    • Mazure N.M., Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival?. Curr. Opin. Cell Biol. 2010, 22:177-180.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 177-180
    • Mazure, N.M.1    Pouysségur, J.2
  • 152
    • 26444442450 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress: cell life and death decisions
    • Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 2005, 115:2656-2664.
    • (2005) J. Clin. Invest. , vol.115 , pp. 2656-2664
    • Xu, C.1    Bailly-Maitre, B.2    Reed, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.