-
2
-
-
84891745088
-
Historical landmarks of autophagy research
-
Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014, 24:9-23.
-
(2014)
Cell Res.
, vol.24
, pp. 9-23
-
-
Ohsumi, Y.1
-
3
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333:169-174.
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
4
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
Harding T.M., Morano K.A., Scott S.V., Klionsky D.J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 1995, 131:591-602.
-
(1995)
J. Cell Biol.
, vol.131
, pp. 591-602
-
-
Harding, T.M.1
Morano, K.A.2
Scott, S.V.3
Klionsky, D.J.4
-
5
-
-
0027936092
-
Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
-
Thumm M., Egner R., Koch B., Schlumpberger M., Straub M., Veenhuis M., et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994, 349:275-280.
-
(1994)
FEBS Lett.
, vol.349
, pp. 275-280
-
-
Thumm, M.1
Egner, R.2
Koch, B.3
Schlumpberger, M.4
Straub, M.5
Veenhuis, M.6
-
6
-
-
84891738225
-
Autophagy and human diseases
-
Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014, 24:69-79.
-
(2014)
Cell Res.
, vol.24
, pp. 69-79
-
-
Jiang, P.1
Mizushima, N.2
-
7
-
-
84891741302
-
Chaperone-mediated autophagy: roles in disease and aging
-
Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014, 24:92-104.
-
(2014)
Cell Res.
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
8
-
-
79951833039
-
Chaperone-mediated autophagy at a glance
-
Kaushik S., Bandyopadhyay U., Sridhar S., Kiffin R., Martinez-Vicente M., Kon M., et al. Chaperone-mediated autophagy at a glance. J. Cell Sci. 2011, 124:495-499.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 495-499
-
-
Kaushik, S.1
Bandyopadhyay, U.2
Sridhar, S.3
Kiffin, R.4
Martinez-Vicente, M.5
Kon, M.6
-
9
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
Efeyan A., Comb W.C., Sabatini D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517:302-310.
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
10
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
11
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
-
12
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
-
13
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa N., Sasaki T., Iemura S., Natsume T., Hara T., Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 2009, 5:973-979.
-
(2009)
Autophagy
, vol.5
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
14
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley I.G., Lam dH., Wang J., Ding X., Chen S., Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
15
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
-
16
-
-
84940550513
-
Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A
-
Wong P.M., Feng Y., Wang J., Shi R., Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun. 2015, 6:8048.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8048
-
-
Wong, P.M.1
Feng, Y.2
Wang, J.3
Shi, R.4
Jiang, X.5
-
17
-
-
0027296748
-
Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors
-
Holen I., Gordon P.B., Seglen P.O. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur. J. Biochem. 1993, 215:113-122.
-
(1993)
Eur. J. Biochem.
, vol.215
, pp. 113-122
-
-
Holen, I.1
Gordon, P.B.2
Seglen, P.O.3
-
18
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
19
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., Shackelford D.B., Mihaylova M.M., Gelino S., Kohnz R.A., Mair W., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
-
20
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M., Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 2000, 150:1507-1513.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
21
-
-
0014148066
-
Participation of lysosomes in cellular autophagy induced in rat liver by glucagon
-
Deter R.L., Baudhuin P., De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 1967, 35:C11-C16.
-
(1967)
J. Cell Biol.
, vol.35
, pp. C11-C16
-
-
Deter, R.L.1
Baudhuin, P.2
De Duve, C.3
-
22
-
-
84922968506
-
Transcriptional regulation of autophagy by an FXR-CREB axis
-
Seok S., Fu T., Choi S.E., Li Y., Zhu R., Kumar S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
-
(2014)
Nature
, vol.516
, pp. 108-111
-
-
Seok, S.1
Fu, T.2
Choi, S.E.3
Li, Y.4
Zhu, R.5
Kumar, S.6
-
23
-
-
79951962147
-
CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
-
Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
24
-
-
11144219992
-
Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase
-
Kimball S.R., Siegfried B.A., Jefferson L.S. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J. Biol. Chem. 2004, 279:54103-54109.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 54103-54109
-
-
Kimball, S.R.1
Siegfried, B.A.2
Jefferson, L.S.3
-
25
-
-
68049109201
-
Glucagon acts in a dominant manner to repress insulin-induced mammalian target of rapamycin complex 1 signaling in perfused rat liver
-
Baum J.I., Kimball S.R., Jefferson L.S. Glucagon acts in a dominant manner to repress insulin-induced mammalian target of rapamycin complex 1 signaling in perfused rat liver. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E410-E415.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E410-E415
-
-
Baum, J.I.1
Kimball, S.R.2
Jefferson, L.S.3
-
26
-
-
78650448754
-
Chemical modulators of autophagy as biological probes and potential therapeutics
-
Fleming A., Noda T., Yoshimori T., Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol. 2011, 7:9-17.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 9-17
-
-
Fleming, A.1
Noda, T.2
Yoshimori, T.3
Rubinsztein, D.C.4
-
27
-
-
84921615639
-
PI(5)P regulates autophagosome biogenesis
-
Vicinanza M., Korolchuk V.I., Ashkenazi A., Puri C., Menzies F.M., Clarke J.H., et al. PI(5)P regulates autophagosome biogenesis. Mol. Cell 2015, 57:219-234.
-
(2015)
Mol. Cell
, vol.57
, pp. 219-234
-
-
Vicinanza, M.1
Korolchuk, V.I.2
Ashkenazi, A.3
Puri, C.4
Menzies, F.M.5
Clarke, J.H.6
-
28
-
-
42249106042
-
Novel targets for Huntington's disease in an mTOR-independent autophagy pathway
-
Williams A., Sarkar S., Cuddon P., Ttofi E.K., Saiki S., Siddiqi F.H., et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 2008, 4:295-305.
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 295-305
-
-
Williams, A.1
Sarkar, S.2
Cuddon, P.3
Ttofi, E.K.4
Saiki, S.5
Siddiqi, F.H.6
-
29
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante M., Sabatini D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126:1713-1719.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
30
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
-
31
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki K., Kubota Y., Sekito T., Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12:209-218.
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
32
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6:764-776.
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
33
-
-
58149473473
-
Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism
-
Chan E.Y., Longatti A., McKnight N.C., Tooze S.A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 2009, 29:157-171.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 157-171
-
-
Chan, E.Y.1
Longatti, A.2
McKnight, N.C.3
Tooze, S.A.4
-
34
-
-
34548482499
-
SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
-
Chan E.Y., Kir S., Tooze S.A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 2007, 282:25464-25474.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25464-25474
-
-
Chan, E.Y.1
Kir, S.2
Tooze, S.A.3
-
35
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara T., Takamura A., Kishi C., Iemura S., Natsume T., Guan J.L., et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181:497-510.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
Guan, J.L.6
-
36
-
-
84888121146
-
Dynamic association of the ULK1 complex with omegasomes during autophagy induction
-
Karanasios E., Stapleton E., Manifava M., Kaizuka T., Mizushima N., Walker S.A., et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 2013, 126:5224-5238.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5224-5238
-
-
Karanasios, E.1
Stapleton, E.2
Manifava, M.3
Kaizuka, T.4
Mizushima, N.5
Walker, S.A.6
-
37
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19:5720-5728.
-
(2000)
EMBO J.
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
Yamamoto, A.4
Kirisako, T.5
Noda, T.6
-
38
-
-
58049192897
-
Identification of Barkor as a mammalian autophagy-specific factor for beclin 1 and class III phosphatidylinositol 3-kinase
-
Sun Q., Fan W., Chen K., Ding X., Chen S., Zhong Q. Identification of Barkor as a mammalian autophagy-specific factor for beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:19211-19216.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 19211-19216
-
-
Sun, Q.1
Fan, W.2
Chen, K.3
Ding, X.4
Chen, S.5
Zhong, Q.6
-
39
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
-
40
-
-
0035032723
-
Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
-
Kihara A., Kabeya Y., Ohsumi Y., Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001, 2:330-335.
-
(2001)
EMBO Rep.
, vol.2
, pp. 330-335
-
-
Kihara, A.1
Kabeya, Y.2
Ohsumi, Y.3
Yoshimori, T.4
-
41
-
-
34848899280
-
Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
Takahashi Y., Coppola D., Matsushita N., Cualing H.D., Sun M., Sato Y., et al. Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007, 9:1142-1151.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.D.4
Sun, M.5
Sato, Y.6
-
42
-
-
67549096696
-
Bif-1/endophilin B1: a candidate for crescent driving force in autophagy
-
Takahashi Y., Meyerkord C.L., Wang H.G. Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ. 2009, 16:947-955.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 947-955
-
-
Takahashi, Y.1
Meyerkord, C.L.2
Wang, H.G.3
-
43
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Polson H.E., de Lartigue J., Rigden D.J., Reedijk M., Urbé S., Clague M.J., et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6:506-522.
-
(2010)
Autophagy
, vol.6
, pp. 506-522
-
-
Polson, H.E.1
de Lartigue, J.2
Rigden, D.J.3
Reedijk, M.4
Urbé, S.5
Clague, M.J.6
-
44
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182:685-701.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
-
45
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
-
Dooley H.C., Razi M., Polson H.E., Girardin S.E., Wilson M.I., Tooze S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 2014, 55:238-252.
-
(2014)
Mol. Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
46
-
-
84923379607
-
WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1
-
Dooley H.C., Wilson M.I., Tooze S.A. WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy 2015, 11:190-191.
-
(2015)
Autophagy
, vol.11
, pp. 190-191
-
-
Dooley, H.C.1
Wilson, M.I.2
Tooze, S.A.3
-
47
-
-
84874646724
-
FIP200 regulates targeting of Atg16L1 to the isolation membrane
-
Nishimura T., Kaizuka T., Cadwell K., Sahani M.H., Saitoh T., Akira S., et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 2013, 14:284-291.
-
(2013)
EMBO Rep.
, vol.14
, pp. 284-291
-
-
Nishimura, T.1
Kaizuka, T.2
Cadwell, K.3
Sahani, M.H.4
Saitoh, T.5
Akira, S.6
-
48
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., et al. A ubiquitin-like system mediates protein lipidation. Nature 2000, 408:488-492.
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
-
49
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima N., Noda T., Yoshimori T., Tanaka Y., Ishii T., George M.D., et al. A protein conjugation system essential for autophagy. Nature 1998, 395:395-398.
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
George, M.D.6
-
50
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky D.J., Abdalla F.C., Abeliovich H., Abraham R.T., Acevedo-Arozena A., Adeli K., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
-
51
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima N., Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010, 12:823-830.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
52
-
-
58149290220
-
An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
-
Fujita N., Hayashi-Nishino M., Fukumoto H., Omori H., Yamamoto A., Noda T., et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 2008, 19:4651-4659.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4651-4659
-
-
Fujita, N.1
Hayashi-Nishino, M.2
Fukumoto, H.3
Omori, H.4
Yamamoto, A.5
Noda, T.6
-
53
-
-
58149398233
-
Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy
-
Fujita N., Noda T., Yoshimori T. Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy. Autophagy 2009, 5:88-89.
-
(2009)
Autophagy
, vol.5
, pp. 88-89
-
-
Fujita, N.1
Noda, T.2
Yoshimori, T.3
-
54
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa H., Ichimura Y., Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
55
-
-
47549092694
-
Atg8 controls phagophore expansion during autophagosome formation
-
Xie Z., Nair U., Klionsky D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 2008, 19:3290-3298.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3290-3298
-
-
Xie, Z.1
Nair, U.2
Klionsky, D.J.3
-
56
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
-
Pankiv S., Alemu E.A., Brech A., Bruun J.A., Lamark T., Overvatn A., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 2010, 188:253-269.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 253-269
-
-
Pankiv, S.1
Alemu, E.A.2
Brech, A.3
Bruun, J.A.4
Lamark, T.5
Overvatn, A.6
-
57
-
-
47149089713
-
Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes
-
Kimura S., Noda T., Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 2008, 33:109-122.
-
(2008)
Cell Struct. Funct.
, vol.33
, pp. 109-122
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
58
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H., Shvets E., Shpilka T., Shimron F., Shinder V., Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
59
-
-
84907042842
-
Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
-
Kishi-Itakura C., Koyama-Honda I., Itakura E., Mizushima N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 2014, 127:4089-4102.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4089-4102
-
-
Kishi-Itakura, C.1
Koyama-Honda, I.2
Itakura, E.3
Mizushima, N.4
-
60
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane. Nat. Cell Biol. 2010, 12:831-835.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
61
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009, 11:1433-1437.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
62
-
-
77953507889
-
Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation
-
Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 2010, 6:301-303.
-
(2010)
Autophagy
, vol.6
, pp. 301-303
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
63
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
-
64
-
-
77953724278
-
Regulation of dsDNA-induced innate immune responses by membrane trafficking
-
Saitoh T., Fujita N., Yoshimori T., Akira S. Regulation of dsDNA-induced innate immune responses by membrane trafficking. Autophagy 2010, 6:430-432.
-
(2010)
Autophagy
, vol.6
, pp. 430-432
-
-
Saitoh, T.1
Fujita, N.2
Yoshimori, T.3
Akira, S.4
-
65
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
-
66
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M., Waguri S., Ueno T., Iwata J., Murata S., Tanida I., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169:425-434.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
-
67
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T., Fujita N., Jang M.H., Uematsu S., Yang B.G., Satoh T., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
-
68
-
-
84864991509
-
Atg9 vesicles are an important membrane source during early steps of autophagosome formation
-
Yamamoto H., Kakuta S., Watanabe T.M., Kitamura A., Sekito T., Kondo-Kakuta C., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 2012, 198:219-233.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 219-233
-
-
Yamamoto, H.1
Kakuta, S.2
Watanabe, T.M.3
Kitamura, A.4
Sekito, T.5
Kondo-Kakuta, C.6
-
69
-
-
77957198526
-
An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
-
Mari M., Griffith J., Rieter E., Krishnappa L., Klionsky D.J., Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 2010, 190:1005-1022.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 1005-1022
-
-
Mari, M.1
Griffith, J.2
Rieter, E.3
Krishnappa, L.4
Klionsky, D.J.5
Reggiori, F.6
-
70
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young A.R., Chan E.Y., Hu X.W., Köchl R., Crawshaw S.G., High S., et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 2006, 119:3888-3900.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3888-3900
-
-
Young, A.R.1
Chan, E.Y.2
Hu, X.W.3
Köchl, R.4
Crawshaw, S.G.5
High, S.6
-
71
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
-
Orsi A., Razi M., Dooley H.C., Robinson D., Weston A.E., Collinson L.M., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 2012, 23:1860-1873.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1860-1873
-
-
Orsi, A.1
Razi, M.2
Dooley, H.C.3
Robinson, D.4
Weston, A.E.5
Collinson, L.M.6
-
72
-
-
84940538301
-
CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
-
Mi N., Chen Y., Wang S., Chen M., Zhao M., Yang G., et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 2015.
-
(2015)
Nat. Cell Biol.
-
-
Mi, N.1
Chen, Y.2
Wang, S.3
Chen, M.4
Zhao, M.5
Yang, G.6
-
73
-
-
84881506338
-
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge L., Melville D., Zhang M., Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2:e00947.
-
(2013)
Elife
, vol.2
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
74
-
-
84927720203
-
Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment
-
Ge L., Zhang M., Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife 2014, 3:e04135.
-
(2014)
Elife
, vol.3
-
-
Ge, L.1
Zhang, M.2
Schekman, R.3
-
75
-
-
84891841002
-
Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism
-
Suzuki H., Tabata K., Morita E., Kawasaki M., Kato R., Dobson R.C., et al. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure 2014, 22:47-58.
-
(2014)
Structure
, vol.22
, pp. 47-58
-
-
Suzuki, H.1
Tabata, K.2
Morita, E.3
Kawasaki, M.4
Kato, R.5
Dobson, R.C.6
-
76
-
-
84899750506
-
ILIR: a web resource for prediction of Atg8-family interacting proteins
-
Kalvari I., Tsompanis S., Mulakkal N.C., Osgood R., Johansen T., Nezis I.P., et al. iLIR: a web resource for prediction of Atg8-family interacting proteins. Autophagy 2014, 10:913-925.
-
(2014)
Autophagy
, vol.10
, pp. 913-925
-
-
Kalvari, I.1
Tsompanis, S.2
Mulakkal, N.C.3
Osgood, R.4
Johansen, T.5
Nezis, I.P.6
-
77
-
-
79958786419
-
Mutations in FYCO1 cause autosomal-recessive congenital cataracts
-
Chen J., Ma Z., Jiao X., Fariss R., Kantorow W.L., Kantorow M., et al. Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am. J. Hum. Genet. 2011, 88:827-838.
-
(2011)
Am. J. Hum. Genet.
, vol.88
, pp. 827-838
-
-
Chen, J.1
Ma, Z.2
Jiao, X.3
Fariss, R.4
Kantorow, W.L.5
Kantorow, M.6
-
78
-
-
84876570034
-
Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation
-
Morishita H., Eguchi S., Kimura H., Sasaki J., Sakamaki Y., Robinson M.L., et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J. Biol. Chem. 2013, 288:11436-11447.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 11436-11447
-
-
Morishita, H.1
Eguchi, S.2
Kimura, H.3
Sasaki, J.4
Sakamaki, Y.5
Robinson, M.L.6
-
79
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura E., Kishi-Itakura C., Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151:1256-1269.
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
80
-
-
84880907167
-
Syntaxin 17: the autophagosomal SNARE
-
Itakura E., Mizushima N. Syntaxin 17: the autophagosomal SNARE. Autophagy 2013, 9:917-919.
-
(2013)
Autophagy
, vol.9
, pp. 917-919
-
-
Itakura, E.1
Mizushima, N.2
-
81
-
-
84901381389
-
The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
-
Jiang P., Nishimura T., Sakamaki Y., Itakura E., Hatta T., Natsume T., et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 2014, 25:1327-1337.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1327-1337
-
-
Jiang, P.1
Nishimura, T.2
Sakamaki, Y.3
Itakura, E.4
Hatta, T.5
Natsume, T.6
-
82
-
-
84938067616
-
LC3 is a novel substrate for the mammalian Hippo kinases, STK3/STK4
-
Wilkinson D.S., Hansen M. LC3 is a novel substrate for the mammalian Hippo kinases, STK3/STK4. Autophagy 2015, 11:856-857.
-
(2015)
Autophagy
, vol.11
, pp. 856-857
-
-
Wilkinson, D.S.1
Hansen, M.2
-
83
-
-
84920418471
-
Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy
-
Wilkinson D.S., Jariwala J.S., Anderson E., Mitra K., Meisenhelder J., Chang J.T., et al. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol. Cell 2015, 57:55-68.
-
(2015)
Mol. Cell
, vol.57
, pp. 55-68
-
-
Wilkinson, D.S.1
Jariwala, J.S.2
Anderson, E.3
Mitra, K.4
Meisenhelder, J.5
Chang, J.T.6
-
84
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
McEwan D.G., Popovic D., Gubas A., Terawaki S., Suzuki H., Stadel D., et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 2015, 57:39-54.
-
(2015)
Mol. Cell
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
Popovic, D.2
Gubas, A.3
Terawaki, S.4
Suzuki, H.5
Stadel, D.6
-
85
-
-
78650114245
-
Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain
-
Tabata K., Matsunaga K., Sakane A., Sasaki T., Noda T., Yoshimori T. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 2010, 21:4162-4172.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 4162-4172
-
-
Tabata, K.1
Matsunaga, K.2
Sakane, A.3
Sasaki, T.4
Noda, T.5
Yoshimori, T.6
-
86
-
-
0028788311
-
The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance
-
Haas A., Scheglmann D., Lazar T., Gallwitz D., Wickner W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 1995, 14:5258-5270.
-
(1995)
EMBO J.
, vol.14
, pp. 5258-5270
-
-
Haas, A.1
Scheglmann, D.2
Lazar, T.3
Gallwitz, D.4
Wickner, W.5
-
87
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura S., Noda T., Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3:452-460.
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
88
-
-
73549102459
-
An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7
-
Yamaguchi H., Nakagawa I., Yamamoto A., Amano A., Noda T., Yoshimori T. An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog. 2009, 5:e1000670.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Yamaguchi, H.1
Nakagawa, I.2
Yamamoto, A.3
Amano, A.4
Noda, T.5
Yoshimori, T.6
-
90
-
-
64049086758
-
Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
-
Matsunaga K., Saitoh T., Tabata K., Omori H., Satoh T., Kurotori N., et al. Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11:385-396.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 385-396
-
-
Matsunaga, K.1
Saitoh, T.2
Tabata, K.3
Omori, H.4
Satoh, T.5
Kurotori, N.6
-
91
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y., Wang Q.J., Li X., Yan Y., Backer J.M., Chait B.T., et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11:468-476.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
Chait, B.T.6
-
92
-
-
78650936005
-
The RUN domain of Rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression
-
Sun Q., Zhang J., Fan W., Wong K.N., Ding X., Chen S., et al. The RUN domain of Rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression. J. Biol. Chem. 2011, 286:185-191.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 185-191
-
-
Sun, Q.1
Zhang, J.2
Fan, W.3
Wong, K.N.4
Ding, X.5
Chen, S.6
-
93
-
-
84921443304
-
MTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
-
Kim Y.M., Jung C.H., Seo M., Kim E.K., Park J.M., Bae S.S., et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 2015, 57:207-218.
-
(2015)
Mol. Cell
, vol.57
, pp. 207-218
-
-
Kim, Y.M.1
Jung, C.H.2
Seo, M.3
Kim, E.K.4
Park, J.M.5
Bae, S.S.6
-
94
-
-
84930226935
-
Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth
-
Sun T., Li X., Zhang P., Chen W.D., Zhang H.L., Li D.D., et al. Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 2015, 6:7215.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7215
-
-
Sun, T.1
Li, X.2
Zhang, P.3
Chen, W.D.4
Zhang, H.L.5
Li, D.D.6
-
95
-
-
84920945138
-
A kinase-independent role for EGF receptor in autophagy initiation
-
Tan X., Thapa N., Sun Y., Anderson R.A. A kinase-independent role for EGF receptor in autophagy initiation. Cell 2015, 160:145-160.
-
(2015)
Cell
, vol.160
, pp. 145-160
-
-
Tan, X.1
Thapa, N.2
Sun, Y.3
Anderson, R.A.4
-
96
-
-
84926451754
-
HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication
-
Wang L., Tian Y., Ou J.H. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 2015, 11:e1004764.
-
(2015)
PLoS Pathog.
, vol.11
-
-
Wang, L.1
Tian, Y.2
Ou, J.H.3
-
97
-
-
3242721268
-
MTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells
-
Murakami M., Ichisaka T., Maeda M., Oshiro N., Hara K., Edenhofer F., et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 2004, 24:6710-6718.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 6710-6718
-
-
Murakami, M.1
Ichisaka, T.2
Maeda, M.3
Oshiro, N.4
Hara, K.5
Edenhofer, F.6
-
98
-
-
78650600158
-
Rubicon controls endosome maturation as a Rab7 effector
-
Sun Q., Westphal W., Wong K.N., Tan I., Zhong Q. Rubicon controls endosome maturation as a Rab7 effector. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:19338-19343.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 19338-19343
-
-
Sun, Q.1
Westphal, W.2
Wong, K.N.3
Tan, I.4
Zhong, Q.5
-
99
-
-
84934287492
-
Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
-
Martinez J., Malireddi R.K., Lu Q., Cunha L.D., Pelletier S., Gingras S., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 2015, 17:893-906.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 893-906
-
-
Martinez, J.1
Malireddi, R.K.2
Lu, Q.3
Cunha, L.D.4
Pelletier, S.5
Gingras, S.6
-
100
-
-
0028230738
-
Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization
-
Baba M., Takeshige K., Baba N., Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 1994, 124:903-913.
-
(1994)
J. Cell Biol.
, vol.124
, pp. 903-913
-
-
Baba, M.1
Takeshige, K.2
Baba, N.3
Ohsumi, Y.4
-
101
-
-
84903817207
-
Receptor-mediated mitophagy in yeast and mammalian systems
-
Liu L., Sakakibara K., Chen Q., Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014, 24:787-795.
-
(2014)
Cell Res.
, vol.24
, pp. 787-795
-
-
Liu, L.1
Sakakibara, K.2
Chen, Q.3
Okamoto, K.4
-
102
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto K., Kondo-Okamoto N., Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 2009, 17:87-97.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
103
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki T., Wang K., Cao Y., Baba M., Klionsky D.J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 2009, 17:98-109.
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
104
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L., Feng D., Chen G., Chen M., Zheng Q., Song P., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 2012, 14:177-185.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
-
105
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I., Kirkin V., McEwan D.G., Zhang J., Wild P., Rozenknop A., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010, 11:45-51.
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
-
106
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna R.A., Quinsay M.N., Orogo A.M., Giang K., Rikka S., Gustafsson Å. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 2012, 287:19094-19104.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, Å.6
-
107
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen G., Han Z., Feng D., Chen Y., Chen L., Wu H., et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 2014, 54:362-377.
-
(2014)
Mol. Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
-
108
-
-
84936132577
-
Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
-
Murakawa T., Yamaguchi O., Hashimoto A., Hikoso S., Takeda T., Oka T., et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 2015, 6:7527.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7527
-
-
Murakawa, T.1
Yamaguchi, O.2
Hashimoto, A.3
Hikoso, S.4
Takeda, T.5
Oka, T.6
-
109
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M., Sliter D.A., Kane L.A., Sarraf S.A., Wang C., Burman J.L., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015.
-
(2015)
Nature
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
-
110
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F., Okatsu K., Kosako H., Tamura Y., Go E., Kimura M., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014, 510:162-166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
-
111
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C., Kazlauskaite A., Zhang N., Woodroof H.I., Campbell D.G., Gourlay R., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012, 2:120080.
-
(2012)
Open Biol.
, vol.2
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
Woodroof, H.I.4
Campbell, D.G.5
Gourlay, R.6
-
112
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K., Imai Y., Yoshida S., Ishihama Y., Kanao T., Sato S., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2012, 2:1002.
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
-
113
-
-
77950470469
-
Molecular mechanism and physiological role of pexophagy
-
Manjithaya R., Nazarko T.Y., Farré J.C., Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 2010, 584:1367-1373.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1367-1373
-
-
Manjithaya, R.1
Nazarko, T.Y.2
Farré, J.C.3
Subramani, S.4
-
114
-
-
84934449989
-
Regulation of endoplasmic reticulum turnover by selective autophagy
-
Khaminets A., Heinrich T., Mari M., Grumati P., Huebner A.K., Akutsu M., et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015, 522:354-358.
-
(2015)
Nature
, vol.522
, pp. 354-358
-
-
Khaminets, A.1
Heinrich, T.2
Mari, M.3
Grumati, P.4
Huebner, A.K.5
Akutsu, M.6
-
115
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
Mochida K., Oikawa Y., Kimura Y., Kirisako H., Hirano H., Ohsumi Y., et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015, 522:359-362.
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
Oikawa, Y.2
Kimura, Y.3
Kirisako, H.4
Hirano, H.5
Ohsumi, Y.6
-
116
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
117
-
-
84880108306
-
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
-
Hung Y.H., Chen L.M., Yang J.Y., Yang W.Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 2013, 4:2111.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2111
-
-
Hung, Y.H.1
Chen, L.M.2
Yang, J.Y.3
Yang, W.Y.4
-
118
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima I., Takahashi A., Omori H., Kimura T., Takabatake Y., Saitoh T., et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013, 32:2336-2347.
-
(2013)
EMBO J.
, vol.32
, pp. 2336-2347
-
-
Maejima, I.1
Takahashi, A.2
Omori, H.3
Kimura, T.4
Takabatake, Y.5
Saitoh, T.6
-
119
-
-
84924373368
-
Selective autophagy: lysophagy
-
Hasegawa J., Maejima I., Iwamoto R., Yoshimori T. Selective autophagy: lysophagy. Methods 2015, 75:128-132.
-
(2015)
Methods
, vol.75
, pp. 128-132
-
-
Hasegawa, J.1
Maejima, I.2
Iwamoto, R.3
Yoshimori, T.4
-
120
-
-
34548531194
-
Could uric acid have a role in acute renal failure?
-
Ejaz A.A., Mu W., Kang D.H., Roncal C., Sautin Y.Y., Henderson G., et al. Could uric acid have a role in acute renal failure?. Clin. J. Am. Soc. Nephrol. 2007, 2:16-21.
-
(2007)
Clin. J. Am. Soc. Nephrol.
, vol.2
, pp. 16-21
-
-
Ejaz, A.A.1
Mu, W.2
Kang, D.H.3
Roncal, C.4
Sautin, Y.Y.5
Henderson, G.6
-
122
-
-
84905460026
-
Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity
-
Rivera J.F., Costes S., Gurlo T., Glabe C.G., Butler P.C. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 2014, 124:3489-3500.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3489-3500
-
-
Rivera, J.F.1
Costes, S.2
Gurlo, T.3
Glabe, C.G.4
Butler, P.C.5
-
123
-
-
84905460021
-
Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy
-
Shigihara N., Fukunaka A., Hara A., Komiya K., Honda A., Uchida T., et al. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J. Clin. Invest. 2014, 124:3634-3644.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3634-3644
-
-
Shigihara, N.1
Fukunaka, A.2
Hara, A.3
Komiya, K.4
Honda, A.5
Uchida, T.6
-
124
-
-
84905492806
-
Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes
-
Kim J., Cheon H., Jeong Y.T., Quan W., Kim K.H., Cho J.M., et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J. Clin. Invest. 2014, 124:3311-3324.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3311-3324
-
-
Kim, J.1
Cheon, H.2
Jeong, Y.T.3
Quan, W.4
Kim, K.H.5
Cho, J.M.6
-
125
-
-
77956855813
-
Pathogenic lysosomal depletion in Parkinson's disease
-
Dehay B., Bové J., Rodríguez-Muela N., Perier C., Recasens A., Boya P., et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 2010, 30:12535-12544.
-
(2010)
J. Neurosci.
, vol.30
, pp. 12535-12544
-
-
Dehay, B.1
Bové, J.2
Rodríguez-Muela, N.3
Perier, C.4
Recasens, A.5
Boya, P.6
-
126
-
-
84876722731
-
Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis
-
Freeman D., Cedillos R., Choyke S., Lukic Z., McGuire K., Marvin S., et al. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS ONE 2013, 8:e62143.
-
(2013)
PLoS ONE
, vol.8
-
-
Freeman, D.1
Cedillos, R.2
Choyke, S.3
Lukic, Z.4
McGuire, K.5
Marvin, S.6
-
127
-
-
77951800951
-
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
-
Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G., Bauernfeind F.G., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464:1357-1361.
-
(2010)
Nature
, vol.464
, pp. 1357-1361
-
-
Duewell, P.1
Kono, H.2
Rayner, K.J.3
Sirois, C.M.4
Vladimer, G.5
Bauernfeind, F.G.6
-
128
-
-
84925861549
-
Danon disease: clinical features, evaluation, and management
-
D'souza R.S., Levandowski C., Slavov D., Graw S.L., Allen L.A., Adler E., et al. Danon disease: clinical features, evaluation, and management. Circ. Heart Fail. 2014, 7:843-849.
-
(2014)
Circ. Heart Fail.
, vol.7
, pp. 843-849
-
-
D'souza, R.S.1
Levandowski, C.2
Slavov, D.3
Graw, S.L.4
Allen, L.A.5
Adler, E.6
-
129
-
-
17044440789
-
Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)
-
Nishino I., Fu J., Tanji K., Yamada T., Shimojo S., Koori T., et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000, 406:906-910.
-
(2000)
Nature
, vol.406
, pp. 906-910
-
-
Nishino, I.1
Fu, J.2
Tanji, K.3
Yamada, T.4
Shimojo, S.5
Koori, T.6
-
130
-
-
53049094306
-
Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2
-
Fehrenbacher N., Bastholm L., Kirkegaard-Sørensen T., Rafn B., Bøttzauw T., Nielsen C., et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008, 68:6623-6633.
-
(2008)
Cancer Res.
, vol.68
, pp. 6623-6633
-
-
Fehrenbacher, N.1
Bastholm, L.2
Kirkegaard-Sørensen, T.3
Rafn, B.4
Bøttzauw, T.5
Nielsen, C.6
-
131
-
-
0036710928
-
Lipofuscin: mechanisms of age-related accumulation and influence on cell function
-
Brunk U.T., Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 2002, 33:611-619.
-
(2002)
Free Radic. Biol. Med.
, vol.33
, pp. 611-619
-
-
Brunk, U.T.1
Terman, A.2
-
132
-
-
84860705893
-
Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
-
Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485:251-255.
-
(2012)
Nature
, vol.485
, pp. 251-255
-
-
Oka, T.1
Hikoso, S.2
Yamaguchi, O.3
Taneike, M.4
Takeda, T.5
Tamai, T.6
-
133
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
Taneike M., Yamaguchi O., Nakai A., Hikoso S., Takeda T., Mizote I., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010, 6:600-606.
-
(2010)
Autophagy
, vol.6
, pp. 600-606
-
-
Taneike, M.1
Yamaguchi, O.2
Nakai, A.3
Hikoso, S.4
Takeda, T.5
Mizote, I.6
-
134
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 2007, 13:619-624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
-
135
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston T.L., Wandel M.P., von Muhlinen N., Foeglein A., Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
Wandel, M.P.2
von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
136
-
-
84886897936
-
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
-
Fujita N., Morita E., Itoh T., Tanaka A., Nakaoka M., Osada Y., et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 2013, 203:115-128.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 115-128
-
-
Fujita, N.1
Morita, E.2
Itoh, T.3
Tanaka, A.4
Nakaoka, M.5
Osada, Y.6
-
137
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
-
Dupont N., Lacas-Gervais S., Bertout J., Paz I., Freche B., Van Nhieu G.T., et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009, 6:137-149.
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-149
-
-
Dupont, N.1
Lacas-Gervais, S.2
Bertout, J.3
Paz, I.4
Freche, B.5
Van Nhieu, G.T.6
-
138
-
-
84930413971
-
A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion
-
Miao Y., Li G., Zhang X., Xu H., Abraham S.N. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 2015, 161:1306-1319.
-
(2015)
Cell
, vol.161
, pp. 1306-1319
-
-
Miao, Y.1
Li, G.2
Zhang, X.3
Xu, H.4
Abraham, S.N.5
-
139
-
-
84885864424
-
Aβ secretion and plaque formation depend on autophagy
-
Nilsson P., Loganathan K., Sekiguchi M., Matsuba Y., Hui K., Tsubuki S., et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013, 5:61-69.
-
(2013)
Cell Rep.
, vol.5
, pp. 61-69
-
-
Nilsson, P.1
Loganathan, K.2
Sekiguchi, M.3
Matsuba, Y.4
Hui, K.5
Tsubuki, S.6
-
140
-
-
84937763318
-
Escape of non-enveloped virus from intact cells
-
Bird S.W., Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology 2015, 479-480:444-449.
-
(2015)
Virology
, vol.479-480
, pp. 444-449
-
-
Bird, S.W.1
Kirkegaard, K.2
-
142
-
-
84903815977
-
Identifying specific receptors for cargo-mediated autophagy
-
Goodall M., Thorburn A. Identifying specific receptors for cargo-mediated autophagy. Cell Res. 2014, 24:783-784.
-
(2014)
Cell Res.
, vol.24
, pp. 783-784
-
-
Goodall, M.1
Thorburn, A.2
-
143
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias J.D., Wang X., Gygi S.P., Harper J.W., Kimmelman A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509:105-109.
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
144
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
-
145
-
-
79956346329
-
Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
-
Rong Y., McPhee C.K., McPhee C., Deng S., Huang L., Chen L., et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:7826-7831.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 7826-7831
-
-
Rong, Y.1
McPhee, C.K.2
McPhee, C.3
Deng, S.4
Huang, L.5
Chen, L.6
-
146
-
-
84865776097
-
Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation
-
Rong Y., Liu M., Ma L., Du W., Zhang H., Tian Y., et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 2012, 14:924-934.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 924-934
-
-
Rong, Y.1
Liu, M.2
Ma, L.3
Du, W.4
Zhang, H.5
Tian, Y.6
-
147
-
-
79955588367
-
Cell sensitivity to oxidative stress is influenced by ferritin autophagy
-
Kurz T., Gustafsson B., Brunk U.T. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic. Biol. Med. 2011, 50:1647-1658.
-
(2011)
Free Radic. Biol. Med.
, vol.50
, pp. 1647-1658
-
-
Kurz, T.1
Gustafsson, B.2
Brunk, U.T.3
-
148
-
-
84879780600
-
Autophagy: shaping the tumor microenvironment and therapeutic response
-
Maes H., Rubio N., Garg A.D., Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 2013, 19:428-446.
-
(2013)
Trends Mol. Med.
, vol.19
, pp. 428-446
-
-
Maes, H.1
Rubio, N.2
Garg, A.D.3
Agostinis, P.4
-
149
-
-
84871940714
-
Chloroquine in cancer therapy: a double-edged sword of autophagy
-
Kimura T., Takabatake Y., Takahashi A., Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 2013, 73:3-7.
-
(2013)
Cancer Res.
, vol.73
, pp. 3-7
-
-
Kimura, T.1
Takabatake, Y.2
Takahashi, A.3
Isaka, Y.4
-
150
-
-
84880585829
-
Cellular iron metabolism in prognosis and therapy of breast cancer
-
Torti S.V., Torti F.M. Cellular iron metabolism in prognosis and therapy of breast cancer. Crit. Rev. Oncog. 2013, 18:435-448.
-
(2013)
Crit. Rev. Oncog.
, vol.18
, pp. 435-448
-
-
Torti, S.V.1
Torti, F.M.2
-
151
-
-
77951228508
-
Hypoxia-induced autophagy: cell death or cell survival?
-
Mazure N.M., Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival?. Curr. Opin. Cell Biol. 2010, 22:177-180.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 177-180
-
-
Mazure, N.M.1
Pouysségur, J.2
-
152
-
-
26444442450
-
Endoplasmic reticulum stress: cell life and death decisions
-
Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 2005, 115:2656-2664.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2656-2664
-
-
Xu, C.1
Bailly-Maitre, B.2
Reed, J.C.3
|