-
1
-
-
84882787078
-
The CRISPR craze
-
Pennisi E. The CRISPR craze. Science. 2013;341:833-6.
-
(2013)
Science
, vol.341
, pp. 833-836
-
-
Pennisi, E.1
-
2
-
-
84899134190
-
CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
-
Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54:234-44.
-
(2014)
Mol Cell
, vol.54
, pp. 234-244
-
-
Barrangou, R.1
Marraffini, L.A.2
-
3
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 2013;82:237-66.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 237-266
-
-
Sorek, R.1
Lawrence, C.M.2
Wiedenheft, B.3
-
4
-
-
84876440888
-
CRISPR-Cas systems and RNA-guided interference
-
Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA. 2013;4:267-78.
-
(2013)
Wiley Interdiscip Rev RNA
, vol.4
, pp. 267-278
-
-
Barrangou, R.1
-
5
-
-
84870180587
-
The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity
-
Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu Rev Genet. 2012;46:311-39.
-
(2012)
Annu Rev Genet
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
Swarts, D.C.2
Staals, R.H.3
Jore, M.M.4
Brouns, S.J.5
Oost, J.6
-
6
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429-33.
-
(1987)
J Bacteriol
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
7
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565-75.
-
(2002)
Mol Microbiol
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
8
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea. Bacteria and mitochondria
-
Mojica FJ, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea. Bacteria and mitochondria. Mol Microbiol. 2000;36:244-6.
-
(2000)
Mol Microbiol
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Soria, E.3
Juez, G.4
-
9
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653-63.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
10
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174-82.
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
11
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551-61.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
12
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1:7.
-
(2006)
Biol Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
13
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709-12.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
-
14
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960-4.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
-
15
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322:1843-5.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
16
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009;139:945-56.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
-
17
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008;190:1401-12.
-
(2008)
J Bacteriol
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coute-Monvoisin, A.C.3
Richards, M.4
Deveau, H.5
Moineau, S.6
-
18
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390-400.
-
(2008)
J Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
-
20
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A. 2011;108:10092-7.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
Duijn, E.2
Bultema, J.B.3
Waghmare, S.P.4
Zhou, K.5
Barendregt, A.6
-
21
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. 2011;108:10098-103.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10098-100103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
Wanner, B.6
-
22
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468:67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
-
23
-
-
84879584456
-
CRISPR interference: a structural perspective
-
Reeks J, Naismith JH, White MF. CRISPR interference: a structural perspective. Biochem J. 2013;453:155-66.
-
(2013)
Biochem J
, vol.453
, pp. 155-166
-
-
Reeks, J.1
Naismith, J.H.2
White, M.F.3
-
24
-
-
84946498330
-
A Conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses
-
Jackson RN, Wiedenheft B. A Conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses. Mol Cell. 2015;58:722-8.
-
(2015)
Mol Cell
, vol.58
, pp. 722-728
-
-
Jackson, R.N.1
Wiedenheft, B.2
-
25
-
-
84911890147
-
Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3
-
Gong B, Shin M, Sun J, Jung CH, Bolt EL, van der Oost J, et al. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc Natl Acad Sci U S A. 2014;111:16359-64.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 16359-16364
-
-
Gong, B.1
Shin, M.2
Sun, J.3
Jung, C.H.4
Bolt, E.L.5
Oost, J.6
-
26
-
-
84899794031
-
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
-
Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci U S A. 2014;111:6618-23.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 6618-6623
-
-
Hochstrasser, M.L.1
Taylor, D.W.2
Bhat, P.3
Guegler, C.K.4
Sternberg, S.H.5
Nogales, E.6
-
27
-
-
84921996108
-
Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation
-
Huo Y, Nam KH, Ding F, Lee H, Wu L, Xiao Y, et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol. 2014;21:771-7.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 771-777
-
-
Huo, Y.1
Nam, K.H.2
Ding, F.3
Lee, H.4
Wu, L.5
Xiao, Y.6
-
28
-
-
84881256166
-
In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target
-
Mulepati S, Bailey S. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J Biol Chem. 2013;288:22184-92.
-
(2013)
J Biol Chem
, vol.288
, pp. 22184-22192
-
-
Mulepati, S.1
Bailey, S.2
-
29
-
-
84924592451
-
Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection
-
Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep. 2015. doi: 10.1016/j.celrep.2015.01.067.
-
(2015)
Cell Rep
-
-
Rutkauskas, M.1
Sinkunas, T.2
Songailiene, I.3
Tikhomirova, M.S.4
Siksnys, V.5
Seidel, R.6
-
30
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602-7.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
-
31
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39:9275-82.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
32
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109:E2579-86.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
33
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816-21.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
34
-
-
84864085433
-
Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system
-
Magadan AH, Dupuis ME, Villion M, Moineau S. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One. 2012;7:e40913.
-
(2012)
PLoS One
, vol.7
, pp. e40913
-
-
Magadan, A.H.1
Dupuis, M.E.2
Villion, M.3
Moineau, S.4
-
35
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823-6.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
-
36
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-23.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
37
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31:233-9.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
38
-
-
84930613203
-
CRISPR, the disruptor
-
Ledford H. CRISPR, the disruptor. Nature. 2015;522:20-4.
-
(2015)
Nature
, vol.522
, pp. 20-24
-
-
Ledford, H.1
-
39
-
-
84866138092
-
RNA-mediated programmable DNA cleavage
-
Barrangou R. RNA-mediated programmable DNA cleavage. Nat Biotechnol. 2012;30:836-8.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 836-838
-
-
Barrangou, R.1
-
40
-
-
84933574487
-
A Cas9-guide RNA complex preorganized for target DNA recognition
-
Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. A Cas9-guide RNA complex preorganized for target DNA recognition. Science. 2015;348:1477-81.
-
(2015)
Science
, vol.348
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.A.5
-
41
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507:62-7.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
42
-
-
84923279931
-
The structural biology of CRISPR-Cas systems
-
Jiang F, Doudna JA. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol. 2015;30:100-11.
-
(2015)
Curr Opin Struct Biol
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
43
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343:1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
-
44
-
-
79958825675
-
An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
-
Sashital DG, Jinek M, Doudna JA. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol. 2011;18:680-7.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 680-687
-
-
Sashital, D.G.1
Jinek, M.2
Doudna, J.A.3
-
45
-
-
84861990812
-
Mechanism of foreign DNA selection in a bacterial adaptive immune system
-
Sashital DG, Wiedenheft B, Doudna JA. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. 2012;46:606-15.
-
(2012)
Mol Cell
, vol.46
, pp. 606-615
-
-
Sashital, D.G.1
Wiedenheft, B.2
Doudna, J.A.3
-
46
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011;18:529-36.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
Lundgren, M.2
Duijn, E.3
Bultema, J.B.4
Westra, E.R.5
Waghmare, S.P.6
-
47
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A. 2014;111:9798-803.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 9798-9803
-
-
Szczelkun, M.D.1
Tikhomirova, M.S.2
Sinkunas, T.3
Gasiunas, G.4
Karvelis, T.5
Pschera, P.6
-
48
-
-
84926226607
-
Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex
-
Blosser TR, Loeff L, Westra ER, Vlot M, Kunne T, Sobota M, et al. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell. 2015;58:60-70.
-
(2015)
Mol Cell
, vol.58
, pp. 60-70
-
-
Blosser, T.R.1
Loeff, L.2
Westra, E.R.3
Vlot, M.4
Kunne, T.5
Sobota, M.6
-
49
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167-70.
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
50
-
-
80755187812
-
CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation
-
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273-97.
-
(2011)
Annu Rev Genet
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Barrangou, R.3
-
51
-
-
84937558548
-
The bacterial origins of the CRISPR genome-editing revolution
-
Sontheimer EJ, Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. Hum Gene Ther. 2015;26:413-24.
-
(2015)
Hum Gene Ther
, vol.26
, pp. 413-424
-
-
Sontheimer, E.J.1
Barrangou, R.2
-
53
-
-
84870718176
-
Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information
-
Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology. 2012;434:202-9.
-
(2012)
Virology
, vol.434
, pp. 202-209
-
-
Fineran, P.C.1
Charpentier, E.2
-
54
-
-
84930503842
-
Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference
-
Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith A. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 2015;43:3407-19.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3407-3419
-
-
Barrangou, R.1
Birmingham, A.2
Wiemann, S.3
Beijersbergen, R.L.4
Hornung, V.5
Smith, A.6
-
55
-
-
84929666410
-
Expanding the biologist's toolkit with CRISPR-Cas9
-
Sternberg SH, Doudna JA. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell. 2015;58:568-74.
-
(2015)
Mol Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
56
-
-
84942746261
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
-
Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev. 2015;39:428-41.
-
(2015)
FEMS Microbiol Rev
, vol.39
, pp. 428-441
-
-
Charpentier, E.1
Richter, H.2
Oost, J.3
White, M.F.4
-
57
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347-55.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
58
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
59
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262-78.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
60
-
-
84923312556
-
Genomic engineering and the future of medicine
-
Doudna JA. Genomic engineering and the future of medicine. JAMA. 2015;313:791-2.
-
(2015)
JAMA
, vol.313
, pp. 791-792
-
-
Doudna, J.A.1
-
61
-
-
84904468142
-
Harnessing CRISPR-Cas9 immunity for genetic engineering
-
Charpentier E, Marraffini LA. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr Opin Microbiol. 2014;19:114-9.
-
(2014)
Curr Opin Microbiol
, vol.19
, pp. 114-119
-
-
Charpentier, E.1
Marraffini, L.A.2
-
62
-
-
84923107960
-
Unraveling the potential of CRISPR-Cas9 for gene therapy
-
Barrangou R, May AP. Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin Biol Ther. 2015;15:311-4.
-
(2015)
Expert Opin Biol Ther
, vol.15
, pp. 311-314
-
-
Barrangou, R.1
May, A.P.2
-
63
-
-
84920871112
-
The roles of CRISPR-Cas systems in adaptive immunity and beyond
-
Barrangou R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol. 2015;32:36-41.
-
(2015)
Curr Opin Immunol
, vol.32
, pp. 36-41
-
-
Barrangou, R.1
-
64
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015. doi: 10.1038/nrmicro3569.
-
(2015)
Nat Rev Microbiol
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
-
65
-
-
79960554003
-
Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
-
Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct. 2011;6:38.
-
(2011)
Biol Direct
, vol.6
, pp. 38
-
-
Makarova, K.S.1
Aravind, L.2
Wolf, Y.I.3
Koonin, E.V.4
-
66
-
-
84929623462
-
Annotation and classification of CRISPR-Cas systems
-
Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015;1311:47-75.
-
(2015)
Methods Mol Biol
, vol.1311
, pp. 47-75
-
-
Makarova, K.S.1
Koonin, E.V.2
-
67
-
-
79953779608
-
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
-
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011;30:1335-42.
-
(2011)
EMBO J
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
68
-
-
84873571066
-
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P, et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 2013;32:385-94.
-
(2013)
EMBO J
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
Gasiunas, G.2
Waghmare, S.P.3
Dickman, M.J.4
Barrangou, R.5
Horvath, P.6
-
69
-
-
80052400382
-
Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3)
-
Mulepati S, Bailey S. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem. 2011;286:31896-903.
-
(2011)
J Biol Chem
, vol.286
, pp. 31896-318903
-
-
Mulepati, S.1
Bailey, S.2
-
70
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH, Seegers CL, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell. 2012;46:595-605.
-
(2012)
Mol Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
Erp, P.B.2
Kunne, T.3
Wong, S.P.4
Staals, R.H.5
Seegers, C.L.6
-
71
-
-
84946610005
-
Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli
-
van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B. Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res. 2015;43:8381-91.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 8381-8391
-
-
Erp, P.B.1
Jackson, R.N.2
Carter, J.3
Golden, S.M.4
Bailey, S.5
Wiedenheft, B.6
-
72
-
-
84907208955
-
Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
-
Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, et al. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science. 2014;345:1473-9.
-
(2014)
Science
, vol.345
, pp. 1473-1479
-
-
Jackson, R.N.1
Golden, S.M.2
Erp, P.B.3
Carter, J.4
Westra, E.R.5
Brouns, S.J.6
-
74
-
-
84907204893
-
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
-
Mulepati S, Heroux A, Bailey S. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science. 2014;345:1479-84.
-
(2014)
Science
, vol.345
, pp. 1479-1484
-
-
Mulepati, S.1
Heroux, A.2
Bailey, S.3
-
75
-
-
84863329741
-
Crystal structure of the largest subunit of a bacterial RNA-guided immune complex and its role in DNA target binding
-
Mulepati S, Orr A, Bailey S. Crystal structure of the largest subunit of a bacterial RNA-guided immune complex and its role in DNA target binding. J Biol Chem. 2012;287:22445-9.
-
(2012)
J Biol Chem
, vol.287
, pp. 22445-22449
-
-
Mulepati, S.1
Orr, A.2
Bailey, S.3
-
76
-
-
77956498326
-
Sequence- and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329:1355-8.
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
77
-
-
84862190458
-
Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA
-
Haurwitz RE, Sternberg SH, Doudna JA. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO J. 2012;31:2824-32.
-
(2012)
EMBO J
, vol.31
, pp. 2824-2832
-
-
Haurwitz, R.E.1
Sternberg, S.H.2
Doudna, J.A.3
-
78
-
-
84890935599
-
Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system
-
Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol. 2014;196:310-7.
-
(2014)
J Bacteriol
, vol.196
, pp. 310-317
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Samai, P.3
Marraffini, L.A.4
-
79
-
-
84885336337
-
Structure of the CRISPR interference complex CSM reveals key similarities with cascade
-
Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell. 2013;52:124-34.
-
(2013)
Mol Cell
, vol.52
, pp. 124-134
-
-
Rouillon, C.1
Zhou, M.2
Zhang, J.3
Politis, A.4
Beilsten-Edmands, V.5
Cannone, G.6
-
80
-
-
84930085853
-
Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
-
Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell. 2015;161:1164-74.
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
Pyenson, N.2
Jiang, W.3
Goldberg, G.W.4
Hatoum-Aslan, A.5
Marraffini, L.A.6
-
81
-
-
84912066885
-
RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus
-
Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, et al. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell. 2014;56:518-30.
-
(2014)
Mol Cell
, vol.56
, pp. 518-530
-
-
Staals, R.H.1
Zhu, Y.2
Taylor, D.W.3
Kornfeld, J.E.4
Sharma, K.5
Barendregt, A.6
-
82
-
-
84912096635
-
Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
-
Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO, Dickman MJ, et al. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell. 2014;56:506-17.
-
(2014)
Mol Cell
, vol.56
, pp. 506-517
-
-
Tamulaitis, G.1
Kazlauskiene, M.2
Manakova, E.3
Venclovas, C.4
Nwokeoji, A.O.5
Dickman, M.J.6
-
83
-
-
84887864796
-
The Cmr complex: an RNA-guided endoribonuclease
-
Bailey S. The Cmr complex: an RNA-guided endoribonuclease. Biochem Soc Trans. 2013;41:1464-7.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1464-1467
-
-
Bailey, S.1
-
84
-
-
84863230373
-
Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex
-
Cocozaki AI, Ramia NF, Shao Y, Hale CR, Terns RM, Terns MP, et al. Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure. 2012;20:545-53.
-
(2012)
Structure
, vol.20
, pp. 545-553
-
-
Cocozaki, A.I.1
Ramia, N.F.2
Shao, Y.3
Hale, C.R.4
Terns, R.M.5
Terns, M.P.6
-
85
-
-
84908431900
-
Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex
-
Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. Genes Dev. 2014;28:2432-43.
-
(2014)
Genes Dev
, vol.28
, pp. 2432-2443
-
-
Hale, C.R.1
Cocozaki, A.2
Li, H.3
Terns, R.M.4
Terns, M.P.5
-
86
-
-
84915825854
-
Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex
-
Ramia NF, Spilman M, Tang L, Shao Y, Elmore J, Hale C, et al. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex. Cell Rep. 2014;9:1610-7.
-
(2014)
Cell Rep
, vol.9
, pp. 1610-1617
-
-
Ramia, N.F.1
Spilman, M.2
Tang, L.3
Shao, Y.4
Elmore, J.5
Hale, C.6
-
87
-
-
84874936854
-
Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex
-
Shao Y, Cocozaki AI, Ramia NF, Terns RM, Terns MP, Li H. Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex. Structure. 2013;21:376-84.
-
(2013)
Structure
, vol.21
, pp. 376-384
-
-
Shao, Y.1
Cocozaki, A.I.2
Ramia, N.F.3
Terns, R.M.4
Terns, M.P.5
Li, H.6
-
88
-
-
84885355637
-
Structure of an RNA silencing complex of the CRISPR-Cas immune system
-
Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, Terns R, et al. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell. 2013;52:146-52.
-
(2013)
Mol Cell
, vol.52
, pp. 146-152
-
-
Spilman, M.1
Cocozaki, A.2
Hale, C.3
Shao, Y.4
Ramia, N.5
Terns, R.6
-
89
-
-
84885334898
-
Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus
-
Staals RH, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, van Duijn E, et al. Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell. 2013;52:135-45.
-
(2013)
Mol Cell
, vol.52
, pp. 135-145
-
-
Staals, R.H.1
Agari, Y.2
Maki-Yonekura, S.3
Zhu, Y.4
Taylor, D.W.5
Duijn, E.6
-
90
-
-
84929493523
-
Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
-
Taylor DW, Zhu Y, Staals RH, Kornfeld JE, Shinkai A, van der Oost J, et al. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science. 2015;348:581-5.
-
(2015)
Science
, vol.348
, pp. 581-585
-
-
Taylor, D.W.1
Zhu, Y.2
Staals, R.H.3
Kornfeld, J.E.4
Shinkai, A.5
Oost, J.6
-
91
-
-
84887908584
-
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus
-
Terns RM, Terns MP. The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus. Biochem Soc Trans. 2013;41:1416-21.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1416-1421
-
-
Terns, R.M.1
Terns, M.P.2
-
92
-
-
84856778250
-
Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
-
Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell. 2012;45:303-13.
-
(2012)
Mol Cell
, vol.45
, pp. 303-313
-
-
Zhang, J.1
Rouillon, C.2
Kerou, M.3
Reeks, J.4
Brugger, K.5
Graham, S.6
-
93
-
-
84929623274
-
Expression and purification of the CMR (type III-B) complex in Sulfolobus solfataricus
-
Zhang J, White MF. Expression and purification of the CMR (type III-B) complex in Sulfolobus solfataricus. Methods Mol Biol. 2015;1311:185-94.
-
(2015)
Methods Mol Biol
, vol.1311
, pp. 185-194
-
-
Zhang, J.1
White, M.F.2
-
94
-
-
84862822911
-
Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems
-
Zhu X, Ye K. Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett. 2012;586:939-45.
-
(2012)
FEBS Lett
, vol.586
, pp. 939-945
-
-
Zhu, X.1
Ye, K.2
-
95
-
-
84941029060
-
Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex
-
Zhu X, Ye K. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Nucleic Acids Res. 2015;43:1257-67.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1257-1267
-
-
Zhu, X.1
Ye, K.2
-
96
-
-
84879016248
-
crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus
-
Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 2013;10:841-51.
-
(2013)
RNA Biol
, vol.10
, pp. 841-851
-
-
Karvelis, T.1
Gasiunas, G.2
Miksys, A.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
97
-
-
84900388716
-
Cas9 targeting and the CRISPR revolution
-
Barrangou R. Cas9 targeting and the CRISPR revolution. Science. 2014;34:707-8.
-
(2014)
Science
, vol.34
, pp. 707-708
-
-
Barrangou, R.1
-
98
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015. doi: 10.1016/j.cell.2015.09.038.
-
(2015)
Cell
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
-
99
-
-
84903471734
-
Adapting to new threats: the generation of memory by CRISPR-Cas immune systems
-
Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol Microbiol. 2014;93:1-9.
-
(2014)
Mol Microbiol
, vol.93
, pp. 1-9
-
-
Heler, R.1
Marraffini, L.A.2
Bikard, D.3
-
100
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature. 2015;519:199-202.
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
Bikard, D.6
-
101
-
-
84922998282
-
Cas9 function and host genome sampling in type II-A CRISPR-Cas adaptation
-
Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in type II-A CRISPR-Cas adaptation. Genes Dev. 2015;29:356-61.
-
(2015)
Genes Dev
, vol.29
, pp. 356-361
-
-
Wei, Y.1
Terns, R.M.2
Terns, M.P.3
-
102
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012;3:945.
-
(2012)
Nat Commun
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
103
-
-
84860433123
-
CRISPR interference directs strand specific spacer acquisition
-
Swarts DC, Mosterd C, van Passel MW, Brouns SJ. CRISPR interference directs strand specific spacer acquisition. PLoS One. 2012;7:e35888.
-
(2012)
PLoS One
, vol.7
, pp. e35888
-
-
Swarts, D.C.1
Mosterd, C.2
Passel, M.W.3
Brouns, S.J.4
-
104
-
-
84899087750
-
Degenerate target sites mediate rapid primed CRISPR adaptation
-
Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum SA, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A. 2014;111:E1629-38.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E1629-E1638
-
-
Fineran, P.C.1
Gerritzen, M.J.2
Suarez-Diez, M.3
Kunne, T.4
Boekhorst, J.5
Hijum, S.A.6
-
105
-
-
84874619358
-
Strong bias in the bacterial CRISPR elements that confer immunity to phage
-
Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, Stahl B, et al. Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun. 2013;4:1430.
-
(2013)
Nat Commun
, vol.4
, pp. 1430
-
-
Paez-Espino, D.1
Morovic, W.2
Sun, C.L.3
Thomas, B.C.4
Ueda, K.5
Stahl, B.6
-
106
-
-
84902010986
-
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol. 2014;21:528-34.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 528-534
-
-
Nunez, J.K.1
Kranzusch, P.J.2
Noeske, J.3
Wright, A.V.4
Davies, C.W.5
Doudna, J.A.6
-
107
-
-
84924664059
-
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
-
Nunez JK, Lee AS, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature. 2015;519:193-8.
-
(2015)
Nature
, vol.519
, pp. 193-198
-
-
Nunez, J.K.1
Lee, A.S.2
Engelman, A.3
Doudna, J.A.4
-
108
-
-
84941907747
-
Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
-
Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. Elife. 2015. doi: 10.7554/eLife.08716.
-
(2015)
Elife
-
-
Rollie, C.1
Schneider, S.2
Brinkmann, A.S.3
Bolt, E.L.4
White, M.F.5
-
109
-
-
84904988731
-
A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion
-
Sampson TR, Napier BA, Schroeder MR, Louwen R, Zhao J, Chin CY, et al. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc Natl Acad Sci U S A. 2014;111:11163-8.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 11163-11168
-
-
Sampson, T.R.1
Napier, B.A.2
Schroeder, M.R.3
Louwen, R.4
Zhao, J.5
Chin, C.Y.6
-
110
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497:254-7.
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.L.4
Weiss, D.S.5
-
111
-
-
84887931623
-
Cas9-dependent endogenous gene regulation is required for bacterial virulence
-
Sampson TR, Weiss DS. Cas9-dependent endogenous gene regulation is required for bacterial virulence. Biochem Soc Trans. 2013;41:1407-11.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1407-1411
-
-
Sampson, T.R.1
Weiss, D.S.2
-
112
-
-
84872618158
-
A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome
-
Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur J Clin Microbiol Infect Dis. 2013;32:207-26.
-
(2013)
Eur J Clin Microbiol Infect Dis
, vol.32
, pp. 207-226
-
-
Louwen, R.1
Horst-Kreft, D.2
Boer, A.G.3
Graaf, L.4
Knegt, G.5
Hamersma, M.6
-
113
-
-
84896279030
-
The role of CRISPR-Cas systems in virulence of pathogenic bacteria
-
Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev. 2014;78:74-88.
-
(2014)
Microbiol Mol Biol Rev
, vol.78
, pp. 74-88
-
-
Louwen, R.1
Staals, R.H.2
Endtz, H.P.3
Baarlen, P.4
Oost, J.5
-
115
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520:505-10.
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
Amitai, G.6
-
116
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 2012;40:5569-76.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
117
-
-
84928786976
-
CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus
-
e00262-15.
-
Paez-Espino D, Sharon I, Morovic W, Stahl B, Thomas BC, Barrangou R, et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. MBio. 2015;6:e00262-15.
-
(2015)
MBio
, vol.6
-
-
Paez-Espino, D.1
Sharon, I.2
Morovic, W.3
Stahl, B.4
Thomas, B.C.5
Barrangou, R.6
-
118
-
-
84942864979
-
CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems
-
Jiang W, Marraffini LA. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annu Rev Microbiol. 2015. doi: 10.1146/annurev-micro-091014-104441.
-
(2015)
Annu Rev Microbiol
-
-
Jiang, W.1
Marraffini, L.A.2
-
119
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle K, Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 2015;23:225-32.
-
(2015)
Trends Microbiol
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
120
-
-
84862657238
-
CRISPR: new horizons in phage resistance and strain identification
-
Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol. 2012;3:143-62.
-
(2012)
Annu Rev Food Sci Technol
, vol.3
, pp. 143-162
-
-
Barrangou, R.1
Horvath, P.2
-
121
-
-
84892992798
-
Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity
-
Briner AE, Barrangou R. Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity. Appl Environ Microbiol. 2014;80:994-1001.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 994-1001
-
-
Briner, A.E.1
Barrangou, R.2
-
122
-
-
84941992154
-
Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium
-
Briner AE, Lugli GA, Milani C, Duranti S, Turroni F, Gueimonde M, et al. Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium. PLoS One. 2015;10:e0133661.
-
(2015)
PLoS One
, vol.10
, pp. e0133661
-
-
Briner, A.E.1
Lugli, G.A.2
Milani, C.3
Duranti, S.4
Turroni, F.5
Gueimonde, M.6
-
123
-
-
67649397594
-
Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04
-
Barrangou R, Briczinski EP, Traeger LL, Loquasto JR, Richards M, Horvath P, et al. Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol. 2009;191:4144-51.
-
(2009)
J Bacteriol
, vol.191
, pp. 4144-4151
-
-
Barrangou, R.1
Briczinski, E.P.2
Traeger, L.L.3
Loquasto, J.R.4
Richards, M.5
Horvath, P.6
-
124
-
-
84867018919
-
Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation
-
Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.
-
(2012)
BMC Genomics
, vol.13
, pp. 533
-
-
Broadbent, J.R.1
Neeno-Eckwall, E.C.2
Stahl, B.3
Tandee, K.4
Cai, H.5
Morovic, W.6
-
125
-
-
84873129118
-
Phage mutations in response to CRISPR diversification in a bacterial population
-
Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF. Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol. 2013;15:463-70.
-
(2013)
Environ Microbiol
, vol.15
, pp. 463-470
-
-
Sun, C.L.1
Barrangou, R.2
Thomas, B.C.3
Horvath, P.4
Fremaux, C.5
Banfield, J.F.6
-
126
-
-
84942162902
-
Metagenomic reconstructions of bacterial CRISPR loci constrain population histories
-
Sun CL, Thomas BC, Barrangou R, Banfield JF. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 2015. doi: 10.1038/ismej.2015.162.
-
(2015)
ISME J
-
-
Sun, C.L.1
Thomas, B.C.2
Barrangou, R.3
Banfield, J.F.4
-
127
-
-
84861117236
-
Persisting viral sequences shape microbial CRISPR-based immunity
-
Weinberger AD, Sun CL, Plucinski MM, Denef VJ, Thomas BC, Horvath P, et al. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol. 2012;8:e1002475.
-
(2012)
PLoS Comput Biol
, vol.8
, pp. e1002475
-
-
Weinberger, A.D.1
Sun, C.L.2
Plucinski, M.M.3
Denef, V.J.4
Thomas, B.C.5
Horvath, P.6
-
128
-
-
84880112474
-
Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia
-
Emerson JB, Andrade K, Thomas BC, Norman A, Allen EE, Heidelberg KB, et al. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea. 2013;2013:370871.
-
(2013)
Archaea
, vol.2013
, pp. 370871
-
-
Emerson, J.B.1
Andrade, K.2
Thomas, B.C.3
Norman, A.4
Allen, E.E.5
Heidelberg, K.B.6
-
129
-
-
58349087246
-
Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes
-
Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One. 2009;4:e4169.
-
(2009)
PLoS One
, vol.4
, pp. e4169
-
-
Heidelberg, J.F.1
Nelson, W.C.2
Schoenfeld, T.3
Bhaya, D.4
-
130
-
-
44449133775
-
Virus population dynamics and acquired virus resistance in natural microbial communities
-
Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008;320:1047-50.
-
(2008)
Science
, vol.320
, pp. 1047-1050
-
-
Andersson, A.F.1
Banfield, J.F.2
-
131
-
-
38149061877
-
Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses
-
Tyson GW, Banfield JF. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol. 2008;10:200-7.
-
(2008)
Environ Microbiol
, vol.10
, pp. 200-207
-
-
Tyson, G.W.1
Banfield, J.F.2
-
132
-
-
84865169354
-
CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome
-
Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 2012;22:1985-94.
-
(2012)
Genome Res
, vol.22
, pp. 1985-1994
-
-
Stern, A.1
Mick, E.2
Tirosh, I.3
Sagy, O.4
Sorek, R.5
-
133
-
-
84864042533
-
Diverse CRISPRs evolving in human microbiomes
-
Rho M, Wu YW, Tang H, Doak TG, Ye Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 2012;8:e1002441.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002441
-
-
Rho, M.1
Wu, Y.W.2
Tang, H.3
Doak, T.G.4
Ye, Y.5
-
134
-
-
84903360551
-
Characterization of bacteriophage communities and CRISPR profiles from dental plaque
-
Naidu M, Robles-Sikisaka R, Abeles SR, Boehm TK, Pride DT. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol. 2014;14:175.
-
(2014)
BMC Microbiol
, vol.14
, pp. 175
-
-
Naidu, M.1
Robles-Sikisaka, R.2
Abeles, S.R.3
Boehm, T.K.4
Pride, D.T.5
-
135
-
-
78651482834
-
Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time
-
Pride DT, Sun CL, Salzman J, Rao N, Loomer P, Armitage GC, et al. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 2011;21:126-36.
-
(2011)
Genome Res
, vol.21
, pp. 126-136
-
-
Pride, D.T.1
Sun, C.L.2
Salzman, J.3
Rao, N.4
Loomer, P.5
Armitage, G.C.6
-
136
-
-
84887855994
-
Genomic impact of CRISPR immunization against bacteriophages
-
Barrangou R, Coute-Monvoisin AC, Stahl B, Chavichvily I, Damange F, Romero DA, et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem Soc Trans. 2013;41:1383-91.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1383-1391
-
-
Barrangou, R.1
Coute-Monvoisin, A.C.2
Stahl, B.3
Chavichvily, I.4
Damange, F.5
Romero, D.A.6
-
137
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe. 2012;12:177-86.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
138
-
-
84926140029
-
Microbiology: Bacteria get vaccinated
-
Barrangou R, Klaenhammer TR. Microbiology: Bacteria get vaccinated. Nature. 2014;513:175-6.
-
(2014)
Nature
, vol.513
, pp. 175-176
-
-
Barrangou, R.1
Klaenhammer, T.R.2
-
139
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429-37.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
140
-
-
84941084492
-
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
-
Luo ML, Mullis AS, Leenay RT, Beisel CL. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 2015;43:674-81.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
141
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 2015;43:237-46.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 237-246
-
-
Rath, D.1
Amlinger, L.2
Hoekzema, M.3
Devulapally, P.R.4
Lundgren, M.5
-
142
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510-7.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
-
143
-
-
84942912469
-
Enabling functional genomics with genome engineering
-
Hilton IB, Gersbach CA. Enabling functional genomics with genome engineering. Genome Res. 2015;25:1442-55.
-
(2015)
Genome Res
, vol.25
, pp. 1442-1455
-
-
Hilton, I.B.1
Gersbach, C.A.2
-
144
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e131
-
-
Oh, J.H.1
Pijkeren, J.P.2
-
145
-
-
84906828539
-
Precision genome engineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. Precision genome engineering in lactic acid bacteria. Microb Cell Fact. 2014;13 Suppl 1:S10.
-
(2014)
Microb Cell Fact
, vol.13
, pp. S10
-
-
Pijkeren, J.P.1
Britton, R.A.2
-
146
-
-
84941285455
-
Bacterial CRISPR: accomplishments and prospects
-
Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS. Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol. 2015;27:121-6.
-
(2015)
Curr Opin Microbiol
, vol.27
, pp. 121-126
-
-
Peters, J.M.1
Silvis, M.R.2
Zhao, D.3
Hawkins, J.S.4
Gross, C.A.5
Qi, L.S.6
-
147
-
-
84937886246
-
CRISPR-based screening of genomic island excision events in bacteria
-
Selle K, Klaenhammer TR, Barrangou R. CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci U S A. 2015;112:8076-81.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 8076-8081
-
-
Selle, K.1
Klaenhammer, T.R.2
Barrangou, R.3
-
148
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
e00928-00913.
-
Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio. 2014;5:e00928-00913.
-
(2014)
MBio
, vol.5
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.L.6
-
149
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146-50.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
-
150
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32:1141-5.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
151
-
-
85017330457
-
A CRISPR design for next-generation antimicrobials
-
Beisel CL, Gomaa AA, Barrangou R. A CRISPR design for next-generation antimicrobials. Genome Biol. 2014;15:516.
-
(2014)
Genome Biol
, vol.15
, pp. 516
-
-
Beisel, C.L.1
Gomaa, A.A.2
Barrangou, R.3
-
152
-
-
84931291929
-
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
-
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 2015;112:7267-72.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 7267-7272
-
-
Yosef, I.1
Manor, M.2
Kiro, R.3
Qimron, U.4
-
153
-
-
84925456214
-
In vitro enzymology of Cas9
-
Anders C, Jinek M. In vitro enzymology of Cas9. Methods Enzymol. 2014;546:1-20.
-
(2014)
Methods Enzymol
, vol.546
, pp. 1-20
-
-
Anders, C.1
Jinek, M.2
-
154
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156:935-49.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
Dohmae, N.6
-
155
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, et al. Crystal structure of Staphylococcus aureus Cas9. Cell. 2015;162:1113-26.
-
(2015)
Cell
, vol.162
, pp. 1113-1126
-
-
Nishimasu, H.1
Cong, L.2
Yan, W.X.3
Ran, F.A.4
Zetsche, B.5
Li, Y.6
-
156
-
-
84922322005
-
Guide RNA functional modules direct Cas9 activity and orthogonality
-
Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. 2014;56:333-9.
-
(2014)
Mol Cell
, vol.56
, pp. 333-339
-
-
Briner, A.E.1
Donohoue, P.D.2
Gomaa, A.A.3
Selle, K.4
Slorach, E.M.5
Nye, C.H.6
-
157
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12:479-92.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 479-492
-
-
Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
158
-
-
84878211288
-
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
-
Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013;10:726-37.
-
(2013)
RNA Biol
, vol.10
, pp. 726-737
-
-
Chylinski, K.1
Rhun, A.2
Charpentier, E.3
-
160
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42:2577-90.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
Rhun, A.2
Chylinski, K.3
Makarova, K.S.4
Lecrivain, A.L.5
Bzdrenga, J.6
-
161
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10:1116-21.
-
(2013)
Nat Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
162
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481-5.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
|