메뉴 건너뛰기




Volumn 16, Issue 11, 2015, Pages 678-689

Transcriptional regulation of hepatic lipogenesis

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; CARBOHYDRATE RESPONSIVE ELEMENT BINDING PROTEIN; DNA DEPENDENT PROTEIN KINASE; GLUCOSE; INSULIN; LIVER X RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN; PROTEIN KINASE B; PROTEIN KINASE C; STEROL REGULATORY ELEMENT BINDING PROTEIN 1C; UNCLASSIFIED DRUG; UPSTREAM STIMULATORY FACTOR; FATTY ACID; MLXIPL PROTEIN, MOUSE; NUCLEAR PROTEIN; ORPHAN NUCLEAR RECEPTOR; PKC-3 PROTEIN; STEROL REGULATORY ELEMENT BINDING PROTEIN 1; TARGET OF RAPAMYCIN KINASE; TRANSCRIPTION FACTOR; VERY LOW DENSITY LIPOPROTEIN;

EID: 84945124994     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4074     Document Type: Review
Times cited : (509)

References (133)
  • 1
    • 84876481542 scopus 로고    scopus 로고
    • Insulin signalling mechanisms for triacylglycerol storage
    • Czech, M. P., Tencerova, M., Pedersen, D. J. & Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56, 949-964 (2013).
    • (2013) Diabetologia , vol.56 , pp. 949-964
    • Czech, M.P.1    Tencerova, M.2    Pedersen, D.J.3    Aouadi, M.4
  • 2
    • 84905175079 scopus 로고    scopus 로고
    • Energy metabolism in the liver
    • Rui, L. Energy metabolism in the liver. Compr. Physiol. 4, 177-197 (2014).
    • (2014) Compr. Physiol. , vol.4 , pp. 177-197
    • Rui, L.1
  • 3
    • 84873868477 scopus 로고    scopus 로고
    • Sirtuin 1 deacetylase: A key regulator of hepatic lipid metabolism
    • Kemper, J. K., Choi, S. E. & Kim, D. H. Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 91, 385-404 (2013).
    • (2013) Vitam. Horm. , vol.91 , pp. 385-404
    • Kemper, J.K.1    Choi, S.E.2    Kim, D.H.3
  • 4
    • 33745196745 scopus 로고    scopus 로고
    • Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders
    • Viollet, B. et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol. 574, 41-53 (2006).
    • (2006) J. Physiol. , vol.574 , pp. 41-53
    • Viollet, B.1
  • 5
    • 1842375053 scopus 로고    scopus 로고
    • Upstream stimulatory factor binding to the E-box at-65 is required for insulin regulation of the fatty acid synthase promoter
    • Wang, D. & Sul, H. S. Upstream stimulatory factor binding to the E-box at-65 is required for insulin regulation of the fatty acid synthase promoter. J. Biol. Chem. 272, 26367-26374 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 26367-26374
    • Wang, D.1    Sul, H.S.2
  • 6
    • 0033593229 scopus 로고    scopus 로고
    • Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver
    • Casado, M., Vallet, V. S., Kahn, A. & Vaulont, S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J. Biol. Chem. 274, 2009-2013 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 2009-2013
    • Casado, M.1    Vallet, V.S.2    Kahn, A.3    Vaulont, S.4
  • 7
    • 0032493640 scopus 로고    scopus 로고
    • Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose
    • Vallet, V. S. et al. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J. Biol. Chem. 273, 20175-20179 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 20175-20179
    • Vallet, V.S.1
  • 8
    • 0030869087 scopus 로고    scopus 로고
    • Glucose-dependent liver gene expression in upstream stimulatory factor 2-/-mice
    • Vallet, V. S. et al. Glucose-dependent liver gene expression in upstream stimulatory factor 2-/-mice. J. Biol. Chem. 272, 21944-21949 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 21944-21949
    • Vallet, V.S.1
  • 9
    • 12144287541 scopus 로고    scopus 로고
    • Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1)
    • Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat. Genet. 36, 371-376 (2004).
    • (2004) Nat. Genet. , vol.36 , pp. 371-376
    • Pajukanta, P.1
  • 10
    • 0028851735 scopus 로고
    • Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated
    • Wang, D. & Sul, H. S. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J. Biol. Chem. 270, 28716-28722 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 28716-28722
    • Wang, D.1    Sul, H.S.2
  • 11
    • 78149500681 scopus 로고    scopus 로고
    • Insulin signaling in fatty acid and fat synthesis: A transcriptional perspective
    • Wong, R. H. F. & Sul, H. S. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10, 684-691 (2010).
    • (2010) Curr. Opin. Pharmacol. , vol.10 , pp. 684-691
    • Wong, R.H.F.1    Sul, H.S.2
  • 12
    • 0027178360 scopus 로고
    • Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family
    • Liu, Z., Thompson, K. S. & Towle, H. C. Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J. Biol. Chem. 268, 12787-12795 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 12787-12795
    • Liu, Z.1    Thompson, K.S.2    Towle, H.C.3
  • 13
    • 0027362622 scopus 로고
    • Functional characterization of the L-type pyruvate kinase gene glucose response complex
    • Diaz Guerra, M. J. et al. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol. Cell. Biol. 13, 7725-7733 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 7725-7733
    • Diaz Guerra, M.J.1
  • 14
    • 0029584665 scopus 로고
    • Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice
    • Soncini, M., Yet, S.-F., Moon, Y., Chun, J.-Y. & Sul, H. S. Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice. J. Biol. Chem. 270, 30339-30343 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 30339-30343
    • Soncini, M.1    Yet, S.-F.2    Moon, Y.3    Chun, J.-Y.4    Sul, H.S.5
  • 15
    • 0010112171 scopus 로고    scopus 로고
    • Two 5′-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice
    • Moon, Y. S., Latasa, M.-J., Kim, K.-H., Wang, D. & Sul, H. S. Tw o 5′-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice. J. Biol. Chem. 275, 10121-10127 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 10121-10127
    • Moon, Y.S.1    Latasa, M.-J.2    Kim, K.-H.3    Wang, D.4    Sul, H.S.5
  • 16
    • 0026352592 scopus 로고
    • Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase
    • Shin, D. H., Paulauskis, J. D., Moustaïd, N. & Sul, H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J. Biol. Chem. 266, 23834-23839 (1991).
    • (1991) J. Biol. Chem. , vol.266 , pp. 23834-23839
    • Shin, D.H.1    Paulauskis, J.D.2    Moustaïd, N.3    Sul, H.S.4
  • 17
    • 0027936018 scopus 로고
    • Identification of an insulin response element in the fatty acid synthase promoter
    • Moustaïd, N., Beyer, R. S. & Sul, H. S. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269, 5629-5634 (1994).
    • (1994) J. Biol. Chem. , vol.269 , pp. 5629-5634
    • Moustaïd, N.1    Beyer, R.S.2    Sul, H.S.3
  • 18
    • 0031845136 scopus 로고    scopus 로고
    • Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription
    • Sul, H. S. & Wang, D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18, 331-351 (1998).
    • (1998) Annu. Rev. Nutr. , vol.18 , pp. 331-351
    • Sul, H.S.1    Wang, D.2
  • 19
    • 14444286453 scopus 로고    scopus 로고
    • Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt
    • Wang, D. & Sul, H. S. Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J. Biol. Chem. 273, 25420-25426 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 25420-25426
    • Wang, D.1    Sul, H.S.2
  • 20
    • 0024529257 scopus 로고
    • Hormonal regulation of mouse fatty acid synthase gene transcription in liver
    • Paulauskis, J. D. & Sul, H. S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264, 574-577 (1989).
    • (1989) J. Biol. Chem. , vol.264 , pp. 574-577
    • Paulauskis, J.D.1    Sul, H.S.2
  • 21
    • 67650544671 scopus 로고    scopus 로고
    • DNA-PK: Relaying the insulin signal to USF in lipogenesis
    • Wong, R. H. F. & Sul, H. S. DNA-PK: relaying the insulin signal to USF in lipogenesis. Cell Cycle 8, 1973-1978 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 1973-1978
    • Wong, R.H.F.1    Sul, H.S.2
  • 22
    • 62149105212 scopus 로고    scopus 로고
    • A role of DNA-PK for the metabolic gene regulation in response to insulin
    • Wong, R. H. et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056-1072 (2009).
    • (2009) Cell , vol.136 , pp. 1056-1072
    • Wong, R.H.1
  • 23
    • 70350399521 scopus 로고    scopus 로고
    • Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes
    • Chanda, D. et al. Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes. J. Biol. Chem. 284, 28510-28521 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 28510-28521
    • Chanda, D.1
  • 24
    • 33745255099 scopus 로고    scopus 로고
    • A topoisomerase IIβ-mediated dsDNA break required for regulated transcription
    • Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798-1802 (2006).
    • (2006) Science , vol.312 , pp. 1798-1802
    • Ju, B.G.1
  • 25
    • 84922147486 scopus 로고    scopus 로고
    • Ligand-dependent enhancer activation regulated by topoisomerase-I activity
    • Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367-380 (2015).
    • (2015) Cell , vol.160 , pp. 367-380
    • Puc, J.1
  • 26
    • 33745481445 scopus 로고    scopus 로고
    • Gene expression needs a break to unwind before carrying on
    • Haince, J.-F., Rouleau, M. & Poirier, G. G. Gene expression needs a break to unwind before carrying on. Science 312, 1752-1753 (2006).
    • (2006) Science , vol.312 , pp. 1752-1753
    • Haince, J.-F.1    Rouleau, M.2    Poirier, G.G.3
  • 27
    • 84925815358 scopus 로고    scopus 로고
    • New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases
    • Ryu, K. W., Kim, D.-S. & Kraus, W. L. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem. Rev. 115, 2453-2481 (2015).
    • (2015) Chem. Rev. , vol.115 , pp. 2453-2481
    • Ryu, K.W.1    Kim, D.-S.2    Kraus, W.L.3
  • 28
    • 0030829812 scopus 로고    scopus 로고
    • Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene
    • Shimano, H. et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115-2124 (1997).
    • (1997) J. Clin. Invest. , vol.100 , pp. 2115-2124
    • Shimano, H.1
  • 29
    • 0030907175 scopus 로고    scopus 로고
    • Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
    • Shimano, H. et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854 (1997).
    • (1997) J. Clin. Invest. , vol.99 , pp. 846-854
    • Shimano, H.1
  • 30
    • 25444465657 scopus 로고    scopus 로고
    • Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory elementbinding protein-1c-dependent pathway
    • Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory elementbinding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317-32325 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 32317-32325
    • Jiang, T.1
  • 31
    • 77958595135 scopus 로고    scopus 로고
    • SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
    • Ponugoti, B. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959-33970 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 33959-33970
    • Ponugoti, B.1
  • 32
    • 0037088683 scopus 로고    scopus 로고
    • Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory elementbinding protein-1c
    • Liang, G. et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory elementbinding protein-1c. J. Biol. Chem. 277, 9520-9528 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 9520-9528
    • Liang, G.1
  • 33
    • 0031963963 scopus 로고    scopus 로고
    • Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
    • Kim, J. B. et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Biol. Chem. 101, 1-9 (1998).
    • (1998) J. Biol. Chem. , vol.101 , pp. 1-9
    • Kim, J.B.1
  • 34
    • 0028963743 scopus 로고
    • Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain
    • Kim, J. B. et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol. Cell. Biol. 15, 2582-2588 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2582-2588
    • Kim, J.B.1
  • 35
    • 0027648820 scopus 로고
    • ADD1: A novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation
    • Tontonoz, P., Kim, J. B., Graves, R. A. & Spiegelman, B. M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753-4759 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 4753-4759
    • Tontonoz, P.1    Kim, J.B.2    Graves, R.A.3    Spiegelman, B.M.4
  • 36
    • 0042632808 scopus 로고    scopus 로고
    • Occupancy and function of the-150 sterol regulatory element and-65 E-box in nutritional regulation of the fatty acid synthase gene in living animals
    • Latasa, M. J., Griffin, M. J., Moon, Y. S., Kang, C. & Sul, H. S. Occupancy and function of the-150 sterol regulatory element and-65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol. Cell. Biol. 23, 5896-5907 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5896-5907
    • Latasa, M.J.1    Griffin, M.J.2    Moon, Y.S.3    Kang, C.4    Sul, H.S.5
  • 37
    • 34247119238 scopus 로고    scopus 로고
    • Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter
    • Griffin, M. J., Wong, R. H., Pandya, N. & Sul, H. S. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J. Biol. Chem. 282, 5453-5467 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 5453-5467
    • Griffin, M.J.1    Wong, R.H.2    Pandya, N.3    Sul, H.S.4
  • 38
    • 12944259150 scopus 로고    scopus 로고
    • Nutritional regulation of the fatty acid synthase promoter in vivo: Sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element
    • Latasa, M.-J., Moon, Y. S., Kim, K.-H. & Sul, H. S. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc. Natl Acad. Sci. USA 97, 10619-10624 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 10619-10624
    • Latasa, M.-J.1    Moon, Y.S.2    Kim, K.-H.3    Sul, H.S.4
  • 39
    • 34547102250 scopus 로고    scopus 로고
    • Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1)
    • Deng, X. et al. Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1). J. Biol. Chem. 282, 17517-17529 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 17517-17529
    • Deng, X.1
  • 40
    • 12844261045 scopus 로고    scopus 로고
    • Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms
    • Yang, L. et al. Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J. Biol. Chem. 280, 207-214 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 207-214
    • Yang, L.1
  • 41
    • 14244260289 scopus 로고    scopus 로고
    • A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a)
    • Zhang, C., Shin, D. J. & Osborne, T. F. A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a). Biochem. J. 386, 161-168 (2005).
    • (2005) Biochem. J. , vol.386 , pp. 161-168
    • Zhang, C.1    Shin, D.J.2    Osborne, T.F.3
  • 42
    • 0030745393 scopus 로고    scopus 로고
    • Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: A critical role for the Btd domain of Sp1
    • Athanikar, J. N., Sanchez, H. B. & Osborne, T. F. Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1. Mol. Cell. Biol. 17, 5193-5200 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 5193-5200
    • Athanikar, J.N.1    Sanchez, H.B.2    Osborne, T.F.3
  • 43
    • 0039842456 scopus 로고    scopus 로고
    • Different sterol regulatory elementbinding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase
    • Magana, M. M., Koo, S. H., Towle, H. C. & Osborne, T. F. Different sterol regulatory elementbinding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J. Biol. Chem. 275, 4726-4733 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 4726-4733
    • Magana, M.M.1    Koo, S.H.2    Towle, H.C.3    Osborne, T.F.4
  • 44
    • 0030020577 scopus 로고    scopus 로고
    • Sterol regulation of acetyl coenzyme A carboxylase: A mechanism for coordinate control of cellular lipid
    • Lopez, J. M., Bennett, M. K., Sanchez, H. B., Rosenfeld, J. M. & Osborne, T. F. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc. Natl Acad. Sci. USA 93, 1049-1053 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 1049-1053
    • Lopez, J.M.1    Bennett, M.K.2    Sanchez, H.B.3    Rosenfeld, J.M.4    Osborne, T.F.5
  • 45
    • 0028804539 scopus 로고
    • Characterization of the murine mitochondrial glycerol-3-phosphate acyltransferase promoter
    • Jerkins, A. A., Liu, W. R., Lee, S. & Sul, H. S. Characterization of the murine mitochondrial glycerol-3-phosphate acyltransferase promoter. J. Biol. Chem. 270, 1416-1421 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 1416-1421
    • Jerkins, A.A.1    Liu, W.R.2    Lee, S.3    Sul, H.S.4
  • 46
    • 0034613175 scopus 로고    scopus 로고
    • Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
    • Amemiya-Kudo, M. et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J. Biol. Chem. 275, 31078-31085 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 31078-31085
    • Amemiya-Kudo, M.1
  • 47
    • 0034669025 scopus 로고    scopus 로고
    • Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors LXRα and LXRβ
    • Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819-2830 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2819-2830
    • Repa, J.J.1
  • 48
    • 65549171104 scopus 로고    scopus 로고
    • Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles
    • Yellaturu, C. R. et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 284, 7518-7532 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 7518-7532
    • Yellaturu, C.R.1
  • 49
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441-3446 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 3441-3446
    • Li, S.1    Brown, M.S.2    Goldstein, J.L.3
  • 50
    • 84867067610 scopus 로고    scopus 로고
    • Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase
    • Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184-16189 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16184-16189
    • Owen, J.L.1
  • 51
    • 84861043736 scopus 로고    scopus 로고
    • Connecting mTORC1 signaling to SREBP-1 activation
    • Bakan, I. & Laplante, M. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23, 226-234 (2012).
    • (2012) Curr. Opin. Lipidol. , vol.23 , pp. 226-234
    • Bakan, I.1    Laplante, M.2
  • 52
    • 0037453007 scopus 로고    scopus 로고
    • Liver-specific mRNA for Insig-2 down-regulated by insulin: Implications for fatty acid synthesis
    • Yabe, D., Komuro, R., Liang, G., Goldstein, J. L. & Brown, M. S. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Natl Acad. Sci. USA 100, 3155-3160 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 3155-3160
    • Yabe, D.1    Komuro, R.2    Liang, G.3    Goldstein, J.L.4    Brown, M.S.5
  • 53
    • 79959996153 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 54
    • 0034721772 scopus 로고    scopus 로고
    • MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro
    • Roth, G. et al. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J. Biol. Chem. 275, 33302-33307 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 33302-33307
    • Roth, G.1
  • 55
    • 84857548618 scopus 로고    scopus 로고
    • Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity
    • Kotzka, J. et al. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity. PLoS ONE 7, e32609 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e32609
    • Kotzka, J.1
  • 56
    • 33744821064 scopus 로고    scopus 로고
    • Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation
    • Lu, M. & Shyy, J. Y. Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am. J. Physiol. Cell Physiol. 290, C1477-C1486 (2006).
    • (2006) Am. J. Physiol. Cell Physiol. , vol.290 , pp. C1477-C1486
    • Lu, M.1    Shyy, J.Y.2
  • 57
    • 10644281006 scopus 로고    scopus 로고
    • Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c
    • Kim, K. H. et al. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J. Biol. Chem. 279, 51999-52006 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 51999-52006
    • Kim, K.H.1
  • 58
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403-1417 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 1403-1417
    • Walker, A.K.1
  • 59
    • 84894241362 scopus 로고    scopus 로고
    • PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling
    • Lee, G. Y. et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol. Cell. Biol. 34, 926-938 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 926-938
    • Lee, G.Y.1
  • 60
    • 33845587711 scopus 로고    scopus 로고
    • Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice
    • Chen, W., Chen, G., Head, D. L., Mangelsdorf, D. J. & Russell, D. W. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 5, 73-79 (2007).
    • (2007) Cell Metab. , vol.5 , pp. 73-79
    • Chen, W.1    Chen, G.2    Head, D.L.3    Mangelsdorf, D.J.4    Russell, D.W.5
  • 61
    • 0029805887 scopus 로고    scopus 로고
    • An oxysterol signalling pathway mediated by the nuclear receptor LXRα
    • Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728-731 (1996).
    • (1996) Nature , vol.383 , pp. 728-731
    • Janowski, B.A.1    Willy, P.J.2    Devi, T.R.3    Falck, J.R.4    Mangelsdorf, D.J.5
  • 62
    • 0043133791 scopus 로고    scopus 로고
    • Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression
    • Wagner, B. L. et al. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol. Cell. Biol. 23, 5780-5789 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5780-5789
    • Wagner, B.L.1
  • 63
    • 84876039659 scopus 로고    scopus 로고
    • Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells
    • Feldmann, R. et al. Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells. Nucleic Acids Res. 41, 3518-3531 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3518-3531
    • Feldmann, R.1
  • 64
    • 24144490445 scopus 로고    scopus 로고
    • LXRs regulate the balance between fat storage and oxidation
    • Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 1, 231-244 (2005).
    • (2005) Cell Metab. , vol.1 , pp. 231-244
    • Kalaany, N.Y.1
  • 65
    • 84879864004 scopus 로고    scopus 로고
    • Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance
    • Beaven, S. W. et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106-117 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 106-117
    • Beaven, S.W.1
  • 66
    • 0035047709 scopus 로고    scopus 로고
    • Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter
    • Yoshikawa, T. et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991-3000 (2001).
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2991-3000
    • Yoshikawa, T.1
  • 67
    • 3843061127 scopus 로고    scopus 로고
    • Central role for liver X receptor in insulinmediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver
    • Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulinmediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245-11250 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 11245-11250
    • Chen, G.1    Liang, G.2    Ou, J.3    Goldstein, J.L.4    Brown, M.S.5
  • 68
    • 33847006599 scopus 로고    scopus 로고
    • The liver X receptor (LXR) and hepatic lipogenesis. the carbohydrate-response element-binding protein is a target gene of LXR
    • Cha, J. Y. & Repa, J. J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem. 282, 743-751 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 743-751
    • Cha, J.Y.1    Repa, J.J.2
  • 69
    • 33846208252 scopus 로고    scopus 로고
    • The nuclear receptor LXR is a glucose sensor
    • Mitro, N. et al. The nuclear receptor LXR is a glucose sensor. Nature 445, 219-223 (2007).
    • (2007) Nature , vol.445 , pp. 219-223
    • Mitro, N.1
  • 70
    • 40549125618 scopus 로고    scopus 로고
    • ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver
    • Denechaud, P. D. et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118, 956-964 (2008).
    • (2008) J. Clin. Invest. , vol.118 , pp. 956-964
    • Denechaud, P.D.1
  • 71
    • 0037192797 scopus 로고    scopus 로고
    • Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors
    • Joseph, S. B. et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019-11025 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 11019-11025
    • Joseph, S.B.1
  • 72
    • 0034669171 scopus 로고    scopus 로고
    • Role of LXRs in control of lipogenesis
    • Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2831-2838
    • Schultz, J.R.1
  • 73
    • 76249092371 scopus 로고    scopus 로고
    • Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose
    • Anthonisen, E. H. et al. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J. Biol. Chem. 285, 1607-1615 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 1607-1615
    • Anthonisen, E.H.1
  • 74
    • 0037155935 scopus 로고    scopus 로고
    • Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis
    • Tobin, K. A. et al. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J. Biol. Chem. 277, 10691-10697 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 10691-10697
    • Tobin, K.A.1
  • 75
    • 84927593686 scopus 로고    scopus 로고
    • Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity
    • Bindesboll, C. et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J. Lipid Res. 56, 771-785 (2015).
    • (2015) J. Lipid Res. , vol.56 , pp. 771-785
    • Bindesboll, C.1
  • 76
    • 44649177124 scopus 로고    scopus 로고
    • Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors
    • Lee, S., Lee, J., Lee, S. K. & Lee, J. W. Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Mol. Endocrinol. 22, 1312-1319 (2008).
    • (2008) Mol. Endocrinol. , vol.22 , pp. 1312-1319
    • Lee, S.1    Lee, J.2    Lee, S.K.3    Lee, J.W.4
  • 77
    • 84904042103 scopus 로고    scopus 로고
    • Transcriptional coregulators: Fine-tuning metabolism
    • Mouchiroud, L., Eichner, L. J., Shaw, R. J. & Auwerx, J. Transcriptional coregulators: fine-tuning metabolism. Cell Metab. 20, 26-40 (2014).
    • (2014) Cell Metab. , vol.20 , pp. 26-40
    • Mouchiroud, L.1    Eichner, L.J.2    Shaw, R.J.3    Auwerx, J.4
  • 78
    • 34249721531 scopus 로고    scopus 로고
    • Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver
    • Yamamoto, T. et al. Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282, 11687-11695 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 11687-11695
    • Yamamoto, T.1
  • 79
    • 68949091995 scopus 로고    scopus 로고
    • Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones
    • Hwahng, S. H., Ki, S. H., Bae, E. J., Kim, H. E. & Kim, S. G. Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 49, 1913-1925 (2009).
    • (2009) Hepatology , vol.49 , pp. 1913-1925
    • Hwahng, S.H.1    Ki, S.H.2    Bae, E.J.3    Kim, H.E.4    Kim, S.G.5
  • 80
    • 15744376705 scopus 로고    scopus 로고
    • Direct role of ChREBP·Mlx in regulating hepatic glucose-responsive genes
    • Ma, L., Tsatsos, N. G. & Towle, H. C. Direct role of ChREBP·Mlx in regulating hepatic glucose-responsive genes. J. Biol. Chem. 280, 12019-12027 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 12019-12027
    • Ma, L.1    Tsatsos, N.G.2    Towle, H.C.3
  • 81
    • 2442614148 scopus 로고    scopus 로고
    • Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes
    • Stoeckman, A. K., Ma, L. & Towle, H. C. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 279, 15662-15669 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 15662-15669
    • Stoeckman, A.K.1    Ma, L.2    Towle, H.C.3
  • 83
    • 33749407193 scopus 로고    scopus 로고
    • ChREBP∗Mlx is the principal mediator of glucose-induced gene expression in the liver
    • Ma, L., Robinson, L. N. & Towle, H. C. ChREBP∗Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281, 28721-28730 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 28721-28730
    • Ma, L.1    Robinson, L.N.2    Towle, H.C.3
  • 84
    • 0030877118 scopus 로고    scopus 로고
    • Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes
    • Girard, J., Ferre, P. & Foufelle, F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17, 325-352 (1997).
    • (1997) Annu. Rev. Nutr. , vol.17 , pp. 325-352
    • Girard, J.1    Ferre, P.2    Foufelle, F.3
  • 85
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
    • Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281-7286 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 7281-7286
    • Iizuka, K.1    Bruick, R.K.2    Liang, G.3    Horton, J.D.4    Uyeda, K.5
  • 86
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333-338 (2012).
    • (2012) Nature , vol.484 , pp. 333-338
    • Herman, M.A.1
  • 87
    • 84874600898 scopus 로고    scopus 로고
    • De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health
    • Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1528
    • Eissing, L.1
  • 88
    • 10744222107 scopus 로고    scopus 로고
    • Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]
    • Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082-2087 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 2082-2087
    • Stiles, B.1
  • 89
    • 33749370739 scopus 로고    scopus 로고
    • Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
    • Dentin, R. et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159-2170 (2006).
    • (2006) Diabetes , vol.55 , pp. 2159-2170
    • Dentin, R.1
  • 90
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed, F. et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 122, 2176-2194 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 2176-2194
    • Benhamed, F.1
  • 91
    • 0038561165 scopus 로고    scopus 로고
    • Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
    • Kabashima, T., Kawaguchi, T., Wadzinski, B. E. & Uyeda, K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl Acad. Sci. USA 100, 5107-5112 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 5107-5112
    • Kabashima, T.1    Kawaguchi, T.2    Wadzinski, B.E.3    Uyeda, K.4
  • 92
    • 0035923516 scopus 로고    scopus 로고
    • Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein
    • Kawaguchi, T., Takenoshita, M., Kabashima, T. & Uyeda, K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc. Natl Acad. Sci. USA 98, 13710-13715 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13710-13715
    • Kawaguchi, T.1    Takenoshita, M.2    Kabashima, T.3    Uyeda, K.4
  • 93
    • 0037040185 scopus 로고    scopus 로고
    • Mechanism for fatty acid "sparing" effect on glucose-induced transcription: Regulation of carbohydrate-responsive elementbinding protein by AMP-activated protein kinase
    • Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. & Uyeda, K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive elementbinding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829-3835 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 3829-3835
    • Kawaguchi, T.1    Osatomi, K.2    Yamashita, H.3    Kabashima, T.4    Uyeda, K.5
  • 94
    • 54049105746 scopus 로고    scopus 로고
    • Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): Interaction of an α-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation
    • Sakiyama, H. et al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an α-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J. Biol. Chem. 283, 24899-24908 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 24899-24908
    • Sakiyama, H.1
  • 95
    • 84858327557 scopus 로고    scopus 로고
    • Fructose 2, 6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
    • Arden, C. et al. Fructose 2, 6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 443, 111-123 (2012).
    • (2012) Biochem. J. , vol.443 , pp. 111-123
    • Arden, C.1
  • 96
    • 84871264842 scopus 로고    scopus 로고
    • Structural characterization of a unique interface between carbohydrate response elementbinding protein (ChREBP) and 14-3-3β protein
    • Ge, Q. et al. Structural characterization of a unique interface between carbohydrate response elementbinding protein (ChREBP) and 14-3-3β protein. J. Biol. Chem. 287, 41914-41921 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 41914-41921
    • Ge, Q.1
  • 97
    • 83555160898 scopus 로고    scopus 로고
    • Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver
    • Dentin, R. et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 56, 199-209 (2012).
    • (2012) J. Hepatol. , vol.56 , pp. 199-209
    • Dentin, R.1
  • 98
    • 78649855297 scopus 로고    scopus 로고
    • Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice
    • Bricambert, J. et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 120, 4316-4331 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 4316-4331
    • Bricambert, J.1
  • 99
    • 33745297834 scopus 로고    scopus 로고
    • Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module
    • Li, M. V., Chang, B., Imamura, M., Poungvarin, N. & Chan, L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179-1189 (2006).
    • (2006) Diabetes , vol.55 , pp. 1179-1189
    • Li, M.V.1    Chang, B.2    Imamura, M.3    Poungvarin, N.4    Chan, L.5
  • 100
    • 46349101190 scopus 로고    scopus 로고
    • Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3
    • Li, M. V., Chen, W., Poungvarin, N., Imamura, M. & Chan, L. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol. Endocrinol. 22, 1658-1672 (2008).
    • (2008) Mol. Endocrinol. , vol.22 , pp. 1658-1672
    • Li, M.V.1    Chen, W.2    Poungvarin, N.3    Imamura, M.4    Chan, L.5
  • 101
    • 79959473762 scopus 로고    scopus 로고
    • O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver
    • Guinez, C. et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60, 1399-1413 (2011).
    • (2011) Diabetes , vol.60 , pp. 1399-1413
    • Guinez, C.1
  • 102
    • 78649443736 scopus 로고    scopus 로고
    • The role of O-linked GlcNAc modification on the glucose response of ChREBP
    • Sakiyama, H. et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem. Biophys. Res. Commun. 402, 784-789 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.402 , pp. 784-789
    • Sakiyama, H.1
  • 103
    • 84872798187 scopus 로고    scopus 로고
    • Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin
    • Wang, Y. et al. Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol. Cell 49, 283-297 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 283-297
    • Wang, Y.1
  • 104
    • 84908439685 scopus 로고    scopus 로고
    • Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 (LSD1)
    • Abdulla, A. et al. Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 (LSD1). J. Biol. Chem. 289, 29937-29947 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 29937-29947
    • Abdulla, A.1
  • 105
    • 33646148946 scopus 로고    scopus 로고
    • Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCÀ/Ç
    • Taniguchi, C. M. et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCÀ/Ç. Cell Metab. 3, 343-353 (2006).
    • (2006) Cell Metab. , vol.3 , pp. 343-353
    • Taniguchi, C.M.1
  • 106
    • 0142217895 scopus 로고    scopus 로고
    • PKCX in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity
    • Matsumoto, M. et al. PKCX in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. J. Clin. Invest. 112, 935-944 (2003).
    • (2003) J. Clin. Invest. , vol.112 , pp. 935-944
    • Matsumoto, M.1
  • 107
    • 48349108293 scopus 로고    scopus 로고
    • Genome-wide coactivation analysis of PGC-1 a identifies BAF60a as a regulator of hepatic lipid metabolism
    • Li, S. et al. Genome-wide coactivation analysis of PGC-1 a identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8, 105-117 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 105-117
    • Li, S.1
  • 108
    • 84885187437 scopus 로고    scopus 로고
    • A central role for mTOR in lipid homeostasis
    • Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465-469 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 109
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 110
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725-738 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 725-738
    • Hagiwara, A.1
  • 111
    • 84865503043 scopus 로고    scopus 로고
    • Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
    • Yuan, M., Pino, E., Wu, L, Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579-29588 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 29579-29588
    • Yuan, M.1    Pino, E.2    Wu, L.3    Kacergis, M.4    Soukas, A.A.5
  • 112
    • 84925844053 scopus 로고    scopus 로고
    • Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock
    • Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84-92 (2015).
    • (2015) Cell , vol.161 , pp. 84-92
    • Asher, G.1    Sassone-Corsi, P.2
  • 113
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 114
    • 84886847758 scopus 로고    scopus 로고
    • A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use
    • Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550-554 (2013).
    • (2013) Nature , vol.502 , pp. 550-554
    • Liu, S.1
  • 115
    • 84937191093 scopus 로고    scopus 로고
    • The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing
    • Bartok, O. et al. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing. EMBO J. 34, 1538-1553 (2015).
    • (2015) EMBO J. , vol.34 , pp. 1538-1553
    • Bartok, O.1
  • 116
    • 0028197552 scopus 로고
    • Isoform-specific amino-terminal domains dictate DNA-binding properties of RORa, a novel family of orphan hormone nuclear receptors
    • Giguere, V. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORa, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538-553 (1994).
    • (1994) Genes Dev. , vol.8 , pp. 538-553
    • Giguere, V.1
  • 117
    • 69449102464 scopus 로고    scopus 로고
    • Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
    • Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031 (2009).
    • (2009) Cell , vol.138 , pp. 1019-1031
    • Wang, Z.1
  • 118
    • 84859329911 scopus 로고    scopus 로고
    • Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
    • Bugge, A. et al. Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657-667 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 657-667
    • Bugge, A.1
  • 119
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-β
    • Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-β. Nature 485, 123-127 (2012).
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 120
    • 84864755952 scopus 로고    scopus 로고
    • The nuclear receptor REV-ERBa is required for the daily balance of carbohydrate and lipid metabolism
    • Delezie, J. et al. The nuclear receptor REV-ERBa is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 26, 3321-3335 (2012).
    • (2012) FASEB J. , vol.26 , pp. 3321-3335
    • Delezie, J.1
  • 121
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 122
    • 22344445394 scopus 로고    scopus 로고
    • The orphan nuclear receptor Rev-erba recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
    • Yin, L. & Lazar, M. A. The orphan nuclear receptor Rev-erba recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452-1459 (2005).
    • (2005) Mol. Endocrinol. , vol.19 , pp. 1452-1459
    • Yin, L.1    Lazar, M.A.2
  • 123
    • 84891073800 scopus 로고    scopus 로고
    • Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor
    • Sun, Z. et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 52, 769-782 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 769-782
    • Sun, Z.1
  • 124
    • 79960416891 scopus 로고    scopus 로고
    • Transcriptional profiling reveals a role for RORa in regulating gene expression in obesity-associated inflammation and hepatic steatosis
    • Kang, H. S. et al. Transcriptional profiling reveals a role for RORa in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol. Genomics 43, 818-828 (2011).
    • (2011) Physiol. Genomics , vol.43 , pp. 818-828
    • Kang, H.S.1
  • 125
    • 84907164609 scopus 로고    scopus 로고
    • Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling
    • Zhang, D. et al. Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J. Biol. Chem. 289, 25925-25935 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 25925-25935
    • Zhang, D.1
  • 126
    • 72649087136 scopus 로고    scopus 로고
    • Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1 a pathway controls lipid metabolism in mouse liver
    • Cretenet, G., Le Clech, M. & Gachon, F Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1 a pathway controls lipid metabolism in mouse liver. Cell Metab. 11, 47-57 (2010).
    • (2010) Cell Metab. , vol.11 , pp. 47-57
    • Cretenet, G.1    Le Clech, M.2    Gachon, F.3
  • 127
    • 57049146350 scopus 로고    scopus 로고
    • ER stress and lipogenesis: A slippery slope toward hepatic steatosis
    • Basseri, S. & Austin, R. C. ER stress and lipogenesis: a slippery slope toward hepatic steatosis. Dev. Cell 15, 795-796 (2008).
    • (2008) Dev. Cell , vol.15 , pp. 795-796
    • Basseri, S.1    Austin, R.C.2
  • 128
    • 21244480367 scopus 로고    scopus 로고
    • The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
    • Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J. & Proud, C. G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717-18727 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 18717-18727
    • Smith, E.M.1    Finn, S.G.2    Tee, A.R.3    Browne, G.J.4    Proud, C.G.5
  • 129
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., Zhu, T & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 130
    • 84922754155 scopus 로고    scopus 로고
    • Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors
    • Haeusler, R. A. et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 5, 5190 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5190
    • Haeusler, R.A.1
  • 131
    • 33744515637 scopus 로고    scopus 로고
    • FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression
    • Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol Chem. 281, 10105-10117 (2006).
    • (2006) J. Biol Chem. , vol.281 , pp. 10105-10117
    • Zhang, W.1
  • 132
    • 84905381985 scopus 로고    scopus 로고
    • Pathway-selective insulin resistance and metabolic disease: The importance of nutrient flux
    • Otero, Y F, Stafford, J. M. & McGuinness, O. P. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J. Biol. Chem. 289, 20462-20469 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 20462-20469
    • Otero, Y.F.1    Stafford, J.M.2    McGuinness, O.P.3
  • 133
    • 84931391755 scopus 로고    scopus 로고
    • Circadian metabolism in the light of evolution
    • Gerhart-Hines, Z. & Lazar, M. A. Circadian metabolism in the light of evolution. Endocr. Rev. 36, 289-304 (2015).
    • (2015) Endocr. Rev. , vol.36 , pp. 289-304
    • Gerhart-Hines, Z.1    Lazar, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.