-
1
-
-
84876481542
-
Insulin signalling mechanisms for triacylglycerol storage
-
Czech, M. P., Tencerova, M., Pedersen, D. J. & Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56, 949-964 (2013).
-
(2013)
Diabetologia
, vol.56
, pp. 949-964
-
-
Czech, M.P.1
Tencerova, M.2
Pedersen, D.J.3
Aouadi, M.4
-
2
-
-
84905175079
-
Energy metabolism in the liver
-
Rui, L. Energy metabolism in the liver. Compr. Physiol. 4, 177-197 (2014).
-
(2014)
Compr. Physiol.
, vol.4
, pp. 177-197
-
-
Rui, L.1
-
3
-
-
84873868477
-
Sirtuin 1 deacetylase: A key regulator of hepatic lipid metabolism
-
Kemper, J. K., Choi, S. E. & Kim, D. H. Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 91, 385-404 (2013).
-
(2013)
Vitam. Horm.
, vol.91
, pp. 385-404
-
-
Kemper, J.K.1
Choi, S.E.2
Kim, D.H.3
-
4
-
-
33745196745
-
Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders
-
Viollet, B. et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol. 574, 41-53 (2006).
-
(2006)
J. Physiol.
, vol.574
, pp. 41-53
-
-
Viollet, B.1
-
5
-
-
1842375053
-
Upstream stimulatory factor binding to the E-box at-65 is required for insulin regulation of the fatty acid synthase promoter
-
Wang, D. & Sul, H. S. Upstream stimulatory factor binding to the E-box at-65 is required for insulin regulation of the fatty acid synthase promoter. J. Biol. Chem. 272, 26367-26374 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 26367-26374
-
-
Wang, D.1
Sul, H.S.2
-
6
-
-
0033593229
-
Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver
-
Casado, M., Vallet, V. S., Kahn, A. & Vaulont, S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J. Biol. Chem. 274, 2009-2013 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 2009-2013
-
-
Casado, M.1
Vallet, V.S.2
Kahn, A.3
Vaulont, S.4
-
7
-
-
0032493640
-
Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose
-
Vallet, V. S. et al. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J. Biol. Chem. 273, 20175-20179 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 20175-20179
-
-
Vallet, V.S.1
-
8
-
-
0030869087
-
Glucose-dependent liver gene expression in upstream stimulatory factor 2-/-mice
-
Vallet, V. S. et al. Glucose-dependent liver gene expression in upstream stimulatory factor 2-/-mice. J. Biol. Chem. 272, 21944-21949 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 21944-21949
-
-
Vallet, V.S.1
-
9
-
-
12144287541
-
Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1)
-
Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat. Genet. 36, 371-376 (2004).
-
(2004)
Nat. Genet.
, vol.36
, pp. 371-376
-
-
Pajukanta, P.1
-
10
-
-
0028851735
-
Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated
-
Wang, D. & Sul, H. S. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J. Biol. Chem. 270, 28716-28722 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 28716-28722
-
-
Wang, D.1
Sul, H.S.2
-
11
-
-
78149500681
-
Insulin signaling in fatty acid and fat synthesis: A transcriptional perspective
-
Wong, R. H. F. & Sul, H. S. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10, 684-691 (2010).
-
(2010)
Curr. Opin. Pharmacol.
, vol.10
, pp. 684-691
-
-
Wong, R.H.F.1
Sul, H.S.2
-
12
-
-
0027178360
-
Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family
-
Liu, Z., Thompson, K. S. & Towle, H. C. Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J. Biol. Chem. 268, 12787-12795 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 12787-12795
-
-
Liu, Z.1
Thompson, K.S.2
Towle, H.C.3
-
13
-
-
0027362622
-
Functional characterization of the L-type pyruvate kinase gene glucose response complex
-
Diaz Guerra, M. J. et al. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol. Cell. Biol. 13, 7725-7733 (1993).
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 7725-7733
-
-
Diaz Guerra, M.J.1
-
14
-
-
0029584665
-
Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice
-
Soncini, M., Yet, S.-F., Moon, Y., Chun, J.-Y. & Sul, H. S. Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice. J. Biol. Chem. 270, 30339-30343 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 30339-30343
-
-
Soncini, M.1
Yet, S.-F.2
Moon, Y.3
Chun, J.-Y.4
Sul, H.S.5
-
15
-
-
0010112171
-
Two 5′-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice
-
Moon, Y. S., Latasa, M.-J., Kim, K.-H., Wang, D. & Sul, H. S. Tw o 5′-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice. J. Biol. Chem. 275, 10121-10127 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 10121-10127
-
-
Moon, Y.S.1
Latasa, M.-J.2
Kim, K.-H.3
Wang, D.4
Sul, H.S.5
-
16
-
-
0026352592
-
Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase
-
Shin, D. H., Paulauskis, J. D., Moustaïd, N. & Sul, H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J. Biol. Chem. 266, 23834-23839 (1991).
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 23834-23839
-
-
Shin, D.H.1
Paulauskis, J.D.2
Moustaïd, N.3
Sul, H.S.4
-
17
-
-
0027936018
-
Identification of an insulin response element in the fatty acid synthase promoter
-
Moustaïd, N., Beyer, R. S. & Sul, H. S. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269, 5629-5634 (1994).
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 5629-5634
-
-
Moustaïd, N.1
Beyer, R.S.2
Sul, H.S.3
-
18
-
-
0031845136
-
Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription
-
Sul, H. S. & Wang, D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18, 331-351 (1998).
-
(1998)
Annu. Rev. Nutr.
, vol.18
, pp. 331-351
-
-
Sul, H.S.1
Wang, D.2
-
19
-
-
14444286453
-
Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt
-
Wang, D. & Sul, H. S. Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J. Biol. Chem. 273, 25420-25426 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 25420-25426
-
-
Wang, D.1
Sul, H.S.2
-
20
-
-
0024529257
-
Hormonal regulation of mouse fatty acid synthase gene transcription in liver
-
Paulauskis, J. D. & Sul, H. S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264, 574-577 (1989).
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 574-577
-
-
Paulauskis, J.D.1
Sul, H.S.2
-
21
-
-
67650544671
-
DNA-PK: Relaying the insulin signal to USF in lipogenesis
-
Wong, R. H. F. & Sul, H. S. DNA-PK: relaying the insulin signal to USF in lipogenesis. Cell Cycle 8, 1973-1978 (2009).
-
(2009)
Cell Cycle
, vol.8
, pp. 1973-1978
-
-
Wong, R.H.F.1
Sul, H.S.2
-
22
-
-
62149105212
-
A role of DNA-PK for the metabolic gene regulation in response to insulin
-
Wong, R. H. et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056-1072 (2009).
-
(2009)
Cell
, vol.136
, pp. 1056-1072
-
-
Wong, R.H.1
-
23
-
-
70350399521
-
Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes
-
Chanda, D. et al. Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes. J. Biol. Chem. 284, 28510-28521 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 28510-28521
-
-
Chanda, D.1
-
24
-
-
33745255099
-
A topoisomerase IIβ-mediated dsDNA break required for regulated transcription
-
Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798-1802 (2006).
-
(2006)
Science
, vol.312
, pp. 1798-1802
-
-
Ju, B.G.1
-
25
-
-
84922147486
-
Ligand-dependent enhancer activation regulated by topoisomerase-I activity
-
Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367-380 (2015).
-
(2015)
Cell
, vol.160
, pp. 367-380
-
-
Puc, J.1
-
26
-
-
33745481445
-
Gene expression needs a break to unwind before carrying on
-
Haince, J.-F., Rouleau, M. & Poirier, G. G. Gene expression needs a break to unwind before carrying on. Science 312, 1752-1753 (2006).
-
(2006)
Science
, vol.312
, pp. 1752-1753
-
-
Haince, J.-F.1
Rouleau, M.2
Poirier, G.G.3
-
27
-
-
84925815358
-
New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases
-
Ryu, K. W., Kim, D.-S. & Kraus, W. L. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem. Rev. 115, 2453-2481 (2015).
-
(2015)
Chem. Rev.
, vol.115
, pp. 2453-2481
-
-
Ryu, K.W.1
Kim, D.-S.2
Kraus, W.L.3
-
28
-
-
0030829812
-
Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene
-
Shimano, H. et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115-2124 (1997).
-
(1997)
J. Clin. Invest.
, vol.100
, pp. 2115-2124
-
-
Shimano, H.1
-
29
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
-
Shimano, H. et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854 (1997).
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 846-854
-
-
Shimano, H.1
-
30
-
-
25444465657
-
Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory elementbinding protein-1c-dependent pathway
-
Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory elementbinding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317-32325 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32317-32325
-
-
Jiang, T.1
-
31
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti, B. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959-33970 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
-
32
-
-
0037088683
-
Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory elementbinding protein-1c
-
Liang, G. et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory elementbinding protein-1c. J. Biol. Chem. 277, 9520-9528 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 9520-9528
-
-
Liang, G.1
-
33
-
-
0031963963
-
Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
-
Kim, J. B. et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Biol. Chem. 101, 1-9 (1998).
-
(1998)
J. Biol. Chem.
, vol.101
, pp. 1-9
-
-
Kim, J.B.1
-
34
-
-
0028963743
-
Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain
-
Kim, J. B. et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol. Cell. Biol. 15, 2582-2588 (1995).
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2582-2588
-
-
Kim, J.B.1
-
35
-
-
0027648820
-
ADD1: A novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation
-
Tontonoz, P., Kim, J. B., Graves, R. A. & Spiegelman, B. M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753-4759 (1993).
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 4753-4759
-
-
Tontonoz, P.1
Kim, J.B.2
Graves, R.A.3
Spiegelman, B.M.4
-
36
-
-
0042632808
-
Occupancy and function of the-150 sterol regulatory element and-65 E-box in nutritional regulation of the fatty acid synthase gene in living animals
-
Latasa, M. J., Griffin, M. J., Moon, Y. S., Kang, C. & Sul, H. S. Occupancy and function of the-150 sterol regulatory element and-65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol. Cell. Biol. 23, 5896-5907 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5896-5907
-
-
Latasa, M.J.1
Griffin, M.J.2
Moon, Y.S.3
Kang, C.4
Sul, H.S.5
-
37
-
-
34247119238
-
Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter
-
Griffin, M. J., Wong, R. H., Pandya, N. & Sul, H. S. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J. Biol. Chem. 282, 5453-5467 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 5453-5467
-
-
Griffin, M.J.1
Wong, R.H.2
Pandya, N.3
Sul, H.S.4
-
38
-
-
12944259150
-
Nutritional regulation of the fatty acid synthase promoter in vivo: Sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element
-
Latasa, M.-J., Moon, Y. S., Kim, K.-H. & Sul, H. S. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc. Natl Acad. Sci. USA 97, 10619-10624 (2000).
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 10619-10624
-
-
Latasa, M.-J.1
Moon, Y.S.2
Kim, K.-H.3
Sul, H.S.4
-
39
-
-
34547102250
-
Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1)
-
Deng, X. et al. Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1). J. Biol. Chem. 282, 17517-17529 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 17517-17529
-
-
Deng, X.1
-
40
-
-
12844261045
-
Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms
-
Yang, L. et al. Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J. Biol. Chem. 280, 207-214 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 207-214
-
-
Yang, L.1
-
41
-
-
14244260289
-
A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a)
-
Zhang, C., Shin, D. J. & Osborne, T. F. A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a). Biochem. J. 386, 161-168 (2005).
-
(2005)
Biochem. J.
, vol.386
, pp. 161-168
-
-
Zhang, C.1
Shin, D.J.2
Osborne, T.F.3
-
42
-
-
0030745393
-
Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: A critical role for the Btd domain of Sp1
-
Athanikar, J. N., Sanchez, H. B. & Osborne, T. F. Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1. Mol. Cell. Biol. 17, 5193-5200 (1997).
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 5193-5200
-
-
Athanikar, J.N.1
Sanchez, H.B.2
Osborne, T.F.3
-
43
-
-
0039842456
-
Different sterol regulatory elementbinding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase
-
Magana, M. M., Koo, S. H., Towle, H. C. & Osborne, T. F. Different sterol regulatory elementbinding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J. Biol. Chem. 275, 4726-4733 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 4726-4733
-
-
Magana, M.M.1
Koo, S.H.2
Towle, H.C.3
Osborne, T.F.4
-
44
-
-
0030020577
-
Sterol regulation of acetyl coenzyme A carboxylase: A mechanism for coordinate control of cellular lipid
-
Lopez, J. M., Bennett, M. K., Sanchez, H. B., Rosenfeld, J. M. & Osborne, T. F. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc. Natl Acad. Sci. USA 93, 1049-1053 (1996).
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 1049-1053
-
-
Lopez, J.M.1
Bennett, M.K.2
Sanchez, H.B.3
Rosenfeld, J.M.4
Osborne, T.F.5
-
45
-
-
0028804539
-
Characterization of the murine mitochondrial glycerol-3-phosphate acyltransferase promoter
-
Jerkins, A. A., Liu, W. R., Lee, S. & Sul, H. S. Characterization of the murine mitochondrial glycerol-3-phosphate acyltransferase promoter. J. Biol. Chem. 270, 1416-1421 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 1416-1421
-
-
Jerkins, A.A.1
Liu, W.R.2
Lee, S.3
Sul, H.S.4
-
46
-
-
0034613175
-
Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
-
Amemiya-Kudo, M. et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J. Biol. Chem. 275, 31078-31085 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 31078-31085
-
-
Amemiya-Kudo, M.1
-
47
-
-
0034669025
-
Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors LXRα and LXRβ
-
Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819-2830 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 2819-2830
-
-
Repa, J.J.1
-
48
-
-
65549171104
-
Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles
-
Yellaturu, C. R. et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 284, 7518-7532 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 7518-7532
-
-
Yellaturu, C.R.1
-
49
-
-
77649264504
-
Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
-
Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441-3446 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 3441-3446
-
-
Li, S.1
Brown, M.S.2
Goldstein, J.L.3
-
50
-
-
84867067610
-
Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase
-
Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184-16189 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 16184-16189
-
-
Owen, J.L.1
-
51
-
-
84861043736
-
Connecting mTORC1 signaling to SREBP-1 activation
-
Bakan, I. & Laplante, M. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23, 226-234 (2012).
-
(2012)
Curr. Opin. Lipidol.
, vol.23
, pp. 226-234
-
-
Bakan, I.1
Laplante, M.2
-
52
-
-
0037453007
-
Liver-specific mRNA for Insig-2 down-regulated by insulin: Implications for fatty acid synthesis
-
Yabe, D., Komuro, R., Liang, G., Goldstein, J. L. & Brown, M. S. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Natl Acad. Sci. USA 100, 3155-3160 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 3155-3160
-
-
Yabe, D.1
Komuro, R.2
Liang, G.3
Goldstein, J.L.4
Brown, M.S.5
-
53
-
-
79959996153
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32 (2011).
-
(2011)
Cell Metab.
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
-
54
-
-
0034721772
-
MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro
-
Roth, G. et al. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J. Biol. Chem. 275, 33302-33307 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 33302-33307
-
-
Roth, G.1
-
55
-
-
84857548618
-
Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity
-
Kotzka, J. et al. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity. PLoS ONE 7, e32609 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e32609
-
-
Kotzka, J.1
-
56
-
-
33744821064
-
Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation
-
Lu, M. & Shyy, J. Y. Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am. J. Physiol. Cell Physiol. 290, C1477-C1486 (2006).
-
(2006)
Am. J. Physiol. Cell Physiol.
, vol.290
, pp. C1477-C1486
-
-
Lu, M.1
Shyy, J.Y.2
-
57
-
-
10644281006
-
Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c
-
Kim, K. H. et al. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J. Biol. Chem. 279, 51999-52006 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 51999-52006
-
-
Kim, K.H.1
-
58
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403-1417 (2010).
-
(2010)
Genes Dev.
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
-
59
-
-
84894241362
-
PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling
-
Lee, G. Y. et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol. Cell. Biol. 34, 926-938 (2014).
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 926-938
-
-
Lee, G.Y.1
-
60
-
-
33845587711
-
Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice
-
Chen, W., Chen, G., Head, D. L., Mangelsdorf, D. J. & Russell, D. W. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 5, 73-79 (2007).
-
(2007)
Cell Metab.
, vol.5
, pp. 73-79
-
-
Chen, W.1
Chen, G.2
Head, D.L.3
Mangelsdorf, D.J.4
Russell, D.W.5
-
61
-
-
0029805887
-
An oxysterol signalling pathway mediated by the nuclear receptor LXRα
-
Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728-731 (1996).
-
(1996)
Nature
, vol.383
, pp. 728-731
-
-
Janowski, B.A.1
Willy, P.J.2
Devi, T.R.3
Falck, J.R.4
Mangelsdorf, D.J.5
-
62
-
-
0043133791
-
Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression
-
Wagner, B. L. et al. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol. Cell. Biol. 23, 5780-5789 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5780-5789
-
-
Wagner, B.L.1
-
63
-
-
84876039659
-
Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells
-
Feldmann, R. et al. Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells. Nucleic Acids Res. 41, 3518-3531 (2013).
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3518-3531
-
-
Feldmann, R.1
-
64
-
-
24144490445
-
LXRs regulate the balance between fat storage and oxidation
-
Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 1, 231-244 (2005).
-
(2005)
Cell Metab.
, vol.1
, pp. 231-244
-
-
Kalaany, N.Y.1
-
65
-
-
84879864004
-
Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance
-
Beaven, S. W. et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106-117 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 106-117
-
-
Beaven, S.W.1
-
66
-
-
0035047709
-
Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter
-
Yoshikawa, T. et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991-3000 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 2991-3000
-
-
Yoshikawa, T.1
-
67
-
-
3843061127
-
Central role for liver X receptor in insulinmediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver
-
Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulinmediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA 101, 11245-11250 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 11245-11250
-
-
Chen, G.1
Liang, G.2
Ou, J.3
Goldstein, J.L.4
Brown, M.S.5
-
68
-
-
33847006599
-
The liver X receptor (LXR) and hepatic lipogenesis. the carbohydrate-response element-binding protein is a target gene of LXR
-
Cha, J. Y. & Repa, J. J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem. 282, 743-751 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 743-751
-
-
Cha, J.Y.1
Repa, J.J.2
-
69
-
-
33846208252
-
The nuclear receptor LXR is a glucose sensor
-
Mitro, N. et al. The nuclear receptor LXR is a glucose sensor. Nature 445, 219-223 (2007).
-
(2007)
Nature
, vol.445
, pp. 219-223
-
-
Mitro, N.1
-
70
-
-
40549125618
-
ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver
-
Denechaud, P. D. et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118, 956-964 (2008).
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 956-964
-
-
Denechaud, P.D.1
-
71
-
-
0037192797
-
Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors
-
Joseph, S. B. et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019-11025 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 11019-11025
-
-
Joseph, S.B.1
-
72
-
-
0034669171
-
Role of LXRs in control of lipogenesis
-
Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 2831-2838
-
-
Schultz, J.R.1
-
73
-
-
76249092371
-
Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose
-
Anthonisen, E. H. et al. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J. Biol. Chem. 285, 1607-1615 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 1607-1615
-
-
Anthonisen, E.H.1
-
74
-
-
0037155935
-
Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis
-
Tobin, K. A. et al. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J. Biol. Chem. 277, 10691-10697 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 10691-10697
-
-
Tobin, K.A.1
-
75
-
-
84927593686
-
Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity
-
Bindesboll, C. et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J. Lipid Res. 56, 771-785 (2015).
-
(2015)
J. Lipid Res.
, vol.56
, pp. 771-785
-
-
Bindesboll, C.1
-
76
-
-
44649177124
-
Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors
-
Lee, S., Lee, J., Lee, S. K. & Lee, J. W. Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Mol. Endocrinol. 22, 1312-1319 (2008).
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1312-1319
-
-
Lee, S.1
Lee, J.2
Lee, S.K.3
Lee, J.W.4
-
77
-
-
84904042103
-
Transcriptional coregulators: Fine-tuning metabolism
-
Mouchiroud, L., Eichner, L. J., Shaw, R. J. & Auwerx, J. Transcriptional coregulators: fine-tuning metabolism. Cell Metab. 20, 26-40 (2014).
-
(2014)
Cell Metab.
, vol.20
, pp. 26-40
-
-
Mouchiroud, L.1
Eichner, L.J.2
Shaw, R.J.3
Auwerx, J.4
-
78
-
-
34249721531
-
Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver
-
Yamamoto, T. et al. Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282, 11687-11695 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11687-11695
-
-
Yamamoto, T.1
-
79
-
-
68949091995
-
Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones
-
Hwahng, S. H., Ki, S. H., Bae, E. J., Kim, H. E. & Kim, S. G. Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 49, 1913-1925 (2009).
-
(2009)
Hepatology
, vol.49
, pp. 1913-1925
-
-
Hwahng, S.H.1
Ki, S.H.2
Bae, E.J.3
Kim, H.E.4
Kim, S.G.5
-
80
-
-
15744376705
-
Direct role of ChREBP·Mlx in regulating hepatic glucose-responsive genes
-
Ma, L., Tsatsos, N. G. & Towle, H. C. Direct role of ChREBP·Mlx in regulating hepatic glucose-responsive genes. J. Biol. Chem. 280, 12019-12027 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 12019-12027
-
-
Ma, L.1
Tsatsos, N.G.2
Towle, H.C.3
-
81
-
-
2442614148
-
Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes
-
Stoeckman, A. K., Ma, L. & Towle, H. C. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 279, 15662-15669 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 15662-15669
-
-
Stoeckman, A.K.1
Ma, L.2
Towle, H.C.3
-
82
-
-
84876998618
-
Novel insights into ChREBP regulation and function
-
Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257-268 (2013).
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 257-268
-
-
Filhoulaud, G.1
Guilmeau, S.2
Dentin, R.3
Girard, J.4
Postic, C.5
-
83
-
-
33749407193
-
ChREBP∗Mlx is the principal mediator of glucose-induced gene expression in the liver
-
Ma, L., Robinson, L. N. & Towle, H. C. ChREBP∗Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281, 28721-28730 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 28721-28730
-
-
Ma, L.1
Robinson, L.N.2
Towle, H.C.3
-
84
-
-
0030877118
-
Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes
-
Girard, J., Ferre, P. & Foufelle, F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17, 325-352 (1997).
-
(1997)
Annu. Rev. Nutr.
, vol.17
, pp. 325-352
-
-
Girard, J.1
Ferre, P.2
Foufelle, F.3
-
85
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281-7286 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 7281-7286
-
-
Iizuka, K.1
Bruick, R.K.2
Liang, G.3
Horton, J.D.4
Uyeda, K.5
-
86
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333-338 (2012).
-
(2012)
Nature
, vol.484
, pp. 333-338
-
-
Herman, M.A.1
-
87
-
-
84874600898
-
De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health
-
Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1528
-
-
Eissing, L.1
-
88
-
-
10744222107
-
Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]
-
Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082-2087 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 2082-2087
-
-
Stiles, B.1
-
89
-
-
33749370739
-
Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
-
Dentin, R. et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159-2170 (2006).
-
(2006)
Diabetes
, vol.55
, pp. 2159-2170
-
-
Dentin, R.1
-
90
-
-
84861809881
-
The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
-
Benhamed, F. et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 122, 2176-2194 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2176-2194
-
-
Benhamed, F.1
-
91
-
-
0038561165
-
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
-
Kabashima, T., Kawaguchi, T., Wadzinski, B. E. & Uyeda, K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl Acad. Sci. USA 100, 5107-5112 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 5107-5112
-
-
Kabashima, T.1
Kawaguchi, T.2
Wadzinski, B.E.3
Uyeda, K.4
-
92
-
-
0035923516
-
Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein
-
Kawaguchi, T., Takenoshita, M., Kabashima, T. & Uyeda, K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc. Natl Acad. Sci. USA 98, 13710-13715 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 13710-13715
-
-
Kawaguchi, T.1
Takenoshita, M.2
Kabashima, T.3
Uyeda, K.4
-
93
-
-
0037040185
-
Mechanism for fatty acid "sparing" effect on glucose-induced transcription: Regulation of carbohydrate-responsive elementbinding protein by AMP-activated protein kinase
-
Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. & Uyeda, K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive elementbinding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829-3835 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3829-3835
-
-
Kawaguchi, T.1
Osatomi, K.2
Yamashita, H.3
Kabashima, T.4
Uyeda, K.5
-
94
-
-
54049105746
-
Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): Interaction of an α-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation
-
Sakiyama, H. et al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an α-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J. Biol. Chem. 283, 24899-24908 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24899-24908
-
-
Sakiyama, H.1
-
95
-
-
84858327557
-
Fructose 2, 6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
-
Arden, C. et al. Fructose 2, 6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 443, 111-123 (2012).
-
(2012)
Biochem. J.
, vol.443
, pp. 111-123
-
-
Arden, C.1
-
96
-
-
84871264842
-
Structural characterization of a unique interface between carbohydrate response elementbinding protein (ChREBP) and 14-3-3β protein
-
Ge, Q. et al. Structural characterization of a unique interface between carbohydrate response elementbinding protein (ChREBP) and 14-3-3β protein. J. Biol. Chem. 287, 41914-41921 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 41914-41921
-
-
Ge, Q.1
-
97
-
-
83555160898
-
Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver
-
Dentin, R. et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 56, 199-209 (2012).
-
(2012)
J. Hepatol.
, vol.56
, pp. 199-209
-
-
Dentin, R.1
-
98
-
-
78649855297
-
Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice
-
Bricambert, J. et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 120, 4316-4331 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 4316-4331
-
-
Bricambert, J.1
-
99
-
-
33745297834
-
Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module
-
Li, M. V., Chang, B., Imamura, M., Poungvarin, N. & Chan, L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179-1189 (2006).
-
(2006)
Diabetes
, vol.55
, pp. 1179-1189
-
-
Li, M.V.1
Chang, B.2
Imamura, M.3
Poungvarin, N.4
Chan, L.5
-
100
-
-
46349101190
-
Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3
-
Li, M. V., Chen, W., Poungvarin, N., Imamura, M. & Chan, L. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol. Endocrinol. 22, 1658-1672 (2008).
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1658-1672
-
-
Li, M.V.1
Chen, W.2
Poungvarin, N.3
Imamura, M.4
Chan, L.5
-
101
-
-
79959473762
-
O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver
-
Guinez, C. et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60, 1399-1413 (2011).
-
(2011)
Diabetes
, vol.60
, pp. 1399-1413
-
-
Guinez, C.1
-
102
-
-
78649443736
-
The role of O-linked GlcNAc modification on the glucose response of ChREBP
-
Sakiyama, H. et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem. Biophys. Res. Commun. 402, 784-789 (2010).
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.402
, pp. 784-789
-
-
Sakiyama, H.1
-
103
-
-
84872798187
-
Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin
-
Wang, Y. et al. Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol. Cell 49, 283-297 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 283-297
-
-
Wang, Y.1
-
104
-
-
84908439685
-
Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 (LSD1)
-
Abdulla, A. et al. Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 (LSD1). J. Biol. Chem. 289, 29937-29947 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 29937-29947
-
-
Abdulla, A.1
-
105
-
-
33646148946
-
Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCÀ/Ç
-
Taniguchi, C. M. et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCÀ/Ç. Cell Metab. 3, 343-353 (2006).
-
(2006)
Cell Metab.
, vol.3
, pp. 343-353
-
-
Taniguchi, C.M.1
-
106
-
-
0142217895
-
PKCX in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity
-
Matsumoto, M. et al. PKCX in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. J. Clin. Invest. 112, 935-944 (2003).
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 935-944
-
-
Matsumoto, M.1
-
107
-
-
48349108293
-
Genome-wide coactivation analysis of PGC-1 a identifies BAF60a as a regulator of hepatic lipid metabolism
-
Li, S. et al. Genome-wide coactivation analysis of PGC-1 a identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8, 105-117 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 105-117
-
-
Li, S.1
-
108
-
-
84885187437
-
A central role for mTOR in lipid homeostasis
-
Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465-469 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
109
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
110
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725-738 (2012).
-
(2012)
Cell Metab.
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
-
111
-
-
84865503043
-
Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
-
Yuan, M., Pino, E., Wu, L, Kacergis, M. & Soukas, A. A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287, 29579-29588 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 29579-29588
-
-
Yuan, M.1
Pino, E.2
Wu, L.3
Kacergis, M.4
Soukas, A.A.5
-
112
-
-
84925844053
-
Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock
-
Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84-92 (2015).
-
(2015)
Cell
, vol.161
, pp. 84-92
-
-
Asher, G.1
Sassone-Corsi, P.2
-
113
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
114
-
-
84886847758
-
A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use
-
Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550-554 (2013).
-
(2013)
Nature
, vol.502
, pp. 550-554
-
-
Liu, S.1
-
115
-
-
84937191093
-
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing
-
Bartok, O. et al. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing. EMBO J. 34, 1538-1553 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 1538-1553
-
-
Bartok, O.1
-
116
-
-
0028197552
-
Isoform-specific amino-terminal domains dictate DNA-binding properties of RORa, a novel family of orphan hormone nuclear receptors
-
Giguere, V. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORa, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538-553 (1994).
-
(1994)
Genes Dev.
, vol.8
, pp. 538-553
-
-
Giguere, V.1
-
117
-
-
69449102464
-
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
-
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031 (2009).
-
(2009)
Cell
, vol.138
, pp. 1019-1031
-
-
Wang, Z.1
-
118
-
-
84859329911
-
Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge, A. et al. Rev-erba and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657-667 (2012).
-
(2012)
Genes Dev.
, vol.26
, pp. 657-667
-
-
Bugge, A.1
-
119
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-β
-
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-β. Nature 485, 123-127 (2012).
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
120
-
-
84864755952
-
The nuclear receptor REV-ERBa is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie, J. et al. The nuclear receptor REV-ERBa is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 26, 3321-3335 (2012).
-
(2012)
FASEB J.
, vol.26
, pp. 3321-3335
-
-
Delezie, J.1
-
121
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
122
-
-
22344445394
-
The orphan nuclear receptor Rev-erba recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
-
Yin, L. & Lazar, M. A. The orphan nuclear receptor Rev-erba recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452-1459 (2005).
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 1452-1459
-
-
Yin, L.1
Lazar, M.A.2
-
123
-
-
84891073800
-
Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor
-
Sun, Z. et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell 52, 769-782 (2013).
-
(2013)
Mol. Cell
, vol.52
, pp. 769-782
-
-
Sun, Z.1
-
124
-
-
79960416891
-
Transcriptional profiling reveals a role for RORa in regulating gene expression in obesity-associated inflammation and hepatic steatosis
-
Kang, H. S. et al. Transcriptional profiling reveals a role for RORa in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol. Genomics 43, 818-828 (2011).
-
(2011)
Physiol. Genomics
, vol.43
, pp. 818-828
-
-
Kang, H.S.1
-
125
-
-
84907164609
-
Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling
-
Zhang, D. et al. Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J. Biol. Chem. 289, 25925-25935 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 25925-25935
-
-
Zhang, D.1
-
126
-
-
72649087136
-
Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1 a pathway controls lipid metabolism in mouse liver
-
Cretenet, G., Le Clech, M. & Gachon, F Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1 a pathway controls lipid metabolism in mouse liver. Cell Metab. 11, 47-57 (2010).
-
(2010)
Cell Metab.
, vol.11
, pp. 47-57
-
-
Cretenet, G.1
Le Clech, M.2
Gachon, F.3
-
127
-
-
57049146350
-
ER stress and lipogenesis: A slippery slope toward hepatic steatosis
-
Basseri, S. & Austin, R. C. ER stress and lipogenesis: a slippery slope toward hepatic steatosis. Dev. Cell 15, 795-796 (2008).
-
(2008)
Dev. Cell
, vol.15
, pp. 795-796
-
-
Basseri, S.1
Austin, R.C.2
-
128
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J. & Proud, C. G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717-18727 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
Finn, S.G.2
Tee, A.R.3
Browne, G.J.4
Proud, C.G.5
-
129
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K., Zhu, T & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
130
-
-
84922754155
-
Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors
-
Haeusler, R. A. et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 5, 5190 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5190
-
-
Haeusler, R.A.1
-
131
-
-
33744515637
-
FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression
-
Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol Chem. 281, 10105-10117 (2006).
-
(2006)
J. Biol Chem.
, vol.281
, pp. 10105-10117
-
-
Zhang, W.1
-
132
-
-
84905381985
-
Pathway-selective insulin resistance and metabolic disease: The importance of nutrient flux
-
Otero, Y F, Stafford, J. M. & McGuinness, O. P. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J. Biol. Chem. 289, 20462-20469 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 20462-20469
-
-
Otero, Y.F.1
Stafford, J.M.2
McGuinness, O.P.3
-
133
-
-
84931391755
-
Circadian metabolism in the light of evolution
-
Gerhart-Hines, Z. & Lazar, M. A. Circadian metabolism in the light of evolution. Endocr. Rev. 36, 289-304 (2015).
-
(2015)
Endocr. Rev.
, vol.36
, pp. 289-304
-
-
Gerhart-Hines, Z.1
Lazar, M.A.2
|