-
1
-
-
0026783692
-
Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate
-
Foufelle F., et al. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J. Biol. Chem. 1992, 267:20543-20556.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 20543-20556
-
-
Foufelle, F.1
-
2
-
-
0030877118
-
Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes
-
Girard J., et al. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 1997, 17:325-352.
-
(1997)
Annu. Rev. Nutr.
, vol.17
, pp. 325-352
-
-
Girard, J.1
-
3
-
-
0029044495
-
Induction of fatty-acid-synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity
-
Prip-Buus C., et al. Induction of fatty-acid-synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur. J. Biochem. 1995, 230:309-315.
-
(1995)
Eur. J. Biochem.
, vol.230
, pp. 309-315
-
-
Prip-Buus, C.1
-
4
-
-
2442489891
-
Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression
-
Dentin R., et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J. Biol. Chem. 2004, 279:20314-20326.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20314-20326
-
-
Dentin, R.1
-
5
-
-
0033607176
-
Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
-
Foretz M., et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:12737-12742.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 12737-12742
-
-
Foretz, M.1
-
6
-
-
0025820815
-
Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene
-
Thompson K., Towle H.C. Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J. Biol. Chem. 1991, 266:8679-8882.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 8679-8882
-
-
Thompson, K.1
Towle, H.C.2
-
7
-
-
0029094172
-
Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription
-
Shih H., et al. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol. Chem. 1995, 270:21991-21997.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 21991-21997
-
-
Shih, H.1
-
8
-
-
0035979214
-
A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver
-
Yamashita H., et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:9116-9121.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 9116-9121
-
-
Yamashita, H.1
-
9
-
-
2442614148
-
Mlx is the functional heteromeric partner of ChREBP in glucose regulation of lipogenic enzyme genes
-
Stoeckman A.K., et al. Mlx is the functional heteromeric partner of ChREBP in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 2004, 279:15662-15669.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 15662-15669
-
-
Stoeckman, A.K.1
-
10
-
-
8144229872
-
Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription
-
Ishii S., et al. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15597-15602.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15597-15602
-
-
Ishii, S.1
-
11
-
-
2442435802
-
Deficiency of ChREBP reduces lipogenesis as well as glycolysis
-
Iizuka K., et al. Deficiency of ChREBP reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7281-7286.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 7281-7286
-
-
Iizuka, K.1
-
12
-
-
33750580307
-
Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes
-
Proctor G., et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 2006, 55:2502-2509.
-
(2006)
Diabetes
, vol.55
, pp. 2502-2509
-
-
Proctor, G.1
-
13
-
-
33845586655
-
Carbohydrate responsive-element binding protein (ChREBP) binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic MIN6 β-cells
-
da Silva Xavier G., et al. Carbohydrate responsive-element binding protein (ChREBP) binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic MIN6 β-cells. J. Lipid Res. 2006, 47:2482-2491.
-
(2006)
J. Lipid Res.
, vol.47
, pp. 2482-2491
-
-
da Silva Xavier, G.1
-
14
-
-
26444434340
-
Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation
-
Dentin R., et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Invest. 2005, 115:2843-2854.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2843-2854
-
-
Dentin, R.1
-
15
-
-
15744376705
-
Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes
-
Ma L., et al. Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes. J. Biol. Chem. 2005, 280:12019-12027.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 12019-12027
-
-
Ma, L.1
-
16
-
-
0033579566
-
Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors
-
Billin A.N., et al. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J. Biol. Chem. 1999, 274:36344-36350.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 36344-36350
-
-
Billin, A.N.1
-
17
-
-
33749407193
-
ChREBP/Mlx is the principal mediator of glucose-induced gene expression in the liver
-
Ma L., et al. ChREBP/Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 2006, 281:28721-28730.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 28721-28730
-
-
Ma, L.1
-
18
-
-
33745297834
-
Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module
-
Li M., et al. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 2006, 55:1179-1189.
-
(2006)
Diabetes
, vol.55
, pp. 1179-1189
-
-
Li, M.1
-
19
-
-
73449089383
-
Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site
-
Fukasawa M., et al. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site. Biochem. Biophys. Res. Commun. 2010, 391:1166-1169.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.391
, pp. 1166-1169
-
-
Fukasawa, M.1
-
20
-
-
46349101190
-
Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3
-
Li M.V., et al. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol. Endocrinol. 2008, 22:1658-1672.
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1658-1672
-
-
Li, M.V.1
-
21
-
-
53049106773
-
Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity
-
Davies M.N., et al. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J. Biol. Chem. 2008, 283:24029-24038.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24029-24038
-
-
Davies, M.N.1
-
22
-
-
77957553171
-
Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region
-
Davies M.N., et al. Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E665-E674.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
-
-
Davies, M.N.1
-
23
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012, 484:333-338.
-
(2012)
Nature
, vol.484
, pp. 333-338
-
-
Herman, M.A.1
-
24
-
-
84862001109
-
Hidden variant of ChREBP in fat links lipogenesis to insulin sensitivity
-
Dentin R., et al. Hidden variant of ChREBP in fat links lipogenesis to insulin sensitivity. Cell Metab. 2012, 15:795-797.
-
(2012)
Cell Metab.
, vol.15
, pp. 795-797
-
-
Dentin, R.1
-
25
-
-
84871264842
-
Structural characterization of a unique interface between carbohydrate response element binding protein (ChREBP) and 14-3-3beta
-
Ge Q., et al. Structural characterization of a unique interface between carbohydrate response element binding protein (ChREBP) and 14-3-3beta. J. Biol. Chem. 2012, 287:41914-41921.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 41914-41921
-
-
Ge, Q.1
-
26
-
-
84865196738
-
Glucose sensing by ChREBP/MondoA-Mlx transcription factors
-
Havula E., Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin. Cell Dev. Biol. 2012, 23:640-647.
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 640-647
-
-
Havula, E.1
Hietakangas, V.2
-
27
-
-
0035923516
-
Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP
-
Kawaguchi T., et al. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:13710-13715.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 13710-13715
-
-
Kawaguchi, T.1
-
28
-
-
42449123308
-
Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP
-
Tsatsos N., et al. Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP. Biochem. J. 2008, 411:261-270.
-
(2008)
Biochem. J.
, vol.411
, pp. 261-270
-
-
Tsatsos, N.1
-
29
-
-
54049105746
-
Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation
-
Sakiyama H., et al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J. Biol. Chem. 2008, 283:24899-24908.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24899-24908
-
-
Sakiyama, H.1
-
30
-
-
0038561165
-
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
-
Kabashima T., et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:5107-5112.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 5107-5112
-
-
Kabashima, T.1
-
31
-
-
33846685948
-
A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription
-
Ma L., et al. A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription. Nucleic Acids Res. 2007, 35:35-44.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 35-44
-
-
Ma, L.1
-
32
-
-
84858327557
-
Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
-
Arden C., et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 2012, 443:111-123.
-
(2012)
Biochem. J.
, vol.443
, pp. 111-123
-
-
Arden, C.1
-
33
-
-
77951848682
-
Glucose-6-phosphate mediates activation of the ChREBP
-
Li M.V., et al. Glucose-6-phosphate mediates activation of the ChREBP. Biochem. Biophys. Res. Commun. 2010, 395:395-400.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.395
, pp. 395-400
-
-
Li, M.V.1
-
34
-
-
79959473762
-
O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver
-
Guinez C., et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011, 60:1399-1413.
-
(2011)
Diabetes
, vol.60
, pp. 1399-1413
-
-
Guinez, C.1
-
35
-
-
84867290287
-
Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of ChREBP O-glycosylation
-
Ido-Kitamura Y., et al. Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of ChREBP O-glycosylation. PLoS ONE 2012, 7:e47231.
-
(2012)
PLoS ONE
, vol.7
-
-
Ido-Kitamura, Y.1
-
36
-
-
29644446917
-
Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism
-
Tsatsos N.G., et al. Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism. Biochem. Biophys. Res. Commun. 2006, 340:449-456.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.340
, pp. 449-456
-
-
Tsatsos, N.G.1
-
37
-
-
34547107066
-
C-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells
-
Collier J.J., et al. c-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E48-E56.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
-
-
Collier, J.J.1
-
38
-
-
78649855297
-
Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice
-
Bricambert J., et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 2010, 120:4316-4331.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 4316-4331
-
-
Bricambert, J.1
-
39
-
-
39749171700
-
O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene
-
Kuo M., et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 2008, 582:829-834.
-
(2008)
FEBS Lett.
, vol.582
, pp. 829-834
-
-
Kuo, M.1
-
40
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin R., et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
-
41
-
-
84860184939
-
Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
-
Hanover J.A., et al. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 2012, 13:312-321.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 312-321
-
-
Hanover, J.A.1
-
42
-
-
33744515637
-
FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression
-
Zhang W., et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 2006, 281:10105-10117.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10105-10117
-
-
Zhang, W.1
-
43
-
-
83555160898
-
Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver
-
Dentin R., et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 2012, 56:199-209.
-
(2012)
J. Hepatol.
, vol.56
, pp. 199-209
-
-
Dentin, R.1
-
44
-
-
25144466481
-
Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation
-
Wu C., et al. Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation. Cell Metab. 2005, 2:131-140.
-
(2005)
Cell Metab.
, vol.2
, pp. 131-140
-
-
Wu, C.1
-
45
-
-
0016794003
-
The pentose cycle and insulin release in isolated mouse pancreatic islets during starvation
-
Hedeskov C.J., Capito K. The pentose cycle and insulin release in isolated mouse pancreatic islets during starvation. Biochem. J. 1975, 152:571-576.
-
(1975)
Biochem. J.
, vol.152
, pp. 571-576
-
-
Hedeskov, C.J.1
Capito, K.2
-
46
-
-
0038660083
-
Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase
-
Aiston S., et al. Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase. Diabetes 2003, 52:1333-1339.
-
(2003)
Diabetes
, vol.52
, pp. 1333-1339
-
-
Aiston, S.1
-
47
-
-
84859593599
-
A novel N-terminal domain may dictate the glucose response of Mondo proteins
-
McFerrin L.G., Atchley W.R. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS ONE 2012, 7:e34803.
-
(2012)
PLoS ONE
, vol.7
-
-
McFerrin, L.G.1
Atchley, W.R.2
-
48
-
-
84873875936
-
Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate mediated recruitment of MondoA to the promoter
-
Petrie J.L., et al. Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate mediated recruitment of MondoA to the promoter. Mol. Cell. Biol. 2013, 33:725-738.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 725-738
-
-
Petrie, J.L.1
-
49
-
-
0027157760
-
Glycolysis revisited
-
Van Schaftingen E. Glycolysis revisited. Diabetologia 1993, 36:581-588.
-
(1993)
Diabetologia
, vol.36
, pp. 581-588
-
-
Van Schaftingen, E.1
-
50
-
-
33745896223
-
Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice
-
Iizuka K., et al. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am. J. Physiol. Endocrinol. Metab. 2006, 291:E358-E364.
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.291
-
-
Iizuka, K.1
-
51
-
-
33749370739
-
Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
-
Dentin R., et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006, 55:2159-2170.
-
(2006)
Diabetes
, vol.55
, pp. 2159-2170
-
-
Dentin, R.1
-
52
-
-
58149502922
-
Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice
-
Iizuka K., et al. Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice. Biochem. Biophys. Res. Commun. 2009, 379:499-504.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.379
, pp. 499-504
-
-
Iizuka, K.1
-
53
-
-
84861809881
-
The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
-
Benhamed F., et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 2012, 122:2176-2194.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2176-2194
-
-
Benhamed, F.1
-
54
-
-
84867235842
-
Stearoyl-CoA desaturase: rogue or innocent bystander?
-
Hodson L., Fielding B.A. Stearoyl-CoA desaturase: rogue or innocent bystander?. Prog. Lipid Res. 2012, 52:15-42.
-
(2012)
Prog. Lipid Res.
, vol.52
, pp. 15-42
-
-
Hodson, L.1
Fielding, B.A.2
-
55
-
-
78650520909
-
Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter
-
Lodhi I.J., et al. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol. Metab. 2011, 22:1-8.
-
(2011)
Trends Endocrinol. Metab.
, vol.22
, pp. 1-8
-
-
Lodhi, I.J.1
-
57
-
-
84862025421
-
Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
-
Sun Z., et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 2012, 18:934-942.
-
(2012)
Nat. Med.
, vol.18
, pp. 934-942
-
-
Sun, Z.1
-
58
-
-
0018182489
-
The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes
-
McGarry J.D., et al. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 1978, 253:8294-8300.
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 8294-8300
-
-
McGarry, J.D.1
-
59
-
-
84857366417
-
Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis
-
Monsenego J., et al. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J. Hepatol. 2012, 56:632-639.
-
(2012)
J. Hepatol.
, vol.56
, pp. 632-639
-
-
Monsenego, J.1
-
60
-
-
84874428179
-
Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia
-
Kursawe R., et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 2013, 62:837-844.
-
(2013)
Diabetes
, vol.62
, pp. 837-844
-
-
Kursawe, R.1
-
61
-
-
69249238074
-
Glucose induces FGF-21 mRNA expression through ChREBP activation in rat hepatocytes
-
Iizuka K., et al. Glucose induces FGF-21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 2009, 583:2882-2886.
-
(2009)
FEBS Lett.
, vol.583
, pp. 2882-2886
-
-
Iizuka, K.1
-
62
-
-
84862622024
-
FGF21: The center of a transcriptional nexus in metabolic regulation
-
Adams A.C., Kharitonenkov A. FGF21: The center of a transcriptional nexus in metabolic regulation. Curr. Diabetes Rev. 2012, 8:285-293.
-
(2012)
Curr. Diabetes Rev.
, vol.8
, pp. 285-293
-
-
Adams, A.C.1
Kharitonenkov, A.2
-
63
-
-
77954999528
-
Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell
-
Gao N., et al. Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell. Mol. Endocrinol. 2010, 24:1594-1604.
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 1594-1604
-
-
Gao, N.1
-
64
-
-
84866086654
-
Activation of the transcription factor ChREBP by glucose leads to increased pancreatic β-cell differentiation in rats
-
Soggia A., et al. Activation of the transcription factor ChREBP by glucose leads to increased pancreatic β-cell differentiation in rats. Diabetologia 2012, 55:2713-2722.
-
(2012)
Diabetologia
, vol.55
, pp. 2713-2722
-
-
Soggia, A.1
-
65
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
Gradwohl G., et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1607-1611.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
-
66
-
-
0036340074
-
+ cells are islet progenitors and are distinct from duct progenitors
-
+ cells are islet progenitors and are distinct from duct progenitors. Development 2002, 129:2447-2457.
-
(2002)
Development
, vol.129
, pp. 2447-2457
-
-
Gu, G.1
-
67
-
-
34447536951
-
Glucose is necessary for embryonic pancreatic endocrine cell differentiation
-
Guillemain G., et al. Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J. Biol. Chem. 2007, 282:15228-15337.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 15228-15337
-
-
Guillemain, G.1
-
68
-
-
84865418265
-
Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in β-cell glucotoxicity
-
Poungvarin N., et al. Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in β-cell glucotoxicity. Diabetologia 2012, 55:1783-1796.
-
(2012)
Diabetologia
, vol.55
, pp. 1783-1796
-
-
Poungvarin, N.1
-
69
-
-
84857438937
-
2+ ions in pancreatic beta-cells
-
2+ ions in pancreatic beta-cells. Diabetes 2012, 61:574-585.
-
(2012)
Diabetes
, vol.61
, pp. 574-585
-
-
Noordeen, N.A.1
-
70
-
-
79959756257
-
Pancreatic alpha cell mass in European subjects with type 2 diabetes
-
Henquin J.C., Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011, 54:1720-1725.
-
(2011)
Diabetologia
, vol.54
, pp. 1720-1725
-
-
Henquin, J.C.1
Rahier, J.2
-
71
-
-
0037219411
-
Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
-
Butler A.E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52:102-110.
-
(2003)
Diabetes
, vol.52
, pp. 102-110
-
-
Butler, A.E.1
-
72
-
-
42449110310
-
Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis
-
Chen J., et al. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 2008, 57:938-944.
-
(2008)
Diabetes
, vol.57
, pp. 938-944
-
-
Chen, J.1
-
73
-
-
54049102845
-
Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes
-
Chen J., et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008, 22:3581-3594.
-
(2008)
FASEB J.
, vol.22
, pp. 3581-3594
-
-
Chen, J.1
-
74
-
-
84862579644
-
Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death
-
Reich E., et al. Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia 2012, 55:1048-1057.
-
(2012)
Diabetologia
, vol.55
, pp. 1048-1057
-
-
Reich, E.1
-
75
-
-
84864693470
-
Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome
-
Oslowski C.M., et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012, 16:265-273.
-
(2012)
Cell Metab.
, vol.16
, pp. 265-273
-
-
Oslowski, C.M.1
-
76
-
-
79960737369
-
Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats
-
Liu J.H., et al. Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats. Clin. Exp. Pharmacol. Physiol. 2011, 38:528-533.
-
(2011)
Clin. Exp. Pharmacol. Physiol.
, vol.38
, pp. 528-533
-
-
Liu, J.H.1
-
77
-
-
67650544980
-
Glucose-stimulated expression of thioredoxin-interacting protein is mediated by ChREBP, p300 and histone H4 acetylation in pancreatic β-cells
-
Cha-Molstad H., et al. Glucose-stimulated expression of thioredoxin-interacting protein is mediated by ChREBP, p300 and histone H4 acetylation in pancreatic β-cells. J. Biol. Chem. 2009, 284:16898-16905.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 16898-16905
-
-
Cha-Molstad, H.1
-
78
-
-
0027278522
-
Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)
-
Dreyer C., et al. Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol. Cell 1993, 77:67-76.
-
(1993)
Biol. Cell
, vol.77
, pp. 67-76
-
-
Dreyer, C.1
-
79
-
-
0033594980
-
A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders
-
Leone T.C., et al. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:7473-7478.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 7473-7478
-
-
Leone, T.C.1
-
80
-
-
38549106168
-
Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate
-
Sun Y., et al. Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate. Endocrinology 2008, 149:662-671.
-
(2008)
Endocrinology
, vol.149
, pp. 662-671
-
-
Sun, Y.1
-
81
-
-
79953886811
-
ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells
-
Boergesen M., et al. ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells. J. Biol. Chem. 2011, 286:13214-13225.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13214-13225
-
-
Boergesen, M.1
-
82
-
-
77449122260
-
Carbohydrate-responsive element-binding protein (ChREBP) is a negative regulator of ARNT/HIF-1beta gene expression in pancreatic islet beta-cells
-
Noordeen N.A., et al. Carbohydrate-responsive element-binding protein (ChREBP) is a negative regulator of ARNT/HIF-1beta gene expression in pancreatic islet beta-cells. Diabetes 2010, 59:153-160.
-
(2010)
Diabetes
, vol.59
, pp. 153-160
-
-
Noordeen, N.A.1
-
83
-
-
35848955929
-
E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet
-
Rogers G.J., et al. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell. Physiol. Biochem. 2007, 20:987-994.
-
(2007)
Cell. Physiol. Biochem.
, vol.20
, pp. 987-994
-
-
Rogers, G.J.1
-
84
-
-
81255177545
-
Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet
-
Benninger R.K., et al. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J. Physiol. 2011, 589:5453-5466.
-
(2011)
J. Physiol.
, vol.589
, pp. 5453-5466
-
-
Benninger, R.K.1
-
85
-
-
78149466989
-
ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic β-cells
-
da Silva Xavier G., et al. ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic β-cells. Biochem. Biophys. Res. Commun. 2010, 402:252-257.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.402
, pp. 252-257
-
-
da Silva Xavier, G.1
-
86
-
-
23744439083
-
Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes
-
Gunton J.E., et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 2005, 122:337-349.
-
(2005)
Cell
, vol.122
, pp. 337-349
-
-
Gunton, J.E.1
-
87
-
-
76049121496
-
The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation
-
Tong X., et al. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21660-21665.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21660-21665
-
-
Tong, X.1
-
88
-
-
84864390297
-
ChREBP mediates glucose-stimulated pancreatic β-cell proliferation
-
Metukuri M., et al. ChREBP mediates glucose-stimulated pancreatic β-cell proliferation. Diabetes 2012, 61:2004-2015.
-
(2012)
Diabetes
, vol.61
, pp. 2004-2015
-
-
Metukuri, M.1
-
89
-
-
77954822601
-
C-Myc is required for the ChREBP-dependent activation of glucose-responsive genes
-
Zhang P., et al. c-Myc is required for the ChREBP-dependent activation of glucose-responsive genes. Mol. Endocrinol. 2010, 24:1274-1286.
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 1274-1286
-
-
Zhang, P.1
-
90
-
-
79960642153
-
Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression
-
Jeong Y.S., et al. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS ONE 2011, 6:e22544.
-
(2011)
PLoS ONE
, vol.6
-
-
Jeong, Y.S.1
-
91
-
-
55449107742
-
The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways
-
Perilhou A., et al. The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways. Mol. Cell. Biol. 2008, 28:6568-6579.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6568-6579
-
-
Perilhou, A.1
-
92
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
-
93
-
-
78650533816
-
Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
-
Wang R.H., et al. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int. J. Biol. Sci. 2010, 6:682-690.
-
(2010)
Int. J. Biol. Sci.
, vol.6
, pp. 682-690
-
-
Wang, R.H.1
-
94
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
-
95
-
-
84866314172
-
Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila
-
Sassu E.D., et al. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem. Biophys. Res. Commun. 2012, 426:43-48.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.426
, pp. 43-48
-
-
Sassu, E.D.1
-
96
-
-
79958266213
-
Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors
-
Poupeau A., Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim. Biophys. Acta 2011, 1812:995-1006.
-
(2011)
Biochim. Biophys. Acta
, vol.1812
, pp. 995-1006
-
-
Poupeau, A.1
Postic, C.2
-
97
-
-
51549107903
-
Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
-
Cao H., et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134:933-944.
-
(2008)
Cell
, vol.134
, pp. 933-944
-
-
Cao, H.1
|