메뉴 건너뛰기




Volumn 24, Issue 5, 2013, Pages 257-268

Novel insights into ChREBP regulation and function

Author keywords

cell glucotoxicity; Cell proliferation; ChREBP; Glucose sensing; Hepatic steatosis

Indexed keywords

CARBOHYDRATE RESPONSE ELEMENT BINDING PROTEIN; GLUCOSE; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84876998618     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.01.003     Document Type: Review
Times cited : (169)

References (97)
  • 1
    • 0026783692 scopus 로고
    • Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate
    • Foufelle F., et al. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J. Biol. Chem. 1992, 267:20543-20556.
    • (1992) J. Biol. Chem. , vol.267 , pp. 20543-20556
    • Foufelle, F.1
  • 2
    • 0030877118 scopus 로고    scopus 로고
    • Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes
    • Girard J., et al. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 1997, 17:325-352.
    • (1997) Annu. Rev. Nutr. , vol.17 , pp. 325-352
    • Girard, J.1
  • 3
    • 0029044495 scopus 로고
    • Induction of fatty-acid-synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity
    • Prip-Buus C., et al. Induction of fatty-acid-synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur. J. Biochem. 1995, 230:309-315.
    • (1995) Eur. J. Biochem. , vol.230 , pp. 309-315
    • Prip-Buus, C.1
  • 4
    • 2442489891 scopus 로고    scopus 로고
    • Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression
    • Dentin R., et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J. Biol. Chem. 2004, 279:20314-20326.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20314-20326
    • Dentin, R.1
  • 5
    • 0033607176 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
    • Foretz M., et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:12737-12742.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 12737-12742
    • Foretz, M.1
  • 6
    • 0025820815 scopus 로고
    • Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene
    • Thompson K., Towle H.C. Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J. Biol. Chem. 1991, 266:8679-8882.
    • (1991) J. Biol. Chem. , vol.266 , pp. 8679-8882
    • Thompson, K.1    Towle, H.C.2
  • 7
    • 0029094172 scopus 로고
    • Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription
    • Shih H., et al. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol. Chem. 1995, 270:21991-21997.
    • (1995) J. Biol. Chem. , vol.270 , pp. 21991-21997
    • Shih, H.1
  • 8
    • 0035979214 scopus 로고    scopus 로고
    • A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver
    • Yamashita H., et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:9116-9121.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 9116-9121
    • Yamashita, H.1
  • 9
    • 2442614148 scopus 로고    scopus 로고
    • Mlx is the functional heteromeric partner of ChREBP in glucose regulation of lipogenic enzyme genes
    • Stoeckman A.K., et al. Mlx is the functional heteromeric partner of ChREBP in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 2004, 279:15662-15669.
    • (2004) J. Biol. Chem. , vol.279 , pp. 15662-15669
    • Stoeckman, A.K.1
  • 10
    • 8144229872 scopus 로고    scopus 로고
    • Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription
    • Ishii S., et al. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15597-15602.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15597-15602
    • Ishii, S.1
  • 11
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of ChREBP reduces lipogenesis as well as glycolysis
    • Iizuka K., et al. Deficiency of ChREBP reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7281-7286.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 7281-7286
    • Iizuka, K.1
  • 12
    • 33750580307 scopus 로고    scopus 로고
    • Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes
    • Proctor G., et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 2006, 55:2502-2509.
    • (2006) Diabetes , vol.55 , pp. 2502-2509
    • Proctor, G.1
  • 13
    • 33845586655 scopus 로고    scopus 로고
    • Carbohydrate responsive-element binding protein (ChREBP) binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic MIN6 β-cells
    • da Silva Xavier G., et al. Carbohydrate responsive-element binding protein (ChREBP) binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic MIN6 β-cells. J. Lipid Res. 2006, 47:2482-2491.
    • (2006) J. Lipid Res. , vol.47 , pp. 2482-2491
    • da Silva Xavier, G.1
  • 14
    • 26444434340 scopus 로고    scopus 로고
    • Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation
    • Dentin R., et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Invest. 2005, 115:2843-2854.
    • (2005) J. Clin. Invest. , vol.115 , pp. 2843-2854
    • Dentin, R.1
  • 15
    • 15744376705 scopus 로고    scopus 로고
    • Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes
    • Ma L., et al. Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes. J. Biol. Chem. 2005, 280:12019-12027.
    • (2005) J. Biol. Chem. , vol.280 , pp. 12019-12027
    • Ma, L.1
  • 16
    • 0033579566 scopus 로고    scopus 로고
    • Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors
    • Billin A.N., et al. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J. Biol. Chem. 1999, 274:36344-36350.
    • (1999) J. Biol. Chem. , vol.274 , pp. 36344-36350
    • Billin, A.N.1
  • 17
    • 33749407193 scopus 로고    scopus 로고
    • ChREBP/Mlx is the principal mediator of glucose-induced gene expression in the liver
    • Ma L., et al. ChREBP/Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 2006, 281:28721-28730.
    • (2006) J. Biol. Chem. , vol.281 , pp. 28721-28730
    • Ma, L.1
  • 18
    • 33745297834 scopus 로고    scopus 로고
    • Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module
    • Li M., et al. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 2006, 55:1179-1189.
    • (2006) Diabetes , vol.55 , pp. 1179-1189
    • Li, M.1
  • 19
    • 73449089383 scopus 로고    scopus 로고
    • Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site
    • Fukasawa M., et al. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site. Biochem. Biophys. Res. Commun. 2010, 391:1166-1169.
    • (2010) Biochem. Biophys. Res. Commun. , vol.391 , pp. 1166-1169
    • Fukasawa, M.1
  • 20
    • 46349101190 scopus 로고    scopus 로고
    • Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3
    • Li M.V., et al. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14-3-3. Mol. Endocrinol. 2008, 22:1658-1672.
    • (2008) Mol. Endocrinol. , vol.22 , pp. 1658-1672
    • Li, M.V.1
  • 21
    • 53049106773 scopus 로고    scopus 로고
    • Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity
    • Davies M.N., et al. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J. Biol. Chem. 2008, 283:24029-24038.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24029-24038
    • Davies, M.N.1
  • 22
    • 77957553171 scopus 로고    scopus 로고
    • Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region
    • Davies M.N., et al. Activation and repression of glucose-stimulated ChREBP requires the concerted action of multiple domains within the MondoA conserved region. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E665-E674.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.299
    • Davies, M.N.1
  • 23
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012, 484:333-338.
    • (2012) Nature , vol.484 , pp. 333-338
    • Herman, M.A.1
  • 24
    • 84862001109 scopus 로고    scopus 로고
    • Hidden variant of ChREBP in fat links lipogenesis to insulin sensitivity
    • Dentin R., et al. Hidden variant of ChREBP in fat links lipogenesis to insulin sensitivity. Cell Metab. 2012, 15:795-797.
    • (2012) Cell Metab. , vol.15 , pp. 795-797
    • Dentin, R.1
  • 25
    • 84871264842 scopus 로고    scopus 로고
    • Structural characterization of a unique interface between carbohydrate response element binding protein (ChREBP) and 14-3-3beta
    • Ge Q., et al. Structural characterization of a unique interface between carbohydrate response element binding protein (ChREBP) and 14-3-3beta. J. Biol. Chem. 2012, 287:41914-41921.
    • (2012) J. Biol. Chem. , vol.287 , pp. 41914-41921
    • Ge, Q.1
  • 26
    • 84865196738 scopus 로고    scopus 로고
    • Glucose sensing by ChREBP/MondoA-Mlx transcription factors
    • Havula E., Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin. Cell Dev. Biol. 2012, 23:640-647.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 640-647
    • Havula, E.1    Hietakangas, V.2
  • 27
    • 0035923516 scopus 로고    scopus 로고
    • Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP
    • Kawaguchi T., et al. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:13710-13715.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 13710-13715
    • Kawaguchi, T.1
  • 28
    • 42449123308 scopus 로고    scopus 로고
    • Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP
    • Tsatsos N., et al. Identification and function of phosphorylation in the glucose-regulated transcription factor ChREBP. Biochem. J. 2008, 411:261-270.
    • (2008) Biochem. J. , vol.411 , pp. 261-270
    • Tsatsos, N.1
  • 29
    • 54049105746 scopus 로고    scopus 로고
    • Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation
    • Sakiyama H., et al. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J. Biol. Chem. 2008, 283:24899-24908.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24899-24908
    • Sakiyama, H.1
  • 30
    • 0038561165 scopus 로고    scopus 로고
    • Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
    • Kabashima T., et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:5107-5112.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 5107-5112
    • Kabashima, T.1
  • 31
    • 33846685948 scopus 로고    scopus 로고
    • A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription
    • Ma L., et al. A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription. Nucleic Acids Res. 2007, 35:35-44.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 35-44
    • Ma, L.1
  • 32
    • 84858327557 scopus 로고    scopus 로고
    • Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
    • Arden C., et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 2012, 443:111-123.
    • (2012) Biochem. J. , vol.443 , pp. 111-123
    • Arden, C.1
  • 33
    • 77951848682 scopus 로고    scopus 로고
    • Glucose-6-phosphate mediates activation of the ChREBP
    • Li M.V., et al. Glucose-6-phosphate mediates activation of the ChREBP. Biochem. Biophys. Res. Commun. 2010, 395:395-400.
    • (2010) Biochem. Biophys. Res. Commun. , vol.395 , pp. 395-400
    • Li, M.V.1
  • 34
    • 79959473762 scopus 로고    scopus 로고
    • O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver
    • Guinez C., et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011, 60:1399-1413.
    • (2011) Diabetes , vol.60 , pp. 1399-1413
    • Guinez, C.1
  • 35
    • 84867290287 scopus 로고    scopus 로고
    • Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of ChREBP O-glycosylation
    • Ido-Kitamura Y., et al. Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of ChREBP O-glycosylation. PLoS ONE 2012, 7:e47231.
    • (2012) PLoS ONE , vol.7
    • Ido-Kitamura, Y.1
  • 36
    • 29644446917 scopus 로고    scopus 로고
    • Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism
    • Tsatsos N.G., et al. Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism. Biochem. Biophys. Res. Commun. 2006, 340:449-456.
    • (2006) Biochem. Biophys. Res. Commun. , vol.340 , pp. 449-456
    • Tsatsos, N.G.1
  • 37
    • 34547107066 scopus 로고    scopus 로고
    • C-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells
    • Collier J.J., et al. c-Myc and ChREBP regulate glucose-mediated expression of the L-type pyruvate kinase gene in INS-1-derived 832/13 cells. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E48-E56.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293
    • Collier, J.J.1
  • 38
    • 78649855297 scopus 로고    scopus 로고
    • Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice
    • Bricambert J., et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 2010, 120:4316-4331.
    • (2010) J. Clin. Invest. , vol.120 , pp. 4316-4331
    • Bricambert, J.1
  • 39
    • 39749171700 scopus 로고    scopus 로고
    • O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene
    • Kuo M., et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 2008, 582:829-834.
    • (2008) FEBS Lett. , vol.582 , pp. 829-834
    • Kuo, M.1
  • 40
    • 40449128605 scopus 로고    scopus 로고
    • Hepatic glucose sensing via the CREB coactivator CRTC2
    • Dentin R., et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
    • (2008) Science , vol.319 , pp. 1402-1405
    • Dentin, R.1
  • 41
    • 84860184939 scopus 로고    scopus 로고
    • Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
    • Hanover J.A., et al. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 2012, 13:312-321.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 312-321
    • Hanover, J.A.1
  • 42
    • 33744515637 scopus 로고    scopus 로고
    • FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression
    • Zhang W., et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 2006, 281:10105-10117.
    • (2006) J. Biol. Chem. , vol.281 , pp. 10105-10117
    • Zhang, W.1
  • 43
    • 83555160898 scopus 로고    scopus 로고
    • Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver
    • Dentin R., et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 2012, 56:199-209.
    • (2012) J. Hepatol. , vol.56 , pp. 199-209
    • Dentin, R.1
  • 44
    • 25144466481 scopus 로고    scopus 로고
    • Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation
    • Wu C., et al. Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation. Cell Metab. 2005, 2:131-140.
    • (2005) Cell Metab. , vol.2 , pp. 131-140
    • Wu, C.1
  • 45
    • 0016794003 scopus 로고
    • The pentose cycle and insulin release in isolated mouse pancreatic islets during starvation
    • Hedeskov C.J., Capito K. The pentose cycle and insulin release in isolated mouse pancreatic islets during starvation. Biochem. J. 1975, 152:571-576.
    • (1975) Biochem. J. , vol.152 , pp. 571-576
    • Hedeskov, C.J.1    Capito, K.2
  • 46
    • 0038660083 scopus 로고    scopus 로고
    • Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase
    • Aiston S., et al. Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase. Diabetes 2003, 52:1333-1339.
    • (2003) Diabetes , vol.52 , pp. 1333-1339
    • Aiston, S.1
  • 47
    • 84859593599 scopus 로고    scopus 로고
    • A novel N-terminal domain may dictate the glucose response of Mondo proteins
    • McFerrin L.G., Atchley W.R. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS ONE 2012, 7:e34803.
    • (2012) PLoS ONE , vol.7
    • McFerrin, L.G.1    Atchley, W.R.2
  • 48
    • 84873875936 scopus 로고    scopus 로고
    • Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate mediated recruitment of MondoA to the promoter
    • Petrie J.L., et al. Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate mediated recruitment of MondoA to the promoter. Mol. Cell. Biol. 2013, 33:725-738.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 725-738
    • Petrie, J.L.1
  • 49
    • 0027157760 scopus 로고
    • Glycolysis revisited
    • Van Schaftingen E. Glycolysis revisited. Diabetologia 1993, 36:581-588.
    • (1993) Diabetologia , vol.36 , pp. 581-588
    • Van Schaftingen, E.1
  • 50
    • 33745896223 scopus 로고    scopus 로고
    • Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice
    • Iizuka K., et al. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am. J. Physiol. Endocrinol. Metab. 2006, 291:E358-E364.
    • (2006) Am. J. Physiol. Endocrinol. Metab. , vol.291
    • Iizuka, K.1
  • 51
    • 33749370739 scopus 로고    scopus 로고
    • Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
    • Dentin R., et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006, 55:2159-2170.
    • (2006) Diabetes , vol.55 , pp. 2159-2170
    • Dentin, R.1
  • 52
    • 58149502922 scopus 로고    scopus 로고
    • Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice
    • Iizuka K., et al. Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice. Biochem. Biophys. Res. Commun. 2009, 379:499-504.
    • (2009) Biochem. Biophys. Res. Commun. , vol.379 , pp. 499-504
    • Iizuka, K.1
  • 53
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed F., et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 2012, 122:2176-2194.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2176-2194
    • Benhamed, F.1
  • 54
    • 84867235842 scopus 로고    scopus 로고
    • Stearoyl-CoA desaturase: rogue or innocent bystander?
    • Hodson L., Fielding B.A. Stearoyl-CoA desaturase: rogue or innocent bystander?. Prog. Lipid Res. 2012, 52:15-42.
    • (2012) Prog. Lipid Res. , vol.52 , pp. 15-42
    • Hodson, L.1    Fielding, B.A.2
  • 55
    • 78650520909 scopus 로고    scopus 로고
    • Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter
    • Lodhi I.J., et al. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol. Metab. 2011, 22:1-8.
    • (2011) Trends Endocrinol. Metab. , vol.22 , pp. 1-8
    • Lodhi, I.J.1
  • 56
    • 84871655682 scopus 로고    scopus 로고
    • Dissociating fatty liver and diabetes
    • Sun Z., Lazar M.A. Dissociating fatty liver and diabetes. Trends Endocrinol. Metab. 2013, 24:4-12.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 4-12
    • Sun, Z.1    Lazar, M.A.2
  • 57
    • 84862025421 scopus 로고    scopus 로고
    • Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
    • Sun Z., et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 2012, 18:934-942.
    • (2012) Nat. Med. , vol.18 , pp. 934-942
    • Sun, Z.1
  • 58
    • 0018182489 scopus 로고
    • The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes
    • McGarry J.D., et al. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 1978, 253:8294-8300.
    • (1978) J. Biol. Chem. , vol.253 , pp. 8294-8300
    • McGarry, J.D.1
  • 59
    • 84857366417 scopus 로고    scopus 로고
    • Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis
    • Monsenego J., et al. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J. Hepatol. 2012, 56:632-639.
    • (2012) J. Hepatol. , vol.56 , pp. 632-639
    • Monsenego, J.1
  • 60
    • 84874428179 scopus 로고    scopus 로고
    • Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia
    • Kursawe R., et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 2013, 62:837-844.
    • (2013) Diabetes , vol.62 , pp. 837-844
    • Kursawe, R.1
  • 61
    • 69249238074 scopus 로고    scopus 로고
    • Glucose induces FGF-21 mRNA expression through ChREBP activation in rat hepatocytes
    • Iizuka K., et al. Glucose induces FGF-21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 2009, 583:2882-2886.
    • (2009) FEBS Lett. , vol.583 , pp. 2882-2886
    • Iizuka, K.1
  • 62
    • 84862622024 scopus 로고    scopus 로고
    • FGF21: The center of a transcriptional nexus in metabolic regulation
    • Adams A.C., Kharitonenkov A. FGF21: The center of a transcriptional nexus in metabolic regulation. Curr. Diabetes Rev. 2012, 8:285-293.
    • (2012) Curr. Diabetes Rev. , vol.8 , pp. 285-293
    • Adams, A.C.1    Kharitonenkov, A.2
  • 63
    • 77954999528 scopus 로고    scopus 로고
    • Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell
    • Gao N., et al. Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature beta-cell. Mol. Endocrinol. 2010, 24:1594-1604.
    • (2010) Mol. Endocrinol. , vol.24 , pp. 1594-1604
    • Gao, N.1
  • 64
    • 84866086654 scopus 로고    scopus 로고
    • Activation of the transcription factor ChREBP by glucose leads to increased pancreatic β-cell differentiation in rats
    • Soggia A., et al. Activation of the transcription factor ChREBP by glucose leads to increased pancreatic β-cell differentiation in rats. Diabetologia 2012, 55:2713-2722.
    • (2012) Diabetologia , vol.55 , pp. 2713-2722
    • Soggia, A.1
  • 65
    • 0034652287 scopus 로고    scopus 로고
    • Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
    • Gradwohl G., et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1607-1611.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 1607-1611
    • Gradwohl, G.1
  • 66
    • 0036340074 scopus 로고    scopus 로고
    • + cells are islet progenitors and are distinct from duct progenitors
    • + cells are islet progenitors and are distinct from duct progenitors. Development 2002, 129:2447-2457.
    • (2002) Development , vol.129 , pp. 2447-2457
    • Gu, G.1
  • 67
    • 34447536951 scopus 로고    scopus 로고
    • Glucose is necessary for embryonic pancreatic endocrine cell differentiation
    • Guillemain G., et al. Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J. Biol. Chem. 2007, 282:15228-15337.
    • (2007) J. Biol. Chem. , vol.282 , pp. 15228-15337
    • Guillemain, G.1
  • 68
    • 84865418265 scopus 로고    scopus 로고
    • Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in β-cell glucotoxicity
    • Poungvarin N., et al. Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in β-cell glucotoxicity. Diabetologia 2012, 55:1783-1796.
    • (2012) Diabetologia , vol.55 , pp. 1783-1796
    • Poungvarin, N.1
  • 69
    • 84857438937 scopus 로고    scopus 로고
    • 2+ ions in pancreatic beta-cells
    • 2+ ions in pancreatic beta-cells. Diabetes 2012, 61:574-585.
    • (2012) Diabetes , vol.61 , pp. 574-585
    • Noordeen, N.A.1
  • 70
    • 79959756257 scopus 로고    scopus 로고
    • Pancreatic alpha cell mass in European subjects with type 2 diabetes
    • Henquin J.C., Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011, 54:1720-1725.
    • (2011) Diabetologia , vol.54 , pp. 1720-1725
    • Henquin, J.C.1    Rahier, J.2
  • 71
    • 0037219411 scopus 로고    scopus 로고
    • Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
    • Butler A.E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52:102-110.
    • (2003) Diabetes , vol.52 , pp. 102-110
    • Butler, A.E.1
  • 72
    • 42449110310 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis
    • Chen J., et al. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 2008, 57:938-944.
    • (2008) Diabetes , vol.57 , pp. 938-944
    • Chen, J.1
  • 73
    • 54049102845 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes
    • Chen J., et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008, 22:3581-3594.
    • (2008) FASEB J. , vol.22 , pp. 3581-3594
    • Chen, J.1
  • 74
    • 84862579644 scopus 로고    scopus 로고
    • Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death
    • Reich E., et al. Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia 2012, 55:1048-1057.
    • (2012) Diabetologia , vol.55 , pp. 1048-1057
    • Reich, E.1
  • 75
    • 84864693470 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome
    • Oslowski C.M., et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012, 16:265-273.
    • (2012) Cell Metab. , vol.16 , pp. 265-273
    • Oslowski, C.M.1
  • 76
    • 79960737369 scopus 로고    scopus 로고
    • Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats
    • Liu J.H., et al. Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats. Clin. Exp. Pharmacol. Physiol. 2011, 38:528-533.
    • (2011) Clin. Exp. Pharmacol. Physiol. , vol.38 , pp. 528-533
    • Liu, J.H.1
  • 77
    • 67650544980 scopus 로고    scopus 로고
    • Glucose-stimulated expression of thioredoxin-interacting protein is mediated by ChREBP, p300 and histone H4 acetylation in pancreatic β-cells
    • Cha-Molstad H., et al. Glucose-stimulated expression of thioredoxin-interacting protein is mediated by ChREBP, p300 and histone H4 acetylation in pancreatic β-cells. J. Biol. Chem. 2009, 284:16898-16905.
    • (2009) J. Biol. Chem. , vol.284 , pp. 16898-16905
    • Cha-Molstad, H.1
  • 78
    • 0027278522 scopus 로고
    • Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)
    • Dreyer C., et al. Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol. Cell 1993, 77:67-76.
    • (1993) Biol. Cell , vol.77 , pp. 67-76
    • Dreyer, C.1
  • 79
    • 0033594980 scopus 로고    scopus 로고
    • A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders
    • Leone T.C., et al. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:7473-7478.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 7473-7478
    • Leone, T.C.1
  • 80
    • 38549106168 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate
    • Sun Y., et al. Peroxisome proliferator-activated receptor-alpha regulates the expression of pancreatic/duodenal homeobox-1 in rat insulinoma (INS-1) cells and ameliorates glucose-induced insulin secretion impaired by palmitate. Endocrinology 2008, 149:662-671.
    • (2008) Endocrinology , vol.149 , pp. 662-671
    • Sun, Y.1
  • 81
    • 79953886811 scopus 로고    scopus 로고
    • ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells
    • Boergesen M., et al. ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells. J. Biol. Chem. 2011, 286:13214-13225.
    • (2011) J. Biol. Chem. , vol.286 , pp. 13214-13225
    • Boergesen, M.1
  • 82
    • 77449122260 scopus 로고    scopus 로고
    • Carbohydrate-responsive element-binding protein (ChREBP) is a negative regulator of ARNT/HIF-1beta gene expression in pancreatic islet beta-cells
    • Noordeen N.A., et al. Carbohydrate-responsive element-binding protein (ChREBP) is a negative regulator of ARNT/HIF-1beta gene expression in pancreatic islet beta-cells. Diabetes 2010, 59:153-160.
    • (2010) Diabetes , vol.59 , pp. 153-160
    • Noordeen, N.A.1
  • 83
    • 35848955929 scopus 로고    scopus 로고
    • E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet
    • Rogers G.J., et al. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell. Physiol. Biochem. 2007, 20:987-994.
    • (2007) Cell. Physiol. Biochem. , vol.20 , pp. 987-994
    • Rogers, G.J.1
  • 84
    • 81255177545 scopus 로고    scopus 로고
    • Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet
    • Benninger R.K., et al. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J. Physiol. 2011, 589:5453-5466.
    • (2011) J. Physiol. , vol.589 , pp. 5453-5466
    • Benninger, R.K.1
  • 85
    • 78149466989 scopus 로고    scopus 로고
    • ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic β-cells
    • da Silva Xavier G., et al. ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic β-cells. Biochem. Biophys. Res. Commun. 2010, 402:252-257.
    • (2010) Biochem. Biophys. Res. Commun. , vol.402 , pp. 252-257
    • da Silva Xavier, G.1
  • 86
    • 23744439083 scopus 로고    scopus 로고
    • Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes
    • Gunton J.E., et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 2005, 122:337-349.
    • (2005) Cell , vol.122 , pp. 337-349
    • Gunton, J.E.1
  • 87
    • 76049121496 scopus 로고    scopus 로고
    • The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation
    • Tong X., et al. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21660-21665.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21660-21665
    • Tong, X.1
  • 88
    • 84864390297 scopus 로고    scopus 로고
    • ChREBP mediates glucose-stimulated pancreatic β-cell proliferation
    • Metukuri M., et al. ChREBP mediates glucose-stimulated pancreatic β-cell proliferation. Diabetes 2012, 61:2004-2015.
    • (2012) Diabetes , vol.61 , pp. 2004-2015
    • Metukuri, M.1
  • 89
    • 77954822601 scopus 로고    scopus 로고
    • C-Myc is required for the ChREBP-dependent activation of glucose-responsive genes
    • Zhang P., et al. c-Myc is required for the ChREBP-dependent activation of glucose-responsive genes. Mol. Endocrinol. 2010, 24:1274-1286.
    • (2010) Mol. Endocrinol. , vol.24 , pp. 1274-1286
    • Zhang, P.1
  • 90
    • 79960642153 scopus 로고    scopus 로고
    • Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression
    • Jeong Y.S., et al. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS ONE 2011, 6:e22544.
    • (2011) PLoS ONE , vol.6
    • Jeong, Y.S.1
  • 91
    • 55449107742 scopus 로고    scopus 로고
    • The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways
    • Perilhou A., et al. The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways. Mol. Cell. Biol. 2008, 28:6568-6579.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 6568-6579
    • Perilhou, A.1
  • 92
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
    • (2011) EMBO Rep. , vol.12 , pp. 1069-1076
    • Noriega, L.G.1
  • 93
    • 78650533816 scopus 로고    scopus 로고
    • Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
    • Wang R.H., et al. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int. J. Biol. Sci. 2010, 6:682-690.
    • (2010) Int. J. Biol. Sci. , vol.6 , pp. 682-690
    • Wang, R.H.1
  • 94
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
    • Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
    • (2011) Nature , vol.477 , pp. 482-485
    • Burnett, C.1
  • 95
    • 84866314172 scopus 로고    scopus 로고
    • Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila
    • Sassu E.D., et al. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem. Biophys. Res. Commun. 2012, 426:43-48.
    • (2012) Biochem. Biophys. Res. Commun. , vol.426 , pp. 43-48
    • Sassu, E.D.1
  • 96
    • 79958266213 scopus 로고    scopus 로고
    • Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors
    • Poupeau A., Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim. Biophys. Acta 2011, 1812:995-1006.
    • (2011) Biochim. Biophys. Acta , vol.1812 , pp. 995-1006
    • Poupeau, A.1    Postic, C.2
  • 97
    • 51549107903 scopus 로고    scopus 로고
    • Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
    • Cao H., et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134:933-944.
    • (2008) Cell , vol.134 , pp. 933-944
    • Cao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.