-
1
-
-
84968054140
-
Nothing in biology makes sense except in the light of evolution
-
Dobzhansky T. Nothing in biology makes sense except in the light of evolution. Am Biol Teach. 1973;35(3):125-129.
-
(1973)
Am Biol Teach
, vol.35
, Issue.3
, pp. 125-129
-
-
Dobzhansky, T.1
-
2
-
-
66149165866
-
The evolution of the cyanobacterial posttranslational clock from a primitive "phoscillator"
-
Simons MJ. The evolution of the cyanobacterial posttranslational clock from a primitive "phoscillator". J Biol Rhythms. 2009;24(3):175-182.
-
(2009)
J Biol Rhythms
, vol.24
, Issue.3
, pp. 175-182
-
-
Simons, M.J.1
-
3
-
-
4344699146
-
The adaptive value of circadian clocks: an experimental assessment in cyanobacteria
-
Woelfle MA,Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14(16):1481-1486.
-
(2004)
Curr Biol
, vol.14
, Issue.16
, pp. 1481-1486
-
-
Woelfle, M.A.1
Ouyang, Y.2
Phanvijhitsiri, K.3
Johnson, C.H.4
-
4
-
-
0032555144
-
Resonating circadian clocks enhance fitness in cyanobacteria
-
Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA. 1998;95(15):8660-8664.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, Issue.15
, pp. 8660-8664
-
-
Ouyang, Y.1
Andersson, C.R.2
Kondo, T.3
Golden, S.S.4
Johnson, C.H.5
-
5
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349-1354.
-
(2010)
Science
, vol.330
, Issue.6009
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
6
-
-
0034640253
-
Interacting molecular loops in the mammalian circadian clock
-
Shearman LP. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288(5468):1013-1019.
-
(2000)
Science
, vol.288
, Issue.5468
, pp. 1013-1019
-
-
Shearman, L.P.1
-
7
-
-
84904260132
-
Molecular mechanisms of the circadian clockwork in mammals
-
Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. 2014;588(15):2477-2483.
-
(2014)
FEBS Lett
, vol.588
, Issue.15
, pp. 2477-2483
-
-
Robinson, I.1
Reddy, A.B.2
-
8
-
-
0042490526
-
Aclockwork web:circadian timing in brain and periphery, in health and disease
-
HastingsMH,Reddy AB,MaywoodES. Aclockwork web:circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4(8):649-661.
-
(2003)
Nat Rev Neurosci
, vol.4
, Issue.8
, pp. 649-661
-
-
Hastings, M.H.1
Reddy, A.B.2
Maywood, E.S.3
-
9
-
-
0020961114
-
Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus
-
Moore RY. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc. 1983;42(11):2783-2789.
-
(1983)
Fed Proc
, vol.42
, Issue.11
, pp. 2783-2789
-
-
Moore, R.Y.1
-
10
-
-
20244377493
-
Positional cloning of the mouse circadian clock gene
-
King DP, Zhao Y, Sangoram AM, et al. Positional cloning of the mouse circadian clock gene. Cell. 1997;89(4):641-653.
-
(1997)
Cell
, vol.89
, Issue.4
, pp. 641-653
-
-
King, D.P.1
Zhao, Y.2
Sangoram, A.M.3
-
11
-
-
0028241271
-
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
-
Vitaterna MH, King DP, Chang AM, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994;264(5159):719-725.
-
(1994)
Science
, vol.264
, Issue.5159
, pp. 719-725
-
-
Vitaterna, M.H.1
King, D.P.2
Chang, A.M.3
-
12
-
-
0030887045
-
Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway
-
Hogenesch JB, Chan WK, Jackiw VH, et al. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem. 1997;272(13):8581-8593.
-
(1997)
J Biol Chem
, vol.272
, Issue.13
, pp. 8581-8593
-
-
Hogenesch, J.B.1
Chan, W.K.2
Jackiw, V.H.3
-
13
-
-
0031557692
-
cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage
-
Ikeda M, Nomura M. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun. 1997;233(1):258-264.
-
(1997)
Biochem Biophys Res Commun
, vol.233
, Issue.1
, pp. 258-264
-
-
Ikeda, M.1
Nomura, M.2
-
14
-
-
0029914630
-
Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family
-
Todo T, Ryo H, Yamamoto K, et al. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science. 1996;272(5258):109-112.
-
(1996)
Science
, vol.272
, Issue.5258
, pp. 109-112
-
-
Todo, T.1
Ryo, H.2
Yamamoto, K.3
-
15
-
-
0032533793
-
Characterization of photolyase/blue-light receptor homologs in mouse and human cells
-
Kobayashi K, Kanno S, Smit B, van der Horst GT, Takao M, Yasui A. Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res. 1998;26(22):5086-5092.
-
(1998)
Nucleic Acids Res
, vol.26
, Issue.22
, pp. 5086-5092
-
-
Kobayashi, K.1
Kanno, S.2
Smit, B.3
van der Horst, G.T.4
Takao, M.5
Yasui, A.6
-
16
-
-
0015119210
-
Clock mutants of Drosophila melanogaster
-
Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA. 1971;68(9):2112-2116.
-
(1971)
Proc Natl Acad Sci USA
, vol.68
, Issue.9
, pp. 2112-2116
-
-
Konopka, R.J.1
Benzer, S.2
-
17
-
-
0024511936
-
Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus
-
Miyajima N, Horiuchi R, Shibuya Y, et al. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell. 1989;57(1):31-39.
-
(1989)
Cell
, vol.57
, Issue.1
, pp. 31-39
-
-
Miyajima, N.1
Horiuchi, R.2
Shibuya, Y.3
-
18
-
-
0024522826
-
A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbA α transcriptional unit
-
Lazar MA, Hodin RA, Darling DS, Chin WW. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbA α transcriptional unit. Mol Cell Biol. 1989;9(3):1128-1136.
-
(1989)
Mol Cell Biol
, vol.9
, Issue.3
, pp. 1128-1136
-
-
Lazar, M.A.1
Hodin, R.A.2
Darling, D.S.3
Chin, W.W.4
-
19
-
-
0027964896
-
A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb
-
Dumas B, Harding HP, Choi HS, et al. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. MolEndocrinol. 1994;8(8):996-1005.
-
(1994)
MolEndocrinol
, vol.8
, Issue.8
, pp. 996-1005
-
-
Dumas, B.1
Harding, H.P.2
Choi, H.S.3
-
20
-
-
0037178787
-
The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251-260.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
-
21
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331(6022):1315-1319.
-
(2011)
Science
, vol.331
, Issue.6022
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
22
-
-
4143142003
-
Afunctional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato TK, Panda S, Miraglia LJ, et al. Afunctional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43(4):527-537.
-
(2004)
Neuron
, vol.43
, Issue.4
, pp. 527-537
-
-
Sato, T.K.1
Panda, S.2
Miraglia, L.J.3
-
23
-
-
20444502998
-
The orphan nuclear receptor RORα regulates circadian transcription of the mammalian coreclock Bmal1
-
Akashi M, Takumi T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian coreclock Bmal1. Nat Struct Mol Biol. 2005;12(5):441-448.
-
(2005)
Nat Struct Mol Biol
, vol.12
, Issue.5
, pp. 441-448
-
-
Akashi, M.1
Takumi, T.2
-
24
-
-
24944460267
-
Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors
-
Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms. 2005;20(5):391-403.
-
(2005)
J Biol Rhythms
, vol.20
, Issue.5
, pp. 391-403
-
-
Guillaumond, F.1
Dardente, H.2
Giguère, V.3
Cermakian, N.4
-
25
-
-
75849128796
-
Essential roles of CKIδ and CKIε in the mammalian circadian clock
-
Lee H, Chen R, Lee Y, Yoo S, Lee C. Essential roles of CKIδ and CKIε in the mammalian circadian clock. Proc Natl Acad Sci USA. 2009;106(50):21359-21364.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.50
, pp. 21359-21364
-
-
Lee, H.1
Chen, R.2
Lee, Y.3
Yoo, S.4
Lee, C.5
-
26
-
-
0032503969
-
double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation
-
Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998; 94(1):83-95.
-
(1998)
Cell
, vol.94
, Issue.1
, pp. 83-95
-
-
Price, J.L.1
Blau, J.2
Rothenfluh, A.3
Abodeely, M.4
Kloss, B.5
Young, M.W.6
-
27
-
-
0032504041
-
The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε
-
Kloss B, Price JL, Saez L, et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell. 1998;94(1):97-107.
-
(1998)
Cell
, vol.94
, Issue.1
, pp. 97-107
-
-
Kloss, B.1
Price, J.L.2
Saez, L.3
-
28
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, Yoo SH, Park J, et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007;129(5):1011-1023.
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 1011-1023
-
-
Siepka, S.M.1
Yoo, S.H.2
Park, J.3
-
29
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo SH, Mohawk JA, Siepka SM, et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell. 2013;152(5):1091-1105.
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 1091-1105
-
-
Yoo, S.H.1
Mohawk, J.A.2
Siepka, S.M.3
-
30
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8(2):139-148.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, Issue.2
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
31
-
-
0038305458
-
Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors
-
Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. ChemRev. 2003; 103(6):2203-2237.
-
(2003)
ChemRev
, vol.103
, Issue.6
, pp. 2203-2237
-
-
Sancar, A.1
-
32
-
-
0348011476
-
The coevolution of blue-light photoreception and circadian rhythms
-
Gehring W, Rosbash M. The coevolution of blue-light photoreception and circadian rhythms. J Mol Evol. 2003; 57(suppl 1):S286-S289.
-
(2003)
J Mol Evol
, vol.57
, pp. S286-S289
-
-
Gehring, W.1
Rosbash, M.2
-
33
-
-
0033695992
-
Drosophila CRY is a deep brain circadian photoreceptor
-
Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 2000;26(2):493-504.
-
(2000)
Neuron
, vol.26
, Issue.2
, pp. 493-504
-
-
Emery, P.1
Stanewsky, R.2
Helfrich-Förster, C.3
Emery-Le, M.4
Hall, J.C.5
Rosbash, M.6
-
34
-
-
84878889999
-
Structures of Drosophila cryptochrome and mouse cryptochrome 1 provide insight into circadian function
-
Czarna A, Berndt A, Singh HR, et al. Structures of Drosophila cryptochrome and mouse cryptochrome 1 provide insight into circadian function. Cell. 2013;153(6):1394-1405.
-
(2013)
Cell
, vol.153
, Issue.6
, pp. 1394-1405
-
-
Czarna, A.1
Berndt, A.2
Singh, H.R.3
-
35
-
-
0141480569
-
Cryptochrome structure and signal transduction
-
Lin C, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol. 2003;54:469-496.
-
(2003)
Annu Rev Plant Biol
, vol.54
, pp. 469-496
-
-
Lin, C.1
Shalitin, D.2
-
36
-
-
33644559348
-
Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalianCRY1for circadian core oscillator performance
-
Chaves I, Yagita K, Barnhoorn S, Okamura H, van der Horst GT, Tamanini F. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalianCRY1for circadian core oscillator performance. Mol Cell Biol. 2006;26(5):1743-1753.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.5
, pp. 1743-1753
-
-
Chaves, I.1
Yagita, K.2
Barnhoorn, S.3
Okamura, H.4
van der Horst, G.T.5
Tamanini, F.6
-
37
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307-320.
-
(2002)
Cell
, vol.109
, Issue.3
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
-
38
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch KF, Lipan O, Leykin I, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002; 417(6884):78-83.
-
(2002)
Nature
, vol.417
, Issue.6884
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
-
39
-
-
33749031807
-
Molecular components of the mammalian circadian clock
-
Ko CH. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271-R277.
-
(2006)
Hum Mol Genet
, vol.15
, pp. R271-R277
-
-
Ko, C.H.1
-
40
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife. 2012;1:e00011.
-
(2012)
Elife
, vol.1
, pp. e00011
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
41
-
-
84911865436
-
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
-
Fang B, Everett LJ, Jager J, et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell. 2014;159(5):1140-1152.
-
(2014)
Cell
, vol.159
, Issue.5
, pp. 1140-1152
-
-
Fang, B.1
Everett, L.J.2
Jager, J.3
-
42
-
-
84867670963
-
Cold-inducible RNAbinding protein modulates circadian gene expression posttranscriptionally
-
Morf J, Rey G, Schneider K, et al. Cold-inducible RNAbinding protein modulates circadian gene expression posttranscriptionally. Science. 2012;338(6105):379-383.
-
(2012)
Science
, vol.338
, Issue.6105
, pp. 379-383
-
-
Morf, J.1
Rey, G.2
Schneider, K.3
-
43
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, Yoo SH, Huang HC, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349-354.
-
(2012)
Science
, vol.338
, Issue.6105
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
-
44
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006; 16(11):1107-1115.
-
(2006)
Curr Biol
, vol.16
, Issue.11
, pp. 1107-1115
-
-
Reddy, A.B.1
Karp, N.A.2
Maywood, E.S.3
-
45
-
-
84893799587
-
In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism
-
Robles MS, Cox J, Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047.
-
(2014)
PLoS Genet
, vol.10
, Issue.1
, pp. e1004047
-
-
Robles, M.S.1
Cox, J.2
Mann, M.3
-
46
-
-
84921297143
-
Proteomics and circadian rhythms: it's all about signaling!
-
Mauvoisin D, Dayon L, Gachon F, KussmannM. Proteomics and circadian rhythms: it's all about signaling! Proteomics. 2015;15:310-317.
-
(2015)
Proteomics
, vol.15
, pp. 310-317
-
-
Mauvoisin, D.1
Dayon, L.2
Gachon, F.3
Kussmann, M.4
-
47
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011;13(2):125-137.
-
(2011)
Cell Metab
, vol.13
, Issue.2
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
48
-
-
0035919479
-
Regulation of clock and NPAS2DNAbinding by the redox state ofNAD cofactors
-
Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2DNAbinding by the redox state ofNAD cofactors. Science. 2001;293(5529):510-514.
-
(2001)
Science
, vol.293
, Issue.5529
, pp. 510-514
-
-
Rutter, J.1
Reick, M.2
Wu, L.C.3
McKnight, S.L.4
-
49
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651-654.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
50
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654-657.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
51
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317-328.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
52
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
Peek CB, Affinati AH, Ramsey KM, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 2013;342(6158):1243417.
-
(2013)
Science
, vol.342
, Issue.6158
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
-
53
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REVERB α and REV-ERBβ
-
Raghuram S, Stayrook KR, Huang P, et al. Identification of heme as the ligand for the orphan nuclear receptors REVERB α and REV-ERBβ. Nat Struct Mol Biol. 2007;14(12):1207-1213.
-
(2007)
Nat Struct Mol Biol
, vol.14
, Issue.12
, pp. 1207-1213
-
-
Raghuram, S.1
Stayrook, K.R.2
Huang, P.3
-
54
-
-
37249086610
-
Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways
-
Yin L,WuN, Curtin JC, et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science. 2007;318(5857):1786-1789.
-
(2007)
Science
, vol.318
, Issue.5857
, pp. 1786-1789
-
-
Yin, L.1
Wu, N.2
Curtin, J.C.3
-
55
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437-440.
-
(2009)
Science
, vol.326
, Issue.5951
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
DiTacchio, L.3
-
56
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar RS, Green EW, Zhao Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012; 485:459-464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
Green, E.W.2
Zhao, Y.3
-
57
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill JS, van Ooijen G, Dixon LE, et al. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011;469(7331):554-558.
-
(2011)
Nature
, vol.469
, Issue.7331
, pp. 554-558
-
-
O'Neill, J.S.1
van Ooijen, G.2
Dixon, L.E.3
-
58
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469(7331):498-503.
-
(2011)
Nature
, vol.469
, Issue.7331
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
59
-
-
84901599371
-
Circadian redox and metabolic oscillations in mammalian systems
-
O'Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal. 2014;20(18):2966-2981.
-
(2014)
Antioxid Redox Signal
, vol.20
, Issue.18
, pp. 2966-2981
-
-
O'Neill, J.S.1
Feeney, K.A.2
-
60
-
-
70450239457
-
Metabolism and cancer: the circadian clock connection
-
Sahar S, Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer. 2009;9(12):886-896.
-
(2009)
Nat Rev Cancer
, vol.9
, Issue.12
, pp. 886-896
-
-
Sahar, S.1
Sassone-Corsi, P.2
-
61
-
-
79957906685
-
Circadian rhythms, sleep, and metabolism
-
Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011; 121(6):2133-2141.
-
(2011)
J Clin Invest
, vol.121
, Issue.6
, pp. 2133-2141
-
-
Huang, W.1
Ramsey, K.M.2
Marcheva, B.3
Bass, J.4
-
62
-
-
6344221991
-
The mammalian circadian timing system: from gene expression to physiology
-
Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U. The mammalian circadian timing system: from gene expression to physiology. Chromosoma. 2004;113(3):103-112.
-
(2004)
Chromosoma
, vol.113
, Issue.3
, pp. 103-112
-
-
Gachon, F.1
Nagoshi, E.2
Brown, S.A.3
Ripperger, J.4
Schibler, U.5
-
63
-
-
79952028561
-
Shift work and chronic disease: the epidemiological evidence
-
Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC. Shift work and chronic disease: the epidemiological evidence. Occup Med (Lond). 2011;61(2):78-89.
-
(2011)
Occup Med (Lond)
, vol.61
, Issue.2
, pp. 78-89
-
-
Wang, X.S.1
Armstrong, M.E.2
Cairns, B.J.3
Key, T.J.4
Travis, R.C.5
-
64
-
-
35648965722
-
Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review
-
Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep. 2007;30(11):1484-1501.
-
(2007)
Sleep
, vol.30
, Issue.11
, pp. 1484-1501
-
-
Sack, R.L.1
Auckley, D.2
Auger, R.R.3
-
65
-
-
35648987668
-
Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review
-
Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep. 2007;30(11):1460-1483.
-
(2007)
Sleep
, vol.30
, Issue.11
, pp. 1460-1483
-
-
Sack, R.L.1
Auckley, D.2
Auger, R.R.3
-
66
-
-
84855168949
-
Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women
-
Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8(12):e1001141.
-
(2011)
PLoS Med
, vol.8
, Issue.12
, pp. e1001141
-
-
Pan, A.1
Schernhammer, E.S.2
Sun, Q.3
Hu, F.B.4
-
67
-
-
68649108875
-
Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers
-
Suwazono Y, Dochi M, Oishi M, Tanaka K, Kobayashi E, Sakata K. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers. Chronobiol Int. 2009;26(5):926-941.
-
(2009)
Chronobiol Int
, vol.26
, Issue.5
, pp. 926-941
-
-
Suwazono, Y.1
Dochi, M.2
Oishi, M.3
Tanaka, K.4
Kobayashi, E.5
Sakata, K.6
-
68
-
-
84861529907
-
Social jetlag and obesity
-
Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939-943.
-
(2012)
Curr Biol
, vol.22
, Issue.10
, pp. 939-943
-
-
Roenneberg, T.1
Allebrandt, K.V.2
Merrow, M.3
Vetter, C.4
-
69
-
-
63749095422
-
Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort
-
Beihl DA, Liese AD, Haffner SM. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol. 2009;19(5):351-357.
-
(2009)
Ann Epidemiol
, vol.19
, Issue.5
, pp. 351-357
-
-
Beihl, D.A.1
Liese, A.D.2
Haffner, S.M.3
-
70
-
-
17444428058
-
Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population
-
Meisinger C, Heier M, Loewel H. Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia. 2005;48(2):235-241.
-
(2005)
Diabetologia
, vol.48
, Issue.2
, pp. 235-241
-
-
Meisinger, C.1
Heier, M.2
Loewel, H.3
-
71
-
-
0033598598
-
Impact of sleep debt on metabolic and endocrine function
-
Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999; 354(9188):1435-1439.
-
(1999)
Lancet
, vol.354
, Issue.9188
, pp. 1435-1439
-
-
Spiegel, K.1
Leproult, R.2
Van Cauter, E.3
-
72
-
-
43049089758
-
Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision
-
Güler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453(7191):102-105.
-
(2008)
Nature
, vol.453
, Issue.7191
, pp. 102-105
-
-
Güler, A.D.1
Ecker, J.L.2
Lall, G.S.3
-
73
-
-
0031940392
-
Melanopsin: an opsin in melanophores, brain, and eye
-
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. 1998;95(1):340-345.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, Issue.1
, pp. 340-345
-
-
Provencio, I.1
Jiang, G.2
De Grip, W.J.3
Hayes, W.P.4
Rollag, M.D.5
-
74
-
-
0034994462
-
SCN efferents to peripheral tissues: implications for biological rhythms
-
Bartness TJ, Song CK, Demas GE. SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms. 2001;16(3):196-204.
-
(2001)
J Biol Rhythms
, vol.16
, Issue.3
, pp. 196-204
-
-
Bartness, T.J.1
Song, C.K.2
Demas, G.E.3
-
75
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA. 1972; 69(6):1583-1586.
-
(1972)
Proc Natl Acad Sci USA
, vol.69
, Issue.6
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
76
-
-
0015504847
-
Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
-
Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42(1):201-206.
-
(1972)
Brain Res
, vol.42
, Issue.1
, pp. 201-206
-
-
Moore, R.Y.1
Eichler, V.B.2
-
77
-
-
0023463777
-
Role ofSCNin daily rhythms of plasma glucose, FFA, insulin and glucagon
-
YamamotoH, Nagai K,NakagawaH. Role ofSCNin daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol Int. 1987;4(4):483-491.
-
(1987)
Chronobiol Int
, vol.4
, Issue.4
, pp. 483-491
-
-
Yamamoto, H.1
Nagai, K.2
Nakagawa, H.3
-
78
-
-
0032798663
-
A suprachiasmatic nucleus generated rhythm in basal glucose concentrations
-
La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol. 1999;11(8):643-652.
-
(1999)
J Neuroendocrinol
, vol.11
, Issue.8
, pp. 643-652
-
-
La Fleur, S.E.1
Kalsbeek, A.2
Wortel, J.3
Buijs, R.M.4
-
79
-
-
1642505804
-
Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus
-
Tousson E, Meissl H. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci. 2004;24(12):2983-2988.
-
(2004)
J Neurosci
, vol.24
, Issue.12
, pp. 2983-2988
-
-
Tousson, E.1
Meissl, H.2
-
80
-
-
84959851995
-
Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour
-
Banerjee S, Wang Y, Solt LA, et al. Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun. 2014;5:5759.
-
(2014)
Nat Commun
, vol.5
, pp. 5759
-
-
Banerjee, S.1
Wang, Y.2
Solt, L.A.3
-
81
-
-
84919664173
-
Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants
-
Dashti HS, Follis JL, Smith CE, et al. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants. Am J Clin Nutr. 2015;101(1):135-143.
-
(2015)
Am J Clin Nutr
, vol.101
, Issue.1
, pp. 135-143
-
-
Dashti, H.S.1
Follis, J.L.2
Smith, C.E.3
-
82
-
-
84877582413
-
Impact of REV ERB α gene polymorphisms on obesity phenotypes in adult and adolescent samples
-
Goumidi L, Grechez A, Dumont J, et al. Impact of REV ERB α gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int J Obes (Lond). 2013;37(5):666-672.
-
(2013)
Int J Obes (Lond)
, vol.37
, Issue.5
, pp. 666-672
-
-
Goumidi, L.1
Grechez, A.2
Dumont, J.3
-
83
-
-
42149170517
-
Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man
-
ScottEM,CarterAM,Grant PJ. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond). 2008;32(4):658-662.
-
(2008)
Int J Obes (Lond)
, vol.32
, Issue.4
, pp. 658-662
-
-
Scott, E.M.1
Carter, A.M.2
Grant, P.J.3
-
84
-
-
45749158901
-
Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity
-
Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr. 2008;87(6):1606-1615.
-
(2008)
Am J Clin Nutr
, vol.87
, Issue.6
, pp. 1606-1615
-
-
Sookoian, S.1
Gemma, C.2
Gianotti, T.F.3
Burgueño, A.4
Castaño, G.5
Pirola, C.J.6
-
85
-
-
34548480183
-
Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease
-
Sookoian S, Castaño G, Gemma C, Gianotti TF, Pirola CJ. Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease. World J Gastroenterol. 2007;13(31):4242-4248.
-
(2007)
World J Gastroenterol
, vol.13
, Issue.31
, pp. 4242-4248
-
-
Sookoian, S.1
Castaño, G.2
Gemma, C.3
Gianotti, T.F.4
Pirola, C.J.5
-
86
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277-359.
-
(2004)
Physiol Rev
, vol.84
, Issue.1
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
87
-
-
0034611678
-
Towards a molecular understanding of adaptive thermogenesis
-
Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000; 404(6778):652-660.
-
(2000)
Nature
, vol.404
, Issue.6778
, pp. 652-660
-
-
Lowell, B.B.1
Spiegelman, B.M.2
-
88
-
-
84862879169
-
A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging
-
van der Veen DR, Shao J, Chapman S, LeevyWM,Duffield GE. A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging. Obesity (Silver Spring). 2012;20(7):1527-1529.
-
(2012)
Obesity (Silver Spring)
, vol.20
, Issue.7
, pp. 1527-1529
-
-
van der Veen, D.R.1
Shao, J.2
Chapman, S.3
Leevy, W.M.4
Duffield, G.E.5
-
89
-
-
33645790960
-
Characterization of peripheral circadian clocks in adipose tissues
-
Zvonic S, Ptitsyn AA, Conrad SA, et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006;55(4):962-970.
-
(2006)
Diabetes
, vol.55
, Issue.4
, pp. 962-970
-
-
Zvonic, S.1
Ptitsyn, A.A.2
Conrad, S.A.3
-
90
-
-
0026605565
-
Circadian changes of brown adipose tissue thermogenesis in juvenile rats
-
Redlin U, Nuesslein B, Schmidt I. Circadian changes of brown adipose tissue thermogenesis in juvenile rats. Am J Physiol. 1992;262:R504-R508.
-
(1992)
Am J Physiol
, vol.262
, pp. R504-R508
-
-
Redlin, U.1
Nuesslein, B.2
Schmidt, I.3
-
91
-
-
84888042813
-
The nuclear receptor Rev-erbα controls circadian thermogenic plasticity
-
Gerhart-Hines Z, Feng D, Emmett MJ, et al. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature. 2013;503(7476):410-413.
-
(2013)
Nature
, vol.503
, Issue.7476
, pp. 410-413
-
-
Gerhart-Hines, Z.1
Feng, D.2
Emmett, M.J.3
-
92
-
-
84883254227
-
Role of the circadian clock gene Per2 in adaptation to cold temperature
-
Chappuis S, Ripperger JA, Schnell A, et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab. 2013;2(3):184-193.
-
(2013)
Mol Metab
, vol.2
, Issue.3
, pp. 184-193
-
-
Chappuis, S.1
Ripperger, J.A.2
Schnell, A.3
-
93
-
-
84929486079
-
The adipocyte clock controls brown adipogenesis via TGF-β/BMP signaling pathway
-
published online March 6
-
Nam D, Guo B, Chatterjee S, et al. The adipocyte clock controls brown adipogenesis via TGF-β/BMP signaling pathway [published online March 6, 2015]. J Cell Sci. doi:10.1242/jcs.167643.
-
(2015)
J Cell Sci
-
-
Nam, D.1
Guo, B.2
Chatterjee, S.3
-
94
-
-
84883147708
-
The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-induced thermogenesis
-
Li S, Yu Q, Wang GX, Lin JD. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-induced thermogenesis. PLoS One. 2013;8(8):e70109.
-
(2013)
PLoS One
, vol.8
, Issue.8
, pp. e70109
-
-
Li, S.1
Yu, Q.2
Wang, G.X.3
Lin, J.D.4
-
95
-
-
84870880186
-
Simultaneous telemetric analyzing of the temporal relationship for the changes of the circadian rhythms of brown adipose tissue thermogenesis and core temperature in the rat [in Chinese]
-
Yang YL, Shen ZL, Tang Y, Wang N, Sun B. Simultaneous telemetric analyzing of the temporal relationship for the changes of the circadian rhythms of brown adipose tissue thermogenesis and core temperature in the rat [in Chinese]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2011;27(3):348-352.
-
(2011)
Zhongguo Ying Yong Sheng Li Xue Za Zhi
, vol.27
, Issue.3
, pp. 348-352
-
-
Yang, Y.L.1
Shen, Z.L.2
Tang, Y.3
Wang, N.4
Sun, B.5
-
96
-
-
77957960061
-
Temperature as a universal resetting cue for mammalian circadian oscillators
-
Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330(6002):379-385.
-
(2010)
Science
, vol.330
, Issue.6002
, pp. 379-385
-
-
Buhr, E.D.1
Yoo, S.H.2
Takahashi, J.S.3
-
97
-
-
84858321758
-
Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
-
Saini C, Morf J, StratmannM,Gos P, Schibler U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012;26(6):567-580.
-
(2012)
Genes Dev
, vol.26
, Issue.6
, pp. 567-580
-
-
Saini, C.1
Morf, J.2
Stratmann, M.3
Gos, P.4
Schibler, U.5
-
98
-
-
84880382594
-
Brown fat in a protoendothermic mammal fuels eutherian evolution
-
Oelkrug R, Goetze N, Exner C, et al. Brown fat in a protoendothermic mammal fuels eutherian evolution. Nat Commun. 2013;4:2140.
-
(2013)
Nat Commun
, vol.4
, pp. 2140
-
-
Oelkrug, R.1
Goetze, N.2
Exner, C.3
-
99
-
-
0018646453
-
A role for brown adipose tissue in diet-induced thermogenesis
-
Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281(5726):31-35.
-
(1979)
Nature
, vol.281
, Issue.5726
, pp. 31-35
-
-
Rothwell, N.J.1
Stock, M.J.2
-
100
-
-
84883388374
-
Circadian regulation of lipid mobilization in white adipose tissues
-
Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62(7):2195-2203.
-
(2013)
Diabetes
, vol.62
, Issue.7
, pp. 2195-2203
-
-
Shostak, A.1
Meyer-Kovac, J.2
Oster, H.3
-
101
-
-
84870859377
-
Obesity in mice with adipocyte-specific deletion of clock component Arntl
-
Paschos GK, Ibrahim S, Song WL, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768-1777.
-
(2012)
Nat Med
, vol.18
, Issue.12
, pp. 1768-1777
-
-
Paschos, G.K.1
Ibrahim, S.2
Song, W.L.3
-
102
-
-
0030847462
-
A circadian rhythm in lipid mobilization which is altered in IDDM
-
Hagström-Toft E, Bolinder J, Ungerstedt U, Arner P. A circadian rhythm in lipid mobilization which is altered in IDDM. Diabetologia. 1997;40(9):1070-1078.
-
(1997)
Diabetologia
, vol.40
, Issue.9
, pp. 1070-1078
-
-
Hagström-Toft, E.1
Bolinder, J.2
Ungerstedt, U.3
Arner, P.4
-
103
-
-
84857124907
-
The human circadian metabolome
-
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci USA. 2012;109(7):2625-2629.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.7
, pp. 2625-2629
-
-
Dallmann, R.1
Viola, A.U.2
Tarokh, L.3
Cajochen, C.4
Brown, S.A.5
-
104
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043-1045.
-
(2005)
Science
, vol.308
, Issue.5724
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
-
105
-
-
78049437320
-
PER2controls lipid metabolism by direct regulation of PPARγ
-
Grimaldi B, BelletMM,Katada S, et al. PER2controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 2010;12(5):509-520.
-
(2010)
Cell Metab
, vol.12
, Issue.5
, pp. 509-520
-
-
Grimaldi, B.1
Bellet, M.M.2
Katada, S.3
-
106
-
-
84864755952
-
The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie J, Dumont S, Dardente H, et al. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26(8):3321-3335.
-
(2012)
FASEB J
, vol.26
, Issue.8
, pp. 3321-3335
-
-
Delezie, J.1
Dumont, S.2
Dardente, H.3
-
107
-
-
2942650969
-
Adipose tissue as an endocrine organ
-
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548-2556.
-
(2004)
J Clin Endocrinol Metab
, vol.89
, Issue.6
, pp. 2548-2556
-
-
Kershaw, E.E.1
Flier, J.S.2
-
108
-
-
0029073613
-
Weight-reducing effects of the plasma protein encoded by the obese gene
-
Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543-546.
-
(1995)
Science
, vol.269
, Issue.5223
, pp. 543-546
-
-
Halaas, J.L.1
Gajiwala, K.S.2
Maffei, M.3
-
109
-
-
0035905758
-
The hormone resistin links obesity to diabetes
-
Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307-312.
-
(2001)
Nature
, vol.409
, Issue.6818
, pp. 307-312
-
-
Steppan, C.M.1
Bailey, S.T.2
Bhat, S.3
-
110
-
-
0028787490
-
Anovel serum protein similar to C1q, produced exclusively in adipocytes
-
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. Anovel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746-26749.
-
(1995)
J Biol Chem
, vol.270
, Issue.45
, pp. 26746-26749
-
-
Scherer, P.E.1
Williams, S.2
Fogliano, M.3
Baldini, G.4
Lodish, H.F.5
-
111
-
-
27844565269
-
Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue
-
Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146(12):5631-5636.
-
(2005)
Endocrinology
, vol.146
, Issue.12
, pp. 5631-5636
-
-
Ando, H.1
Yanagihara, H.2
Hayashi, Y.3
-
113
-
-
33746683685
-
Aging-related sex-dependent loss of the circulating leptin 24-h rhythm in the rhesus monkey
-
Downs JL, Urbanski HF. Aging-related sex-dependent loss of the circulating leptin 24-h rhythm in the rhesus monkey. J Endocrinol. 2006;190(1):117-127.
-
(2006)
J Endocrinol
, vol.190
, Issue.1
, pp. 117-127
-
-
Downs, J.L.1
Urbanski, H.F.2
-
114
-
-
0037471351
-
Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity
-
Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept. 2003; 111:1-11.
-
(2003)
Regul Pept
, vol.111
, pp. 1-11
-
-
Kalra, S.P.1
Bagnasco, M.2
Otukonyong, E.E.3
Dube, M.G.4
Kalra, P.S.5
-
115
-
-
0035143139
-
Temporal patterns of circulating leptin levels in lean and obese adolescents: relationships to insulin, growth hormone, and free fatty acids rhythmicity
-
Heptulla R, Smitten A, Teague B, Tamborlane WV, Ma YZ,Caprio S. Temporal patterns of circulating leptin levels in lean and obese adolescents: relationships to insulin, growth hormone, and free fatty acids rhythmicity. J Clin Endocrinol Metab. 2001;86(1):90-96.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, Issue.1
, pp. 90-96
-
-
Heptulla, R.1
Smitten, A.2
Teague, B.3
Tamborlane, W.V.4
Ma, Y.Z.5
Caprio, S.6
-
116
-
-
0029978426
-
Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects
-
Sinha MK, Ohannesian JP, Heiman ML, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97(5):1344-1347.
-
(1996)
J Clin Invest
, vol.97
, Issue.5
, pp. 1344-1347
-
-
Sinha, M.K.1
Ohannesian, J.P.2
Heiman, M.L.3
-
117
-
-
0013293960
-
The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels
-
Kalsbeek A, Fliers E, Romijn JA, et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology. 2001;142(6):2677-2685.
-
(2001)
Endocrinology
, vol.142
, Issue.6
, pp. 2677-2685
-
-
Kalsbeek, A.1
Fliers, E.2
Romijn, J.A.3
-
118
-
-
0032032575
-
Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function
-
Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101(5):1020-1027.
-
(1998)
J Clin Invest
, vol.101
, Issue.5
, pp. 1020-1027
-
-
Ahima, R.S.1
Prabakaran, D.2
Flier, J.S.3
-
119
-
-
0037902035
-
Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns
-
Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab. 2003;88(6):2838-2843.
-
(2003)
J Clin Endocrinol Metab
, vol.88
, Issue.6
, pp. 2838-2843
-
-
Gavrila, A.1
Peng, C.K.2
Chan, J.L.3
Mietus, J.E.4
Goldberger, A.L.5
Mantzoros, C.S.6
-
120
-
-
77957672643
-
Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions
-
Scheer FA, Chan JL, Fargnoli J, et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia. 2010;53(11):2401-2405.
-
(2010)
Diabetologia
, vol.53
, Issue.11
, pp. 2401-2405
-
-
Scheer, F.A.1
Chan, J.L.2
Fargnoli, J.3
-
121
-
-
0035059442
-
Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus
-
Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001;6(3):269-278.
-
(2001)
Genes Cells
, vol.6
, Issue.3
, pp. 269-278
-
-
Hara, R.1
Wan, K.2
Wakamatsu, H.3
-
122
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-2961.
-
(2000)
Genes Dev
, vol.14
, Issue.23
, pp. 2950-2961
-
-
Damiola, F.1
-
123
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490-493.
-
(2001)
Science
, vol.291
, Issue.5503
, pp. 490-493
-
-
Stokkan, K.A.1
Yamazaki, S.2
Tei, H.3
Sakaki, Y.4
Menaker, M.5
-
124
-
-
75849136095
-
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
-
Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA. 2009;106(50):21453-21458.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.50
, pp. 21453-21458
-
-
Vollmers, C.1
Gill, S.2
DiTacchio, L.3
Pulivarthy, S.R.4
Le, H.D.5
Panda, S.6
-
125
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19(9):1147-1152.
-
(2013)
Nat Med
, vol.19
, Issue.9
, pp. 1147-1152
-
-
Bookout, A.L.1
de Groot, M.H.2
Owen, B.M.3
-
126
-
-
0034730493
-
Resetting of circadian time in peripheral tissues by glucocorticoid signaling
-
Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344-2347.
-
(2000)
Science
, vol.289
, Issue.5488
, pp. 2344-2347
-
-
Balsalobre, A.1
Brown, S.A.2
Marcacci, L.3
-
127
-
-
0019125454
-
The circadian change of gluconeogenesis in the liver in vivo in fed rats
-
Kida K, Nishio T, Yokozawa T, Nagai K, Matsuda H, Nakagawa H. The circadian change of gluconeogenesis in the liver in vivo in fed rats. J Biochem (Tokyo). 1980;88(4):1009-1013.
-
(1980)
J Biochem (Tokyo)
, vol.88
, Issue.4
, pp. 1009-1013
-
-
Kida, K.1
Nishio, T.2
Yokozawa, T.3
Nagai, K.4
Matsuda, H.5
Nakagawa, H.6
-
128
-
-
34447579941
-
Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet
-
Kudo T, Tamagawa T, Kawashima M, Mito N, Shibata S. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. J Biol Rhythms. 2007;22(4):312-323.
-
(2007)
J Biol Rhythms
, vol.22
, Issue.4
, pp. 312-323
-
-
Kudo, T.1
Tamagawa, T.2
Kawashima, M.3
Mito, N.4
Shibata, S.5
-
129
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis AM, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004; 2(11):e377.
-
(2004)
PLoS Biol
, vol.2
, Issue.11
, pp. e377
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
-
130
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA. 2008;105(39):15172-15177.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.39
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
131
-
-
35148870598
-
Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues
-
Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1528-R1537.
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.293
, Issue.4
, pp. R1528-R1537
-
-
Kennaway, D.J.1
Owens, J.A.2
Voultsios, A.3
Boden, M.J.4
Varcoe, T.J.5
-
132
-
-
84878658848
-
Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism
-
Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PloS One. 2013; 8(6):e65255.
-
(2013)
PloS One
, vol.8
, Issue.6
, pp. e65255
-
-
Kennaway, D.J.1
Varcoe, T.J.2
Voultsios, A.3
Boden, M.J.4
-
133
-
-
77954590348
-
CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2
-
Doi R, Oishi K, Ishida N. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J Biol Chem. 2010;285(29):22114-22121.
-
(2010)
J Biol Chem
, vol.285
, Issue.29
, pp. 22114-22121
-
-
Doi, R.1
Oishi, K.2
Ishida, N.3
-
134
-
-
84883249417
-
PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression
-
Zani F, Breasson L, Becattini B, et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol Metab. 2013;2(3):292-305.
-
(2013)
Mol Metab
, vol.2
, Issue.3
, pp. 292-305
-
-
Zani, F.1
Breasson, L.2
Becattini, B.3
-
135
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
Zhang EE, Liu Y, Dentin R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 2010;16(10):1152-1156.
-
(2010)
Nat Med
, vol.16
, Issue.10
, pp. 1152-1156
-
-
Zhang, E.E.1
Liu, Y.2
Dentin, R.3
-
136
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia KA, Papp SJ, Yu RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480:552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
Papp, S.J.2
Yu, R.T.3
-
137
-
-
84859329911
-
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge A, Feng D, Everett LJ, et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012;26(7):657-667.
-
(2012)
Genes Dev
, vol.26
, Issue.7
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
-
138
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REVERB-β
-
Cho H, Zhao X, Hatori M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REVERB-β. Nature. 2012;485(7396):123-127.
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
-
139
-
-
48549102407
-
Regulation of bile acid synthesis by the nuclear receptor Rev-erbα
-
Duez H, van der Veen JN, Duhem C, et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology. 2008;135(2):689-698.
-
(2008)
Gastroenterology
, vol.135
, Issue.2
, pp. 689-698
-
-
Duez, H.1
van der Veen, J.N.2
Duhem, C.3
-
140
-
-
70349764508
-
REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis
-
Le Martelot G, Claudel T, Gatfield D, et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009;7(9):e1000181.
-
(2009)
PLoS Biol
, vol.7
, Issue.9
, pp. e1000181
-
-
Le Martelot, G.1
Claudel, T.2
Gatfield, D.3
-
141
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011;9(2):e1000595.
-
(2011)
PLoS Biol
, vol.9
, Issue.2
, pp. e1000595
-
-
Rey, G.1
Cesbron, F.2
Rougemont, J.3
Reinke, H.4
Brunner, M.5
Naef, F.6
-
142
-
-
84886847758
-
A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use
-
Liu S, Brown JD, Stanya KJ, et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature. 2013;502(7472):550-554.
-
(2013)
Nature
, vol.502
, Issue.7472
, pp. 550-554
-
-
Liu, S.1
Brown, J.D.2
Stanya, K.J.3
-
143
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414-421.
-
(2007)
Cell Metab
, vol.6
, Issue.5
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
-
144
-
-
77950858243
-
Pathology of nonalcoholic fatty liver disease
-
Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(4):195-203.
-
(2010)
Nat Rev Gastroenterol Hepatol
, vol.7
, Issue.4
, pp. 195-203
-
-
Brunt, E.M.1
-
145
-
-
33646477979
-
Time-restricted feeding entrains daily rhythms of energy metabolism in mice
-
Satoh Y. Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am J Physiol Regul Integr Comp Physiol. 2006;290(5):R1276-R1283.
-
(2006)
Am J Physiol Regul Integr Comp Physiol
, vol.290
, Issue.5
, pp. R1276-R1283
-
-
Satoh, Y.1
-
146
-
-
4544289814
-
Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver
-
Kudo T, Akiyama M, Kuriyama K, Sudo M, Moriya T, Shibata S. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia. 2004;47(8):1425-1436.
-
(2004)
Diabetologia
, vol.47
, Issue.8
, pp. 1425-1436
-
-
Kudo, T.1
Akiyama, M.2
Kuriyama, K.3
Sudo, M.4
Moriya, T.5
Shibata, S.6
-
147
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-860.
-
(2012)
Cell Metab
, vol.15
, Issue.6
, pp. 848-860
-
-
Hatori, M.1
Vollmers, C.2
Zarrinpar, A.3
-
148
-
-
84919649838
-
Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges
-
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014; 20(6):991-1005.
-
(2014)
Cell Metab
, vol.20
, Issue.6
, pp. 991-1005
-
-
Chaix, A.1
Zarrinpar, A.2
Miu, P.3
Panda, S.4
-
149
-
-
46749086668
-
Diurnal variations in myocardial metabolism
-
Bray MS, Young ME. Diurnal variations in myocardial metabolism. Cardiovasc Res. 2008;79(2):228-237.
-
(2008)
Cardiovasc Res
, vol.79
, Issue.2
, pp. 228-237
-
-
Bray, M.S.1
Young, M.E.2
-
150
-
-
33644793780
-
The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function
-
Young ME. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol. 2006;290(1):H1-H16.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.290
, Issue.1
, pp. H1-H16
-
-
Young, M.E.1
-
151
-
-
0025864043
-
Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men
-
Degaute JP, van de Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991; 18(2):199-210.
-
(1991)
Hypertension
, vol.18
, Issue.2
, pp. 199-210
-
-
Degaute, J.P.1
van de Borne, P.2
Linkowski, P.3
Van Cauter, E.4
-
152
-
-
35349007406
-
Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate
-
Durgan DJ, Moore MW, Ha NP, et al. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate. Am J Physiol Heart Circ Physiol. 2007;293(4):H2385-H2393.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.293
, Issue.4
, pp. H2385-H2393
-
-
Durgan, D.J.1
Moore, M.W.2
Ha, N.P.3
-
153
-
-
84455161709
-
O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock
-
Durgan DJ, Pat BM, Laczy B, et al. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem. 2011;286(52):44606-44619.
-
(2011)
J Biol Chem
, vol.286
, Issue.52
, pp. 44606-44619
-
-
Durgan, D.J.1
Pat, B.M.2
Laczy, B.3
-
154
-
-
77449151433
-
Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock
-
Tsai JY, Kienesberger PC, Pulinilkunnil T, et al. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem. 2010;285(5):2918-2929.
-
(2010)
J Biol Chem
, vol.285
, Issue.5
, pp. 2918-2929
-
-
Tsai, J.Y.1
Kienesberger, P.C.2
Pulinilkunnil, T.3
-
155
-
-
0035824917
-
Molecular clock mechanisms and circadian rhythms intrinsic to the heart
-
Portman MA. Molecular clock mechanisms and circadian rhythms intrinsic to the heart. Circ Res. 2001;89(12):1084-1086.
-
(2001)
Circ Res
, vol.89
, Issue.12
, pp. 1084-1086
-
-
Portman, M.A.1
-
156
-
-
39149108483
-
Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression
-
Bray MS, Shaw CA, Moore MW, et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 2008;294(2):H1036-H1047.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, Issue.2
, pp. H1036-H1047
-
-
Bray, M.S.1
Shaw, C.A.2
Moore, M.W.3
-
157
-
-
79953666149
-
Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice
-
Durgan DJ, Tsai JY, Grenett MH, et al. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int. 2011;28(3):187-203.
-
(2011)
Chronobiol Int
, vol.28
, Issue.3
, pp. 187-203
-
-
Durgan, D.J.1
Tsai, J.Y.2
Grenett, M.H.3
-
158
-
-
84862777353
-
Circadian rhythms govern cardiac repolarization and arrhythmogenesis
-
Jeyaraj D, Haldar SM, Wan X, et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483(7387):96-99.
-
(2012)
Nature
, vol.483
, Issue.7387
, pp. 96-99
-
-
Jeyaraj, D.1
Haldar, S.M.2
Wan, X.3
-
159
-
-
33646398326
-
Circadian rhythm of blood pressure and the relation to cardiovascular events
-
Giles TD. Circadian rhythm of blood pressure and the relation to cardiovascular events. J Hypertens Suppl. 2006; 24(2):S11-S16.
-
(2006)
J Hypertens Suppl
, vol.24
, Issue.2
, pp. S11-S16
-
-
Giles, T.D.1
-
160
-
-
36248986846
-
Importance of blood pressure control over a 24-hour period
-
White WB. Importance of blood pressure control over a 24-hour period. J Manag Care Pharm. 2007;13(8 suppl B):34-39.
-
(2007)
J Manag Care Pharm
, vol.13
, Issue.8
, pp. 34-39
-
-
White, W.B.1
-
161
-
-
33344458723
-
Abnormal blood pressure circadian rhythm: a target organ damage?
-
Izzedine H, Launay-Vacher V, Deray G. Abnormal blood pressure circadian rhythm: a target organ damage? Int J Cardiol. 2006;107(3):343-349.
-
(2006)
Int J Cardiol
, vol.107
, Issue.3
, pp. 343-349
-
-
Izzedine, H.1
Launay-Vacher, V.2
Deray, G.3
-
162
-
-
84872684734
-
Regulation of myocardial metabolism by the cardiomyocyte circadian clock
-
Chatham JC, Young ME. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J Mol Cell Cardiol. 2013;55:139-146.
-
(2013)
J Mol Cell Cardiol
, vol.55
, pp. 139-146
-
-
Chatham, J.C.1
Young, M.E.2
-
163
-
-
84923125066
-
Lifetime shift work exposure: association with anthropometry, body composition, blood pressure, glucose and heart rate variability
-
Souza BB, Monteze NM, de Oliveira FL, et al. Lifetime shift work exposure: association with anthropometry, body composition, blood pressure, glucose and heart rate variability. Occup Environ Med. 2015;72:208-215.
-
(2015)
Occup Environ Med
, vol.72
, pp. 208-215
-
-
Souza, B.B.1
Monteze, N.M.2
de Oliveira, F.L.3
-
164
-
-
0034914170
-
Shift work modifies the circadian patterns of heart rate variability in nurses
-
Ito H, Nozaki M, Maruyama T, Kaji Y, Tsuda Y. Shift work modifies the circadian patterns of heart rate variability in nurses. Int J Cardiol. 2001;79:231-236.
-
(2001)
Int J Cardiol
, vol.79
, pp. 231-236
-
-
Ito, H.1
Nozaki, M.2
Maruyama, T.3
Kaji, Y.4
Tsuda, Y.5
-
165
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453-4458.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.11
, pp. 4453-4458
-
-
Scheer, F.A.1
Hilton, M.F.2
Mantzoros, C.S.3
Shea, S.A.4
-
166
-
-
33846256311
-
Workcharacteristics and incidence of type 2 diabetes in women
-
KroenkeCH,Spiegelman D, Manson J, Schernhammer ES, ColditzGA,Kawachi I.Workcharacteristics and incidence of type 2 diabetes in women. Am J Epidemiol. 2007; 165(2):175-183.
-
(2007)
Am J Epidemiol
, vol.165
, Issue.2
, pp. 175-183
-
-
Kroenke, C.H.1
Spiegelman, D.2
Manson, J.3
Schernhammer, E.S.4
Colditz, G.A.5
Kawachi, I.6
-
167
-
-
77955164327
-
Metabolism: tick, tock, a β-cell clock
-
Lamia KA, Evans RM. Metabolism: tick, tock, a β-cell clock. Nature. 2010;466(7306):571-572.
-
(2010)
Nature
, vol.466
, Issue.7306
, pp. 571-572
-
-
Lamia, K.A.1
Evans, R.M.2
-
168
-
-
84880773269
-
Circadian genes and insulin exocytosis
-
Marcheva B, Ramsey KM, Bass J. Circadian genes and insulin exocytosis. Cell Logist. 2011;1(1):32-36.
-
(2011)
Cell Logist
, vol.1
, Issue.1
, pp. 32-36
-
-
Marcheva, B.1
Ramsey, K.M.2
Bass, J.3
-
169
-
-
1842850630
-
Indication of circadian oscillations in the rat pancreas
-
Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E. Indication of circadian oscillations in the rat pancreas. FEBS Lett. 2004;564:91-96.
-
(2004)
FEBS Lett
, vol.564
, pp. 91-96
-
-
Mühlbauer, E.1
Wolgast, S.2
Finckh, U.3
Peschke, D.4
Peschke, E.5
-
170
-
-
5644278934
-
Circadian regulation of islet genes involved in insulin production and secretion
-
Allaman-Pillet N, Roduit R, Oberson A, et al. Circadian regulation of islet genes involved in insulin production and secretion. Mol Cell Endocrinol. 2004;226:59-66.
-
(2004)
Mol Cell Endocrinol
, vol.226
, pp. 59-66
-
-
Allaman-Pillet, N.1
Roduit, R.2
Oberson, A.3
-
171
-
-
0021148605
-
Circadian oscillations of thyroid hormones, insulin and glucagon in the blood of laboratory rats in the course of the year
-
Ahlersová E, Ahlers I, Milárová R, Datelinka I, Toropila M. Circadian oscillations of thyroid hormones, insulin and glucagon in the blood of laboratory rats in the course of the year. Physiol Bohemoslov. 1984;33(4):309-319.
-
(1984)
Physiol Bohemoslov
, vol.33
, Issue.4
, pp. 309-319
-
-
Ahlersová, E.1
Ahlers, I.2
Milárová, R.3
Datelinka, I.4
Toropila, M.5
-
172
-
-
0029741066
-
Evidence for a circadian rhythm of insulin secretion
-
Boden G, Ruiz J, Urbain JL, Chen X. Evidence for a circadian rhythm of insulin secretion. Am J Physiol. 1996; 271:E246-E252.
-
(1996)
Am J Physiol
, vol.271
, pp. E246-E252
-
-
Boden, G.1
Ruiz, J.2
Urbain, J.L.3
Chen, X.4
-
173
-
-
0029743883
-
Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production
-
Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45(8):1044-1050.
-
(1996)
Diabetes
, vol.45
, Issue.8
, pp. 1044-1050
-
-
Boden, G.1
Chen, X.2
Urbain, J.L.3
-
174
-
-
0031827222
-
Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets
-
Peschke E, Peschke D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia. 1998;41(9):1085-1092.
-
(1998)
Diabetologia
, vol.41
, Issue.9
, pp. 1085-1092
-
-
Peschke, E.1
Peschke, D.2
-
175
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627-631.
-
(2010)
Nature
, vol.466
, Issue.7306
, pp. 627-631
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
-
176
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 2011;54(1):120-124.
-
(2011)
Diabetologia
, vol.54
, Issue.1
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
deLemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
177
-
-
84879001061
-
Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-inducedβ-cell failure in mice
-
Lee J, Moulik M, Fang Z, et al. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-inducedβ-cell failure in mice. Mol Cell Biol. 2013;33(11):2327-2338.
-
(2013)
Mol Cell Biol
, vol.33
, Issue.11
, pp. 2327-2338
-
-
Lee, J.1
Moulik, M.2
Fang, Z.3
-
178
-
-
84856116194
-
The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet
-
Vieira E, Marroquí L, Batista TM, et al. The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet. Endocrinology. 2012;153(2):592-601.
-
(2012)
Endocrinology
, vol.153
, Issue.2
, pp. 592-601
-
-
Vieira, E.1
Marroquí, L.2
Batista, T.M.3
-
179
-
-
84880790400
-
Involvement of the clock gene Rev-erb α in the regulation of glucagon secretion in pancreatic α-cells
-
Vieira E, Marroquí L, Figueroa AL, et al. Involvement of the clock gene Rev-erb α in the regulation of glucagon secretion in pancreatic α-cells. PLoS One. 2013;8(7):e69939.
-
(2013)
PLoS One
, vol.8
, Issue.7
, pp. e69939
-
-
Vieira, E.1
Marroquí, L.2
Figueroa, A.L.3
-
180
-
-
84860330570
-
Loss of mPer2 increases plasma insulin levels by enhanced glucose- stimulated insulin secretion and impaired insulin clearance in mice
-
Zhao Y, Zhang Y, Zhou M, Wang S, Hua Z, Zhang J. Loss of mPer2 increases plasma insulin levels by enhanced glucose- stimulated insulin secretion and impaired insulin clearance in mice. FEBS Lett. 2012;586(9):1306-1311.
-
(2012)
FEBS Lett
, vol.586
, Issue.9
, pp. 1306-1311
-
-
Zhao, Y.1
Zhang, Y.2
Zhou, M.3
Wang, S.4
Hua, Z.5
Zhang, J.6
-
181
-
-
0019935341
-
The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man
-
Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31(11):957-963.
-
(1982)
Diabetes
, vol.31
, Issue.11
, pp. 957-963
-
-
Thiebaud, D.1
Jacot, E.2
DeFronzo, R.A.3
Maeder, E.4
Jequier, E.5
Felber, J.P.6
-
183
-
-
84926293269
-
Circadian rhythms, the molecular clock, and skeletal muscle
-
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms. 2015;30:84-94.
-
(2015)
J Biol Rhythms
, vol.30
, pp. 84-94
-
-
Harfmann, B.D.1
Schroder, E.A.2
Esser, K.A.3
-
184
-
-
79957490212
-
Circadian rhythms, the molecular clock, and skeletal muscle
-
Lefta M, Wolff G, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. Curr Top Dev Biol. 2011;96:231-271.
-
(2011)
Curr Top Dev Biol
, vol.96
, pp. 231-271
-
-
Lefta, M.1
Wolff, G.2
Esser, K.A.3
-
185
-
-
1542332873
-
Timeand exercise-dependent gene regulation in human skeletal muscle
-
Zambon AC, McDearmon EL, Salomonis N, et al. Timeand exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003;4(10):R61.
-
(2003)
Genome Biol
, vol.4
, Issue.10
, pp. R61
-
-
Zambon, A.C.1
McDearmon, E.L.2
Salomonis, N.3
-
186
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy JJ, Andrews JL, McDearmon EL, et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 2007;31(1):86-95.
-
(2007)
Physiol Genomics
, vol.31
, Issue.1
, pp. 86-95
-
-
McCarthy, J.J.1
Andrews, J.L.2
McDearmon, E.L.3
-
188
-
-
84895128336
-
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
-
Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3(1):29-41.
-
(2014)
Mol Metab
, vol.3
, Issue.1
, pp. 29-41
-
-
Dyar, K.A.1
Ciciliot, S.2
Wright, L.E.3
-
189
-
-
33751565112
-
Dissecting the functions of the mammalian clock protein BMAL1 by tissue- specific rescue in mice
-
McDearmon EL, Patel KN, Ko CH, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue- specific rescue in mice. Science. 2006;314(5803):1304-1308.
-
(2006)
Science
, vol.314
, Issue.5803
, pp. 1304-1308
-
-
McDearmon, E.L.1
Patel, K.N.2
Ko, C.H.3
-
190
-
-
78650501389
-
CLOCK and BMAL1regulateMyoDand are necessary for maintenance of skeletal muscle phenotype and function
-
Andrews JL, Zhang X, McCarthy JJ, et al. CLOCK and BMAL1regulateMyoDand are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA. 2010;107(44):19090-19095.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.44
, pp. 19090-19095
-
-
Andrews, J.L.1
Zhang, X.2
McCarthy, J.J.3
-
191
-
-
84882255392
-
Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
-
Woldt E, Sebti Y, Solt LA, et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med. 2013;19:1039-1046.
-
(2013)
Nat Med
, vol.19
, pp. 1039-1046
-
-
Woldt, E.1
Sebti, Y.2
Solt, L.A.3
-
192
-
-
34249275727
-
Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477-481.
-
(2007)
Nature
, vol.447
, Issue.7143
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
-
193
-
-
84885171676
-
Circadian rhythms, skeletal muscle molecular clocks, and exercise
-
Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise. Exerc Sport Sci Rev. 2013;41(4):224-229.
-
(2013)
Exerc Sport Sci Rev
, vol.41
, Issue.4
, pp. 224-229
-
-
Schroder, E.A.1
Esser, K.A.2
-
194
-
-
15544369658
-
Host-bacterial mutualism in the human intestine
-
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915-1920.
-
(2005)
Science
, vol.307
, Issue.5717
, pp. 1915-1920
-
-
Bäckhed, F.1
Ley, R.E.2
Sonnenburg, J.L.3
Peterson, D.A.4
Gordon, J.I.5
-
195
-
-
77955647582
-
Gut microbiota in health and disease
-
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859-904.
-
(2010)
Physiol Rev
, vol.90
, Issue.3
, pp. 859-904
-
-
Sekirov, I.1
Russell, S.L.2
Antunes, L.C.3
Finlay, B.B.4
-
196
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.
-
(2010)
Nature
, vol.464
, Issue.7285
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
-
197
-
-
79953733693
-
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
-
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63.
-
(2011)
Nature
, vol.472
, Issue.7341
, pp. 57-63
-
-
Wang, Z.1
Klipfell, E.2
Bennett, B.J.3
-
198
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027-1031.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
199
-
-
84877721051
-
Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs
-
Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013; 153(4):812-827.
-
(2013)
Cell
, vol.153
, Issue.4
, pp. 812-827
-
-
Mukherji, A.1
Kobiita, A.2
Ye, T.3
Chambon, P.4
-
200
-
-
84908302963
-
Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
-
Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514-529.
-
(2014)
Cell
, vol.159
, Issue.3
, pp. 514-529
-
-
Thaiss, C.A.1
Zeevi, D.2
Levy, M.3
-
201
-
-
84919687733
-
Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
-
Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20(6):1006-1017.
-
(2014)
Cell Metab
, vol.20
, Issue.6
, pp. 1006-1017
-
-
Zarrinpar, A.1
Chaix, A.2
Yooseph, S.3
Panda, S.4
-
202
-
-
84901369736
-
Circadian disorganization alters intestinal microbiota
-
Voigt RM, Forsyth CB, Green SJ, et al. Circadian disorganization alters intestinal microbiota. PLoS One. 2014; 9(5):e97500.
-
(2014)
PLoS One
, vol.9
, Issue.5
, pp. e97500
-
-
Voigt, R.M.1
Forsyth, C.B.2
Green, S.J.3
-
203
-
-
79953647671
-
The gut microbiome as therapeutic target
-
Cani PD, Delzenne NM. The gut microbiome as therapeutic target. Pharmacol Ther. 2011;130(2):202-212.
-
(2011)
Pharmacol Ther
, vol.130
, Issue.2
, pp. 202-212
-
-
Cani, P.D.1
Delzenne, N.M.2
-
204
-
-
84905495117
-
Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity
-
Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest. 2014;124(8):3391-3406.
-
(2014)
J Clin Invest
, vol.124
, Issue.8
, pp. 3391-3406
-
-
Chen, Z.1
Guo, L.2
Zhang, Y.3
-
205
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt LA, Wang Y, Banerjee S, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 2012;485(7396):62-68.
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 62-68
-
-
Solt, L.A.1
Wang, Y.2
Banerjee, S.3
-
206
-
-
84882255392
-
Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
-
Woldt E, Sebti Y, Solt LA, et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med. 2013;19(8):1039-1046.
-
(2013)
Nat Med
, vol.19
, Issue.8
, pp. 1039-1046
-
-
Woldt, E.1
Sebti, Y.2
Solt, L.A.3
-
207
-
-
78650432933
-
High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
-
Hirota T, Lee JW, Lewis WG, et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 2010;8(12):e1000559.
-
(2010)
PLoS Biol
, vol.8
, Issue.12
, pp. e1000559
-
-
Hirota, T.1
Lee, J.W.2
Lewis, W.G.3
-
208
-
-
63049126277
-
A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock
-
Maier B, Wendt S, Vanselow JT, et al. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 2009;23(6):708-718.
-
(2009)
Genes Dev
, vol.23
, Issue.6
, pp. 708-718
-
-
Maier, B.1
Wendt, S.2
Vanselow, J.T.3
-
209
-
-
70349184395
-
A genome-wide RNAi screen for modifiers of the circadian clock in human cells
-
Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 2009;139(1):199-210.
-
(2009)
Cell
, vol.139
, Issue.1
, pp. 199-210
-
-
Zhang, E.E.1
Liu, A.C.2
Hirota, T.3
-
210
-
-
84862909015
-
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
-
Chen Z, Yoo SH, Park YS, et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci USA. 2012;109(1):101-106.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.1
, pp. 101-106
-
-
Chen, Z.1
Yoo, S.H.2
Park, Y.S.3
-
211
-
-
84909592563
-
A circadian gene expression atlas in mammals:implications for biology and medicine
-
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals:implications for biology and medicine. Proc Natl Acad Sci USA. 2014;111(45):16219-16224.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.45
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
Hughes, M.E.4
Hogenesch, J.B.5
|