메뉴 건너뛰기




Volumn 15, Issue 9, 2015, Pages 559-573

The cytoskeleton in cell-autonomous immunity: Structural determinants of host defence

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN; C TYPE LECTIN RECEPTOR; CASPASE RECRUITMENT DOMAIN PROTEIN 15; CASPASE RECRUITMENT DOMAIN PROTEIN 4; COLCHICINE; CRYOPYRIN; F ACTIN; INFLAMMASOME; PYRIN; SEPTIN; TOLL LIKE RECEPTOR; UNCLASSIFIED DRUG; VIMENTIN;

EID: 84940449432     PISSN: 14741733     EISSN: 14741741     Source Type: Journal    
DOI: 10.1038/nri3877     Document Type: Review
Times cited : (136)

References (164)
  • 1
    • 84877605000 scopus 로고    scopus 로고
    • Cellular self-defense: How cell-autonomous immunity protects against pathogens
    • Randow F., MacMicking J. D., & James L. C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340, 701-706 (2013
    • (2013) Science , vol.340 , pp. 701-706
    • Randow, F.1    MacMicking, J.D.2    James, L.C.3
  • 2
    • 84922602504 scopus 로고    scopus 로고
    • Necroptosis and its role in inflammation
    • Pasparakis M., & Vandenabeele P. Necroptosis and its role in inflammation. Nature 517, 311-320 (2015
    • (2015) Nature , vol.517 , pp. 311-320
    • Pasparakis, M.1    Vandenabeele, P.2
  • 3
    • 84897435998 scopus 로고    scopus 로고
    • Programmed necrosis in microbial pathogenesis
    • Sridharan H., & Upton J. W. Programmed necrosis in microbial pathogenesis. Trends Microbiol. 22, 199-207 (2014
    • (2014) Trends Microbiol , vol.22 , pp. 199-207
    • Sridharan, H.1    Upton, J.W.2
  • 4
    • 79956300649 scopus 로고    scopus 로고
    • Toll-like receptors and their crosstalk with other innate receptors in infection and immunity
    • Kawai T., & Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650 (2011
    • (2011) Immunity , vol.34 , pp. 637-650
    • Kawai, T.1    Akira, S.2
  • 8
    • 80052152283 scopus 로고    scopus 로고
    • The pyhin protein family as mediators of host defenses
    • Schattgen S. A., & Fitzgerald K. A. The PYHIN protein family as mediators of host defenses. Immunol. Rev. 243, 109-118 (2011
    • (2011) Immunol. Rev , vol.243 , pp. 109-118
    • Schattgen, S.A.1    Fitzgerald, K.A.2
  • 9
    • 84920896754 scopus 로고    scopus 로고
    • C type lectins in immunity: Recent developments
    • Dambuza I. M., & Brown G. D. C type lectins in immunity: recent developments. Curr. Opin. Immunol. 32C, 21-27 (2014
    • (2014) Curr. Opin. Immunol , vol.32 C , pp. 21-27
    • Dambuza, I.M.1    Brown, G.D.2
  • 10
    • 84857039937 scopus 로고    scopus 로고
    • Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors
    • Deretic V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol. 24, 21-31 (2012
    • (2012) Curr. Opin. Immunol , vol.24 , pp. 21-31
    • Deretic, V.1
  • 11
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz A., Ernst A., & Dikic I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 12
    • 2342464085 scopus 로고    scopus 로고
    • The two nf κb activation pathways and their role in innate and adaptive immunity
    • Bonizzi G., & Karin M. The two NF κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288 (2004
    • (2004) Trends Immunol , vol.25 , pp. 280-288
    • Bonizzi, G.1    Karin, M.2
  • 13
    • 84883199752 scopus 로고    scopus 로고
    • Mitogen-activated protein kinases in innate immunity
    • Arthur J. S. C., & Ley S. C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679-692 (2013
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 679-692
    • Arthur, J.S.C.1    Ley, S.C.2
  • 14
    • 42649114059 scopus 로고    scopus 로고
    • The irf family transcription factors in immunity and oncogenesis
    • Tamura T., Yanai H., Savitsky D., & Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Ann. Rev. Immunol. 26, 535-584 (2008
    • (2008) Ann. Rev. Immunol , vol.26 , pp. 535-584
    • Tamura, T.1    Yanai, H.2    Savitsky, D.3    Taniguchi, T.4
  • 15
    • 84860258296 scopus 로고    scopus 로고
    • Interferon-inducible effector mechanisms in cell-autonomous immunity
    • MacMicking J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367-382 (2012
    • (2012) Nat. Rev. Immunol , vol.12 , pp. 367-382
    • MacMicking, J.D.1
  • 16
    • 84896987305 scopus 로고    scopus 로고
    • Interferon-stimulated genes: A complex web of host defenses
    • Schneider W. M., Chevillotte M. D., & Rice C. M. Interferon-stimulated genes: a complex web of host defenses. Ann. Rev. Immunol. 32, 513-545 (2014
    • (2014) Ann. Rev. Immunol , vol.32 , pp. 513-545
    • Schneider, W.M.1    Chevillotte, M.D.2    Rice, C.M.3
  • 17
    • 84920072385 scopus 로고    scopus 로고
    • Antimicrobial inflammasomes: Unified signalling against diverse bacterial pathogens
    • Eldridge M. J. G., & Shenoy A. R. Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Curr. Opin. Microbiol. 23, 32-41 (2015
    • (2015) Curr. Opin. Microbiol , vol.23 , pp. 32-41
    • Eldridge, M.J.G.1    Shenoy, A.R.2
  • 18
    • 84906571225 scopus 로고    scopus 로고
    • Inflammatory caspases are innate immune receptors for intracellular lps
    • Shi J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192 (2014
    • (2014) Nature , vol.514 , pp. 187-192
    • Shi, J.1
  • 19
    • 84874189388 scopus 로고    scopus 로고
    • Caspase 11 protects against bacteria that escape the vacuole
    • Aachoui Y., et al. Caspase 11 protects against bacteria that escape the vacuole. Science 339, 975-978 (2013
    • (2013) Science , vol.339 , pp. 975-978
    • Aachoui, Y.1
  • 20
    • 80455176839 scopus 로고    scopus 로고
    • Non-canonical inflammasome activation targets caspase 11
    • Kayagaki N., et al. Non-canonical inflammasome activation targets caspase 11. Nature 479, 117-121 (2011
    • (2011) Nature , vol.479 , pp. 117-121
    • Kayagaki, N.1
  • 21
    • 84864600268 scopus 로고    scopus 로고
    • Trif licenses caspase 11 dependent nlrp3 inflammasome activation by gram-negative bacteria
    • Rathinam V. A. K., et al. TRIF licenses caspase 11 dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606-619 (2012
    • (2012) Cell , vol.150 , pp. 606-619
    • Rathinam, V.A.K.1
  • 22
    • 84883775365 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation by intracellular LPS independent of TLR4
    • Kayagaki N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246-1249 (2013
    • (2013) Science , vol.341 , pp. 1246-1249
    • Kayagaki, N.1
  • 23
    • 84883790050 scopus 로고    scopus 로고
    • Cytoplasmic lps activates caspase 11: Implications in tlr4 independent endotoxic shock
    • Hagar J. A., Powell D. A., Aachoui Y., Ernst R. K., & Miao E. A. Cytoplasmic LPS activates caspase 11: implications in TLR4 independent endotoxic shock. Science 341, 1250-1253 (2013
    • (2013) Science , vol.341 , pp. 1250-1253
    • Hagar, J.A.1    Powell, D.A.2    Aachoui, Y.3    Ernst, R.K.4    Miao, E.A.5
  • 24
    • 84881542521 scopus 로고    scopus 로고
    • Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection
    • Aachoui Y., Sagulenko V., Miao E. A., & Stacey K. J. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16, 319-326 (2013
    • (2013) Curr. Opin. Microbiol , vol.16 , pp. 319-326
    • Aachoui, Y.1    Sagulenko, V.2    Miao, E.A.3    Stacey, K.J.4
  • 25
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B., Mizushima N., & Virgin H. W. Autophagy in immunity and inflammation. Nature 469, 323-335 (2011
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 26
    • 70849098888 scopus 로고    scopus 로고
    • Actin a central player in cell shape and movement
    • Pollard T. D., & Cooper J. A. Actin, a central player in cell shape and movement. Science 326, 1208-1212 (2009
    • (2009) Science , vol.326 , pp. 1208-1212
    • Pollard, T.D.1    Cooper, J.A.2
  • 28
    • 68849112456 scopus 로고    scopus 로고
    • Intermediate filaments: Primary determinants of cell architecture and plasticity
    • Herrmann H., Strelkov S. V., Burkhard P., & Aebi U. Intermediate filaments: primary determinants of cell architecture and plasticity. J. Clin. Invest. 119, 1772-1783 (2009
    • (2009) J. Clin. Invest , vol.119 , pp. 1772-1783
    • Herrmann, H.1    Strelkov, S.V.2    Burkhard, P.3    Aebi, U.4
  • 29
    • 84857457272 scopus 로고    scopus 로고
    • Septins: The fourth component of the cytoskeleton
    • Mostowy S., & Cossart P. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183-194 (2012
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 183-194
    • Mostowy, S.1    Cossart, P.2
  • 30
    • 80053951342 scopus 로고    scopus 로고
    • Pathogens and polymers: Microbe-host interactions illuminate the cytoskeleton
    • Haglund C. M., & Welch M. D. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J. Cell Biol. 195, 7-17 (2011
    • (2011) J. Cell Biol , vol.195 , pp. 7-17
    • Haglund, C.M.1    Welch, M.D.2
  • 31
    • 84876282419 scopus 로고    scopus 로고
    • Manipulation of small rho gtpases is a pathogen-induced process detected by nod1
    • Keestra A. M., et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233-237 (2013
    • (2013) Nature , vol.496 , pp. 233-237
    • Keestra, A.M.1
  • 32
    • 0032577563 scopus 로고    scopus 로고
    • Typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells
    • Hardt W. D., Chen L. M., Schuebel K. E., Bustelo X. R., & Galán J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815-826 (1998
    • (1998) Cell , vol.93 , pp. 815-826
    • Hardt, W.D.1    Chen, L.M.2    Schuebel, K.E.3    Bustelo, X.R.4    Galán, J.E.S.5
  • 33
    • 38049177193 scopus 로고    scopus 로고
    • The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction
    • Kufer T. A., Kremmer E., Adam A. C., Philpott D. J., & Sansonetti P. J. The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell. Microbiol. 10, 477-486 (2008
    • (2008) Cell. Microbiol , vol.10 , pp. 477-486
    • Kufer, T.A.1    Kremmer, E.2    Adam, A.C.3    Philpott, D.J.4    Sansonetti, P.J.5
  • 34
    • 57149093623 scopus 로고    scopus 로고
    • GEF H1 mediated control of NOD1 dependent NF κb activation by Shigella effectors
    • Fukazawa A., et al. GEF H1 mediated control of NOD1 dependent NF κB activation by Shigella effectors. PLoS Pathog. 4, e1000228 (2008
    • (2008) Plos Pathog , vol.4 , pp. e1000228
    • Fukazawa, A.1
  • 35
    • 84907573453 scopus 로고    scopus 로고
    • The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling
    • Bielig H., et al. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog. 10, e1004351 (2014
    • (2014) Plos Pathog , vol.10 , pp. e1004351
    • Bielig, H.1
  • 37
    • 70349433671 scopus 로고    scopus 로고
    • Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1 independent Salmonella enterica serovar Typhimurium infection
    • Le Bourhis L., et al. Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1 independent Salmonella enterica serovar Typhimurium infection. Infect. Immun. 77, 5203-5203 (2009
    • (2009) Infect. Immun , vol.77 , pp. 5203-5203
    • Le Bourhis, L.1
  • 38
    • 53149153194 scopus 로고    scopus 로고
    • Β Pix and rac1 gtpase mediate trafficking and negative regulation of nod2
    • Eitel J., et al. β PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2. J. Immunol. 181, 2664-2671 (2008
    • (2008) J. Immunol , vol.181 , pp. 2664-2671
    • Eitel, J.1
  • 39
    • 34248226821 scopus 로고    scopus 로고
    • Modulation of Nod2 dependent NF κb signaling by the actin cytoskeleton
    • Legrand-Poels S., et al. Modulation of Nod2 dependent NF κB signaling by the actin cytoskeleton. J. Cell Sci. 120, 1299-1310 (2007
    • (2007) J. Cell Sci , vol.120 , pp. 1299-1310
    • Legrand-Poels, S.1
  • 40
    • 84858702357 scopus 로고    scopus 로고
    • Control of NOD2 and Rip2 dependent innate immune activation by GEF H1
    • Zhao Y., et al. Control of NOD2 and Rip2 dependent innate immune activation by GEF H1. Inflamm. Bowel Dis. 18, 603-612 (2012
    • (2012) Inflamm. Bowel Dis , vol.18 , pp. 603-612
    • Zhao, Y.1
  • 41
    • 84875858095 scopus 로고    scopus 로고
    • The intermediate filament protein, vimentin, is a regulator of NOD2 activity
    • Stevens C., et al. The intermediate filament protein, vimentin, is a regulator of NOD2 activity. Gut 62, 695-707 (2013
    • (2013) Gut , vol.62 , pp. 695-707
    • Stevens, C.1
  • 42
    • 84881413993 scopus 로고    scopus 로고
    • Pivoting the plant immune system from dissection to deployment
    • Dangl J. L., Horvath D. M., & Staskawicz B. J. Pivoting the plant immune system from dissection to deployment. Science 341, 746-751 (2013
    • (2013) Science , vol.341 , pp. 746-751
    • Dangl, J.L.1    Horvath, D.M.2    Staskawicz, B.J.3
  • 43
    • 82955233705 scopus 로고    scopus 로고
    • Familial mediterranean fever and related periodic fever syndromes/autoinflammatory diseases
    • Savic S., Dickie L. J., Battellino M., & McDermott M. F. Familial mediterranean fever and related periodic fever syndromes/autoinflammatory diseases. Curr. Opin. Rheum. 24, 103-112 (2012
    • (2012) Curr. Opin. Rheum , vol.24 , pp. 103-112
    • Savic, S.1    Dickie, L.J.2    Battellino, M.3    McDermott, M.F.4
  • 44
    • 84907270863 scopus 로고    scopus 로고
    • Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome
    • Xu H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513, 237-241 (2014
    • (2014) Nature , vol.513 , pp. 237-241
    • Xu, H.1
  • 45
    • 84859403876 scopus 로고    scopus 로고
    • Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia
    • Gavrilin M. A., et al. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J. Immunol. 188, 3469-3477 (2012
    • (2012) J. Immunol , vol.188 , pp. 3469-3477
    • Gavrilin, M.A.1
  • 46
    • 23944445646 scopus 로고    scopus 로고
    • Francisella tularensis enters macrophages via a novel process involving pseudopod loops
    • Clemens D. L., Lee B. Y., & Horwitz M. A. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect. Immun. 73, 5892-5902 (2005
    • (2005) Infect. Immun , vol.73 , pp. 5892-5902
    • Clemens, D.L.1    Lee, B.Y.2    Horwitz, M.A.3
  • 47
    • 67649160593 scopus 로고    scopus 로고
    • Pyrin critical to macrophage IL 1β response to Francisella challenge
    • Gavrilin M. A., et al. Pyrin critical to macrophage IL 1β response to Francisella challenge. J. Immunol. 182, 7982-7989 (2009
    • (2009) J. Immunol , vol.182 , pp. 7982-7989
    • Gavrilin, M.A.1
  • 48
    • 60549111042 scopus 로고    scopus 로고
    • Pyrin and ASC co localize to cellular sites that are rich in polymerizing actin
    • Waite A. L., et al. Pyrin and ASC co localize to cellular sites that are rich in polymerizing actin. Exp. Biol. Med. 234, 40-52 (2009
    • (2009) Exp. Biol. Med , vol.234 , pp. 40-52
    • Waite, A.L.1
  • 49
    • 80052328638 scopus 로고    scopus 로고
    • Francisella recognition by inflammasomes: Differences between mice and men
    • Gavrilin M. A., & Wewers M. D. Francisella recognition by inflammasomes: differences between mice and men. Front. Microbiol. 2, 11 (2011
    • (2011) Front. Microbiol , vol.2 , pp. 11
    • Gavrilin, M.A.1    Wewers, M.D.2
  • 50
    • 77951263260 scopus 로고    scopus 로고
    • The AIM2 inflammasome is critical for innate immunity to Francisella tularensis
    • Fernandes-Alnemri T., et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385-393 (2010
    • (2010) Nat. Immunol , vol.11 , pp. 385-393
    • Fernandes-Alnemri, T.1
  • 51
    • 77953116282 scopus 로고    scopus 로고
    • Absent in melanoma 2 is required for innate immune recognition of francisella tularensis
    • Jones J. W., et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. USA 107, 9771-9776 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 9771-9776
    • Jones, J.W.1
  • 52
    • 77951269392 scopus 로고    scopus 로고
    • The aim2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
    • Rathinam V. A. K., et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395-402 (2010
    • (2010) Nat. Immunol , vol.11 , pp. 395-402
    • Rathinam, V.A.K.1
  • 53
    • 84940453310 scopus 로고    scopus 로고
    • Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL 18, not IL 1β
    • Kim M. L., et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL 18, not IL 1β. J. Exp. Med. 212, 927-938 (2015
    • (2015) J. Exp. Med , vol.212 , pp. 927-938
    • Kim, M.L.1
  • 54
    • 34948884078 scopus 로고    scopus 로고
    • Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia
    • Kile B. T., et al. Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia. Blood 110, 2371-2380 (2007
    • (2007) Blood , vol.110 , pp. 2371-2380
    • Kile, B.T.1
  • 55
    • 84879596906 scopus 로고    scopus 로고
    • K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
    • Muñoz-Planillo R., et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142-1153 (2013
    • (2013) Immunity , vol.38 , pp. 1142-1153
    • Muñoz-Planillo, R.1
  • 56
    • 84901310586 scopus 로고    scopus 로고
    • Mechanisms and functions of inflammasomes
    • Lamkanfi M., & Dixit V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013-1022 (2014
    • (2014) Cell , vol.157 , pp. 1013-1022
    • Lamkanfi, M.1    Dixit, V.M.2
  • 57
    • 84876567161 scopus 로고    scopus 로고
    • Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
    • Misawa T., et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454-460 (2013
    • (2013) Nat. Immunol , vol.14 , pp. 454-460
    • Misawa, T.1
  • 58
    • 32944468985 scopus 로고    scopus 로고
    • Gout-associated uric acid crystals activate the NALP3 inflammasome
    • Martinon F., Petrilli V., Mayor A., Tardivel A., & Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241 (2006
    • (2006) Nature , vol.440 , pp. 237-241
    • Martinon, F.1    Petrilli, V.2    Mayor, A.3    Tardivel, A.4    Tschopp, J.5
  • 59
    • 84924617839 scopus 로고    scopus 로고
    • Vimentin regulates activation of the NLRP3 inflammasome
    • dos Santos G., et al. Vimentin regulates activation of the NLRP3 inflammasome. Nat. Commun. 6, 6574 (2015
    • (2015) Nat. Commun , vol.6 , pp. 6574
    • Dos Santos, G.1
  • 60
    • 84860225554 scopus 로고    scopus 로고
    • GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals
    • Shenoy A. R., et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336, 481-485 (2012
    • (2012) Science , vol.336 , pp. 481-485
    • Shenoy, A.R.1
  • 61
    • 84871188736 scopus 로고    scopus 로고
    • Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL 1β
    • Mishra B. B., et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL 1β. Nat. Immunol. 14, 52-60 (2013
    • (2013) Nat. Immunol , vol.14 , pp. 52-60
    • Mishra, B.B.1
  • 62
    • 84885437002 scopus 로고    scopus 로고
    • The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity
    • Park S., et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol. 191, 4358-4366 (2013
    • (2013) J. Immunol , vol.191 , pp. 4358-4366
    • Park, S.1
  • 63
    • 84876237736 scopus 로고    scopus 로고
    • The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
    • Subramanian N., Natarajan K., Clatworthy M. R., Wang Z., & Germain R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348-361 (2013
    • (2013) Cell , vol.153 , pp. 348-361
    • Subramanian, N.1    Natarajan, K.2    Clatworthy, M.R.3    Wang, Z.4    Germain, R.N.5
  • 64
    • 84899927416 scopus 로고    scopus 로고
    • Optimizing current treatment of gout
    • Rees F., Hui M., & Doherty M. Optimizing current treatment of gout. Nat. Rev. Rheumatol. 10, 271-283 (2014
    • (2014) Nat. Rev. Rheumatol , vol.10 , pp. 271-283
    • Rees, F.1    Hui, M.2    Doherty, M.3
  • 65
    • 79957456776 scopus 로고    scopus 로고
    • Current status of understanding the pathogenesis and management of patients with nomid/cinca
    • Goldbach-Mansky R. Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr. Rheumatol. Rep. 13, 123-131 (2011
    • (2011) Curr. Rheumatol. Rep , vol.13 , pp. 123-131
    • Goldbach-Mansky, R.1
  • 67
    • 84859993076 scopus 로고    scopus 로고
    • The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments
    • Zhang J. G., et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646-657 (2012
    • (2012) Immunity , vol.36 , pp. 646-657
    • Zhang, J.G.1
  • 68
    • 84859957011 scopus 로고    scopus 로고
    • F actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR 1, a receptor for dead cells
    • Ahrens S., et al. F actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR 1, a receptor for dead cells. Immunity 36, 635-645 (2012
    • (2012) Immunity , vol.36 , pp. 635-645
    • Ahrens, S.1
  • 69
    • 67249158956 scopus 로고    scopus 로고
    • Identification of a dendritic cell receptor that couples sensing of necrosis to immunity
    • Sancho D., et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899-903 (2009
    • (2009) Nature , vol.458 , pp. 899-903
    • Sancho, D.1
  • 70
    • 84929702667 scopus 로고    scopus 로고
    • Structure of the complex of F actin and DNGR 1, a C type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens
    • Hanc P., et al. Structure of the complex of F actin and DNGR 1, a C type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42, 839-849 (2015
    • (2015) Immunity , vol.42 , pp. 839-849
    • Hanc, P.1
  • 71
    • 84860007667 scopus 로고    scopus 로고
    • The dendritic cell receptor DNGR 1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice
    • Zelenay S., et al. The dendritic cell receptor DNGR 1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615-1627 (2012
    • (2012) J. Clin. Invest , vol.122 , pp. 1615-1627
    • Zelenay, S.1
  • 72
    • 64549158361 scopus 로고    scopus 로고
    • Septins and the lateral compartmentalization of eukaryotic membranes
    • Caudron F., & Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev. Cell 16, 493-506 (2009
    • (2009) Dev. Cell , vol.16 , pp. 493-506
    • Caudron, F.1    Barral, Y.2
  • 73
    • 84875877327 scopus 로고    scopus 로고
    • Actin-based confinement of calcium responses during Shigella invasion
    • Tran Van Nhieu G., et al. Actin-based confinement of calcium responses during Shigella invasion. Nat. Commun. 4, 1567 (2013
    • (2013) Nat. Commun , vol.4 , Issue.1567
    • Tran Van Nhieu, G.1
  • 74
    • 84860256323 scopus 로고    scopus 로고
    • The DC receptor DNGR 1 mediates cross-priming of CTLs during vaccinia virus infection in mice
    • Iborra S., et al. The DC receptor DNGR 1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Invest. 122, 1628-1643 (2012
    • (2012) J. Clin. Invest , vol.122 , pp. 1628-1643
    • Iborra, S.1
  • 75
    • 84924368514 scopus 로고    scopus 로고
    • Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist
    • Sandiford S. L., et al. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist. PLoS Pathog. 11, e1004631 (2015
    • (2015) Plos Pathog , vol.11 , pp. e1004631
    • Sandiford, S.L.1
  • 76
    • 80051693604 scopus 로고    scopus 로고
    • Actin as target for modification by bacterial protein toxins
    • Aktories K., Lang A. E., Schwan C., & Mannherz H. G. Actin as target for modification by bacterial protein toxins. FEBS J. 278, 4526-4543 (2011
    • (2011) Febs J , vol.278 , pp. 4526-4543
    • Aktories, K.1    Lang, A.E.2    Schwan, C.3    Mannherz, H.G.4
  • 77
    • 84863874149 scopus 로고    scopus 로고
    • Mechanisms of Fc receptor and dectin 1 activation for phagocytosis
    • Goodridge H. S., Underhill D. M., & Touret N. Mechanisms of Fc receptor and dectin 1 activation for phagocytosis. Traffic 13, 1062-1071 (2012
    • (2012) Traffic , vol.13 , pp. 1062-1071
    • Goodridge, H.S.1    Underhill, D.M.2    Touret, N.3
  • 78
    • 51549091450 scopus 로고    scopus 로고
    • The induction of inflammation by dectin 1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis
    • Rosas M., et al. The induction of inflammation by dectin 1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J. Immunol. 181, 3549-3557 (2008
    • (2008) J. Immunol , vol.181 , pp. 3549-3557
    • Rosas, M.1
  • 79
    • 77249145443 scopus 로고    scopus 로고
    • Tlr signalling regulated antigen presentation in dendritic cells
    • Watts C., West M. A., & Zaru R. TLR signalling regulated antigen presentation in dendritic cells. Curr. Opin. Immunol. 22, 124-130 (2010
    • (2010) Curr. Opin. Immunol , vol.22 , pp. 124-130
    • Watts, C.1    West, M.A.2    Zaru, R.3
  • 80
    • 84862883553 scopus 로고    scopus 로고
    • Information processing during phagocytosis
    • Underhill D. M., & Goodridge H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 12, 492-502 (2012
    • (2012) Nat. Rev. Immunol , vol.12 , pp. 492-502
    • Underhill, D.M.1    Goodridge, H.S.2
  • 81
    • 40949134086 scopus 로고    scopus 로고
    • Tram couples endocytosis of toll-like receptor 4 to the induction of interferon β
    • Kagan J. C., et al. TRAM couples endocytosis of toll-like receptor 4 to the induction of interferon β. Nat. Immunol. 9, 361-368 (2008
    • (2008) Nat. Immunol , vol.9 , pp. 361-368
    • Kagan, J.C.1
  • 82
    • 77956689533 scopus 로고    scopus 로고
    • Bifurcation of toll-like receptor 9 signaling by adaptor protein 3
    • Sasai M., Linehan M. M., & Iwasaki A. Bifurcation of toll-like receptor 9 signaling by adaptor protein 3. Science 329, 1530-1534 (2010
    • (2010) Science , vol.329 , pp. 1530-1534
    • Sasai, M.1    Linehan, M.M.2    Iwasaki, A.3
  • 83
    • 77951055351 scopus 로고    scopus 로고
    • Selective control of type i ifn induction by the rac activator dock2 during tlr-mediated plasmacytoid dendritic cell activation
    • Gotoh K., et al. Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. J. Exp. Med. 207, 721-730 (2010
    • (2010) J. Exp. Med , vol.207 , pp. 721-730
    • Gotoh, K.1
  • 84
    • 84867317920 scopus 로고    scopus 로고
    • Staphylococcus aureus induces type i IFN signaling in dendritic cells via TLR9
    • Parker D., & Prince A. Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9. J. Immunol. 189, 4040-4046 (2012
    • (2012) J. Immunol , vol.189 , pp. 4040-4046
    • Parker, D.1    Prince, A.2
  • 85
    • 61949472508 scopus 로고    scopus 로고
    • Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation
    • Torchinsky M. B., Garaude J., Martin A. P., & Blander J. M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78-82 (2009
    • (2009) Nature , vol.458 , pp. 78-82
    • Torchinsky, M.B.1    Garaude, J.2    Martin, A.P.3    Blander, J.M.4
  • 86
    • 68549132515 scopus 로고    scopus 로고
    • An essential role for rig i in toll-like receptor-stimulated phagocytosis
    • Kong L., et al. An essential role for RIG I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 6, 150-161 (2009
    • (2009) Cell Host Microbe , vol.6 , pp. 150-161
    • Kong, L.1
  • 87
    • 58449127538 scopus 로고    scopus 로고
    • Septins regulate bacterial entry into host cells
    • Mostowy S., et al. Septins regulate bacterial entry into host cells. PLoS ONE 4, e4196 (2009
    • (2009) Plos One , vol.4 , pp. e4196
    • Mostowy, S.1
  • 88
    • 66449129239 scopus 로고    scopus 로고
    • Septin 11 restricts InlB-mediated invasion by Listeria
    • Mostowy S., et al. Septin 11 restricts InlB-mediated invasion by Listeria. J. Biol. Chem. 284, 11613-11621 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 11613-11621
    • Mostowy, S.1
  • 89
    • 44949120763 scopus 로고    scopus 로고
    • Mammalian septins are required for phagosome formation
    • Huang Y. W., et al. Mammalian septins are required for phagosome formation. Mol. Biol. Cell 19, 1717-1726 (2008
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1717-1726
    • Huang, Y.W.1
  • 90
    • 80052847053 scopus 로고    scopus 로고
    • Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5 bisphosphate out of the forming phagosomes of macrophages
    • Golebiewska U., et al. Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5 bisphosphate out of the forming phagosomes of macrophages. Mol. Biol. Cell 22, 3498-3507 (2011
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3498-3507
    • Golebiewska, U.1
  • 92
    • 84861782476 scopus 로고    scopus 로고
    • Bacterial autophagy: Restriction or promotion of bacterial replication?
    • Mostowy S., & Cossart P. Bacterial autophagy: restriction or promotion of bacterial replication?. Trends Cell Biol. 22, 283-291 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 283-291
    • Mostowy, S.1    Cossart, P.2
  • 93
    • 84892678766 scopus 로고    scopus 로고
    • Bacteria-autophagy interplay: A battle for survival
    • Huang J., & Brumell J. H. Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Micro. 12, 101-114 (2014
    • (2014) Nat. Rev. Micro , vol.12 , pp. 101-114
    • Huang, J.1    Brumell, J.H.2
  • 94
    • 84912122193 scopus 로고    scopus 로고
    • Multiple roles of the cytoskeleton in bacterial autophagy
    • Mostowy S. Multiple roles of the cytoskeleton in bacterial autophagy. PLoS Pathog. 10, e1004409 (2014
    • (2014) Plos Pathog , vol.10 , pp. e1004409
    • Mostowy, S.1
  • 96
    • 78349239252 scopus 로고    scopus 로고
    • Entrapment of intracytosolic bacteria by septin cage-like structures
    • Mostowy S., et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8, 433-444 (2010
    • (2010) Cell Host Microbe , vol.8 , pp. 433-444
    • Mostowy, S.1
  • 97
    • 79960670161 scopus 로고    scopus 로고
    • P62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways
    • Mostowy S., et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987-26995 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 26987-26995
    • Mostowy, S.1
  • 98
    • 13244256806 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy
    • Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 307, 727-731 (2005
    • (2005) Science , vol.307 , pp. 727-731
    • Ogawa, M.1
  • 99
    • 79956147302 scopus 로고    scopus 로고
    • A tecpr1 dependent selective autophagy pathway targets bacterial pathogens
    • Ogawa M., et al. A Tecpr1 dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9, 376-389 (2011
    • (2011) Cell Host Microbe , vol.9 , pp. 376-389
    • Ogawa, M.1
  • 100
    • 84862777210 scopus 로고    scopus 로고
    • A mammalian autophagosome maturation mechanism mediated by tecpr1 and the atg12-atg5 conjugate
    • Chen D., et al. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45, 629-641 (2012
    • (2012) Mol. Cell , vol.45 , pp. 629-641
    • Chen, D.1
  • 101
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA-mediated escape from autophagic recognition
    • Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11, 1233-1240 (2009
    • (2009) Nat. Cell Biol , vol.11 , pp. 1233-1240
    • Yoshikawa, Y.1
  • 103
    • 70350450808 scopus 로고    scopus 로고
    • The tbk1 adaptor and autophagy receptor ndp52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston T. L. M., Ryzhakov G., Bloor S., von Muhlinen N., & Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221 (2009
    • (2009) Nat. Immunol , vol.10 , pp. 1215-1221
    • Thurston, T.L.M.1    Ryzhakov, G.2    Bloor, S.3    Von Muhlinen, N.4    Randow, F.5
  • 104
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/sqstm1 targets invading bacteria to the autophagy pathway
    • Zheng Y. T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909-5916 (2009
    • (2009) J. Immunol , vol.183 , pp. 5909-5916
    • Zheng, Y.T.1
  • 105
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts salmonella growth
    • Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 106
    • 84899765817 scopus 로고    scopus 로고
    • Autophagy facilitates Salmonella replication in HeLa cells
    • Yu H. B., et al. Autophagy facilitates Salmonella replication in HeLa cells. mBio 5, e00865 14 (2014
    • (2014) MBio , vol.5 , Issue.14 , pp. e00865
    • Yu, H.B.1
  • 107
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation
    • Wang R. C., et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956-959 (2012
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1
  • 108
    • 48649108402 scopus 로고    scopus 로고
    • Actin and intermediate filaments stabilize the chlamydia trachomatis vacuole by forming dynamic structural scaffolds
    • Kumar Y., & Valdivia R. H. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4, 159-169 (2008
    • (2008) Cell Host Microbe , vol.4 , pp. 159-169
    • Kumar, Y.1    Valdivia, R.H.2
  • 109
    • 84872194128 scopus 로고    scopus 로고
    • Autophagy restricts chlamydia trachomatis growth in human macrophages via ifng-inducible guanylate binding proteins
    • Al Zeer M. A., Al Younes H. M., Lauster D., Abu Lubad M., & Meyer T. F. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy 9, 50-62 (2012
    • (2012) Autophagy , vol.9 , pp. 50-62
    • Al Zeer, M.A.1    Al Younes, H.M.2    Lauster, D.3    Abu Lubad, M.4    Meyer, T.F.5
  • 110
    • 79955777383 scopus 로고    scopus 로고
    • A family of ifn γ-inducible 65 kd gtpases protects against bacterial infection
    • Kim B. H., et al. A family of IFN γ-inducible 65 kD GTPases protects against bacterial infection. Science 332, 717-721 (2011
    • (2011) Science , vol.332 , pp. 717-721
    • Kim, B.H.1
  • 111
    • 84891385411 scopus 로고    scopus 로고
    • Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor
    • Ostler N., et al. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor. Mol. Cell. Biol. 34, 196-209 (2014
    • (2014) Mol. Cell. Biol , vol.34 , pp. 196-209
    • Ostler, N.1
  • 112
    • 58349115398 scopus 로고    scopus 로고
    • Septin-mediated uniform bracing of phospholipid membranes
    • Tanaka-Takiguchi Y., Kinoshita M., & Takiguchi K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 19, 140-145 (2009
    • (2009) Curr. Biol , vol.19 , pp. 140-145
    • Tanaka-Takiguchi, Y.1    Kinoshita, M.2    Takiguchi, K.3
  • 113
    • 84884683427 scopus 로고    scopus 로고
    • The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy
    • Mostowy S., et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 9, e1003588 (2013
    • (2013) Plos Pathog , vol.9 , pp. e1003588
    • Mostowy, S.1
  • 114
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan M. A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253-1257 (2007
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1
  • 115
    • 79955532516 scopus 로고    scopus 로고
    • Tlr signalling augments macrophage bactericidal activity through mitochondrial ros
    • West A. P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480 (2011
    • (2011) Nature , vol.472 , pp. 476-480
    • West, A.P.1
  • 116
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: How autophagy targets mitochondria and bacteria
    • Randow F., & Youle R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403-411 (2014
    • (2014) Cell Host Microbe , vol.15 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 117
    • 84885576570 scopus 로고    scopus 로고
    • The ubiquitin ligase parkin mediates resistance to intracellular pathogens
    • Manzanillo P. S., et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516 (2013
    • (2013) Nature , vol.501 , pp. 512-516
    • Manzanillo, P.S.1
  • 118
    • 33847338043 scopus 로고    scopus 로고
    • Caspase 11 regulates cell migration by promoting aip1-cofilin-mediated actin depolymerization
    • Li J., et al. Caspase 11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat. Cell Biol. 9, 276-286 (2007
    • (2007) Nat. Cell Biol , vol.9 , pp. 276-286
    • Li, J.1
  • 119
    • 42449153825 scopus 로고    scopus 로고
    • Flightless i regulates proinflammatory caspases by selectively modulating intracellular localization and caspase activity
    • Li J., Yin H. L., & Yuan J. Flightless I regulates proinflammatory caspases by selectively modulating intracellular localization and caspase activity. J. Cell Biol. 181, 321-333 (2008
    • (2008) J. Cell Biol , vol.181 , pp. 321-333
    • Li, J.1    Yin, H.L.2    Yuan, J.3
  • 120
    • 84916215920 scopus 로고    scopus 로고
    • Actin polymerization as a key innate immune effector mechanism to control Salmonella infection
    • Man S. M., et al. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. Proc. Natl Acad. Sci. USA 111, 17588-17593 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 17588-17593
    • Man, S.M.1
  • 121
    • 84883127402 scopus 로고    scopus 로고
    • LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I mediated caspase 1 inhibition
    • Jin J., et al. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I mediated caspase 1 inhibition. Nat. Commun. 4, 2075 (2013
    • (2013) Nat. Commun , vol.4 , pp. 2075
    • Jin, J.1
  • 122
    • 84864292536 scopus 로고    scopus 로고
    • Caspase 11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization
    • Akhter A., et al. Caspase 11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37, 35-47 (2012
    • (2012) Immunity , vol.37 , pp. 35-47
    • Akhter, A.1
  • 123
    • 84921498910 scopus 로고    scopus 로고
    • The naip/nlrc4 inflammasomes
    • Vance R. E. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32, 84-89 (2015
    • (2015) Curr. Opin. Immunol , vol.32 , pp. 84-89
    • Vance, R.E.1
  • 124
    • 84888637695 scopus 로고    scopus 로고
    • Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cgamp
    • Ablasser A., et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530-534 (2013
    • (2013) Nature , vol.503 , pp. 530-534
    • Ablasser, A.1
  • 125
    • 84899131835 scopus 로고    scopus 로고
    • The cgas-cgamp-sting pathway of cytosolic DNA sensing and signaling
    • Cai X., Chiu Y. H., & Chen, Zhijian J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289-296 (2014
    • (2014) Mol. Cell , vol.54 , pp. 289-296
    • Cai, X.1    Chiu, Y.H.2    Chen Zhijian, J.3
  • 126
    • 84875458616 scopus 로고    scopus 로고
    • Intracellular antibody-bound pathogens stimulate immune signaling via the fc receptor trim21
    • McEwan W. A., et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 14, 327-336 (2013
    • (2013) Nat. Immunol , vol.14 , pp. 327-336
    • McEwan, W.A.1
  • 127
    • 84907212581 scopus 로고    scopus 로고
    • Intracellular sensing of complement C3 activates cell autonomous immunity
    • Tam J. C. H., Bidgood S. R., McEwan W. A., & James L. C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345, 1256070 (2014
    • (2014) Science , vol.345 , pp. 1256070
    • Tam, J.C.H.1    Bidgood, S.R.2    McEwan, W.A.3    James, L.C.4
  • 128
    • 84925412026 scopus 로고    scopus 로고
    • Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection
    • Xia P., et al. Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat. Immunol. 16, 366-375 (2015
    • (2015) Nat. Immunol , vol.16 , pp. 366-375
    • Xia, P.1
  • 129
    • 84911992879 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation of caspase 4/caspase 11 mediates epithelial defenses against enteric bacterial pathogens
    • Knodler L. A., et al. Noncanonical inflammasome activation of caspase 4/caspase 11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249-256 (2014
    • (2014) Cell Host Microbe , vol.16 , pp. 249-256
    • Knodler, L.A.1
  • 130
    • 84882712453 scopus 로고    scopus 로고
    • Autophagy and cellular immune responses
    • Ma Y., Galluzzi L., Zitvogel L., & Kroemer G. Autophagy and cellular immune responses. Immunity 39, 211-227 (2013
    • (2013) Immunity , vol.39 , pp. 211-227
    • Ma, Y.1    Galluzzi, L.2    Zitvogel, L.3    Kroemer, G.4
  • 131
    • 84894576158 scopus 로고    scopus 로고
    • Post-translational modifications of intermediate filament proteins: Mechanisms and functions
    • Snider N. T., & Omary M. B. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15, 163-177 (2014
    • (2014) Nat. Rev. Mol. Cell Biol , vol.15 , pp. 163-177
    • Snider, N.T.1    Omary, M.B.2
  • 132
    • 84873731427 scopus 로고    scopus 로고
    • Post-translational modification and regulation of actin
    • Terman J. R., & Kashina A. Post-translational modification and regulation of actin. Curr. Opin. Cell Biol. 25, 30-38 (2013
    • (2013) Curr. Opin. Cell Biol , vol.25 , pp. 30-38
    • Terman, J.R.1    Kashina, A.2
  • 133
    • 84923222368 scopus 로고    scopus 로고
    • Post-translational modifications of tubulin: Pathways to functional diversity of microtubules
    • Song Y., & Brady S. T. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol. 25, 125-136 (2014
    • (2014) Trends Cell Biol , vol.25 , pp. 125-136
    • Song, Y.1    Brady, S.T.2
  • 134
    • 47749107873 scopus 로고    scopus 로고
    • Shaping cups into phagosomes and macropinosomes
    • Swanson J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639-649 (2008
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 639-649
    • Swanson, J.A.1
  • 135
    • 2342505220 scopus 로고    scopus 로고
    • Biophysical parameters influence actin based movement, trajectory, and initiation in a cell-free system
    • Cameron L. A., Robbins J. R., Footer M. J., & Theriot J. A. Biophysical parameters influence actin based movement, trajectory, and initiation in a cell-free system. Mol. Biol. Cell 15, 2312-2323 (2004
    • (2004) Mol. Biol. Cell , vol.15 , pp. 2312-2323
    • Cameron, L.A.1    Robbins, J.R.2    Footer, M.J.3    Theriot, J.A.4
  • 137
    • 0035937396 scopus 로고    scopus 로고
    • Control of cell shape in bacteria: Helical actin-like filaments in Bacillus subtilis
    • Jones L. J. F., Carballido-López R., & Errington J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913-922 (2001
    • (2001) Cell , vol.104 , pp. 913-922
    • Jones, L.J.F.1    Carballido-López, R.2    Errington, J.3
  • 138
    • 0026059127 scopus 로고
    • Ftsz ring structure associated with division in Escherichia coli
    • Bi E., & Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161-164 (1991
    • (1991) Nature , vol.354 , pp. 161-164
    • Bi, E.1    Lutkenhaus, J.2
  • 139
    • 0346020436 scopus 로고    scopus 로고
    • The bacterial cytoskeleton: An intermediate filament-like function in cell shape
    • Ausmees N., Kuhn J. R., & Jacobs-Wagner C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705-713 (2003
    • (2003) Cell , vol.115 , pp. 705-713
    • Ausmees, N.1    Kuhn, J.R.2    Jacobs-Wagner, C.3
  • 141
    • 84921715486 scopus 로고    scopus 로고
    • Mincd cell division proteins form alternating copolymeric cytomotive filaments
    • Ghosal D., Trambaiolo D., Amos L. A., & Löwe J. MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat. Commun. 5, 5341 (2014
    • (2014) Nat. Commun , vol.5 , pp. 5341
    • Ghosal, D.1    Trambaiolo, D.2    Amos, L.A.3    Löwe, J.4
  • 142
    • 84873735847 scopus 로고    scopus 로고
    • Cell polarisation and the immunological synapse
    • Angus K. L., & Griffiths G. M. Cell polarisation and the immunological synapse. Curr. Opin. Cell Biol. 25, 85-91 (2013
    • (2013) Curr. Opin. Cell Biol , vol.25 , pp. 85-91
    • Angus, K.L.1    Griffiths, G.M.2
  • 143
    • 84863860582 scopus 로고    scopus 로고
    • The cytoskeleton coordinates the early events of B cell activation
    • Harwood N. E., & Batista F. D. The cytoskeleton coordinates the early events of B cell activation. Cold Spring Harb. Perspect. Biol. 3, a002360 (2011
    • (2011) Cold Spring Harb. Perspect. Biol , vol.3 , pp. a002360
    • Harwood, N.E.1    Batista, F.D.2
  • 144
    • 77649153819 scopus 로고    scopus 로고
    • WASP: A key immunological multitasker
    • Thrasher A. J., & Burns S. O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10, 182-192 (2010
    • (2010) Nat. Rev. Immunol , vol.10 , pp. 182-192
    • Thrasher, A.J.1    Burns, S.O.2
  • 145
    • 84893170926 scopus 로고    scopus 로고
    • Polymorphism in the α cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy
    • Frade A. F., et al. Polymorphism in the α cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy. PLoS ONE 8, e83446 (2013
    • (2013) Plos One , vol.8 , pp. e83446
    • Frade, A.F.1
  • 146
    • 84860128609 scopus 로고    scopus 로고
    • Gelsolin amyloidosis: Genetics, biochemistry, pathology and possible strategies for therapeutic intervention
    • Solomon J. P., Page L. J., Balch W. E., & Kelly J. W. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit. Rev. Biochem. Mol. Biol. 47, 282-296 (2012
    • (2012) Crit. Rev. Biochem. Mol. Biol , vol.47 , pp. 282-296
    • Solomon, J.P.1    Page, L.J.2    Balch, W.E.3    Kelly, J.W.4
  • 147
    • 27144483990 scopus 로고    scopus 로고
    • Mutations in SEPT9 cause hereditary neuralgic amyotrophy
    • Kuhlenbaumer G., et al. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat. Genet. 37, 1044-1046 (2005
    • (2005) Nat. Genet , vol.37 , pp. 1044-1046
    • Kuhlenbaumer, G.1
  • 149
    • 0004112137 scopus 로고
    • eds Hyams J. S. & Lloyd C. W. Wiley-Liss
    • Hyams J. S., & Lloyd C. W. Microtubules (eds Hyams J. S., & Lloyd C. W.) (Wiley-Liss, 1994
    • (1994) Microtubules
    • Hyams, J.S.1    Lloyd, C.W.2
  • 150
    • 80255140317 scopus 로고    scopus 로고
    • The emerging functions of septins in metazoans
    • Saarikangas J., & Barral Y. The emerging functions of septins in metazoans. EMBO Rep. 12, 1118-1126 (2011
    • (2011) Embo Rep , vol.12 , pp. 1118-1126
    • Saarikangas, J.1    Barral, Y.2
  • 151
    • 1842430006 scopus 로고    scopus 로고
    • Bacterial invasion: The paradigms of enteroinvasive pathogens
    • Cossart P., & Sansonetti P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242-248 (2004
    • (2004) Science , vol.304 , pp. 242-248
    • Cossart, P.1    Sansonetti, P.J.2
  • 152
    • 84886668835 scopus 로고    scopus 로고
    • Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view
    • Pizarro-Cerdá J., Kühbacher A., & Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb. Perspect. Med. 2, a010009 (2012
    • (2012) Cold Spring Harb. Perspect. Med , vol.2 , pp. a010009
    • Pizarro-Cerdá, J.1    Kühbacher, A.2    Cossart, P.3
  • 153
    • 84875811066 scopus 로고    scopus 로고
    • Tips and tricks about Shigella invasion of epithelial cells
    • Carayol N., & Tran Van Nhieu G. Tips and tricks about Shigella invasion of epithelial cells. Curr. Opin. Microbiol. 16, 32-37 (2013
    • (2013) Curr. Opin. Microbiol , vol.16 , pp. 32-37
    • Carayol, N.1    Tran Van Nhieu, G.2
  • 154
    • 31844451228 scopus 로고    scopus 로고
    • Subversion of actin dynamics by EPEC and EHEC
    • Caron E., et al. Subversion of actin dynamics by EPEC and EHEC. Curr. Opin. Microbiol. 9, 40-45 (2006
    • (2006) Curr. Opin. Microbiol , vol.9 , pp. 40-45
    • Caron, E.1
  • 155
    • 27944479854 scopus 로고    scopus 로고
    • Rho gtpases: Biochemistry and biology
    • Jaffe A. B., & Hall A. RHO GTPases: biochemistry and biology. Ann. Rev. Cell Dev. Biol. 21, 247-269 (2005
    • (2005) Ann. Rev. Cell Dev. Biol , vol.21 , pp. 247-269
    • Jaffe, A.B.1    Hall, A.2
  • 156
    • 79959213985 scopus 로고    scopus 로고
    • Bacterial protein toxins that modify host regulatory GTPases
    • Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Micro. 9, 487-498 (2011
    • (2011) Nat. Rev. Micro , vol.9 , pp. 487-498
    • Aktories, K.1
  • 157
    • 84883850330 scopus 로고    scopus 로고
    • Arp2/3 mediated actin-based motility: A tail of pathogen abuse
    • Welch M. D., & Way M. Arp2/3 mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14, 242-255 (2013
    • (2013) Cell Host Microbe , vol.14 , pp. 242-255
    • Welch, M.D.1    Way, M.2
  • 158
    • 84891832920 scopus 로고    scopus 로고
    • Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators
    • Reed S. C. O., Lamason R. L., Risca V. I., Abernathy E., & Welch M. D. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 24, 98-103 (2014
    • (2014) Curr. Biol , vol.24 , pp. 98-103
    • Reed, S.C.O.1    Lamason, R.L.2    Risca, V.I.3    Abernathy, E.4    Welch, M.D.5
  • 159
    • 84927130296 scopus 로고    scopus 로고
    • Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility
    • Benanti E. L., Nguyen C. M., & Welch M. D. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161, 348-360 (2015
    • (2015) Cell , vol.161 , pp. 348-360
    • Benanti, E.L.1    Nguyen, C.M.2    Welch, M.D.3
  • 161
    • 84929510811 scopus 로고    scopus 로고
    • Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia
    • Kokes M., et al. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17, 716-725 (2015
    • (2015) Cell Host Microbe , vol.17 , pp. 716-725
    • Kokes, M.1
  • 162
    • 84940457605 scopus 로고    scopus 로고
    • Therapeutic targeting of autophagy in neurodegenerative and infectious diseases
    • Rubinsztein D. C., Bento C. F., & Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 212, 979-990 (2015
    • (2015) J. Exp. Med , vol.212 , pp. 979-990
    • Rubinsztein, D.C.1    Bento, C.F.2    Deretic, V.3
  • 163
    • 84877909895 scopus 로고    scopus 로고
    • Autophagy and microtubules -new story, old players
    • Mackeh R., Perdiz D., Lorin S., Codogno P., & Poüs C. Autophagy and microtubules -new story, old players. J. Cell Sci. 126, 1071-1080 (2013
    • (2013) J. Cell Sci , vol.126 , pp. 1071-1080
    • MacKeh, R.1    Perdiz, D.2    Lorin, S.3    Codogno, P.4    Poüs, C.5
  • 164
    • 84931403287 scopus 로고    scopus 로고
    • Inherited DOCK2 deficiency in patients with early-onset invasive infections
    • Dobbs K., et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372, 2409-2422 (2015
    • (2015) N. Engl. J. Med , vol.372 , pp. 2409-2422
    • Dobbs, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.