-
1
-
-
0015549009
-
A soluble preparation from rat brain that incorporates into its own proteins (14C)arginine by a ribonuclease-sensitive system and (14C)tyrosine by a ribonuclease-insensitive system
-
Barra H.S., et al. A soluble preparation from rat brain that incorporates into its own proteins (14C)arginine by a ribonuclease-sensitive system and (14C)tyrosine by a ribonuclease-insensitive system. J. Neurochem. 1973, 20:97-108.
-
(1973)
J. Neurochem.
, vol.20
, pp. 97-108
-
-
Barra, H.S.1
-
2
-
-
84876089948
-
Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules
-
Song Y., et al. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013, 78:108-123.
-
(2013)
Neuron
, vol.78
, pp. 108-123
-
-
Song, Y.1
-
3
-
-
81855196008
-
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
-
Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12:773-786.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 773-786
-
-
Janke, C.1
Bulinski, J.C.2
-
4
-
-
77957868249
-
Post-translational modifications of microtubules
-
Wloga D., Gaertig J. Post-translational modifications of microtubules. J. Cell Sci. 2010, 123:3447-3455.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3447-3455
-
-
Wloga, D.1
Gaertig, J.2
-
5
-
-
77955272733
-
Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton
-
Janke C., Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010, 33:362-372.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 362-372
-
-
Janke, C.1
Kneussel, M.2
-
6
-
-
65249107203
-
Microtubule assembly, organization and dynamics in axons and dendrites
-
Conde C., Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 2009, 10:319-332.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, pp. 319-332
-
-
Conde, C.1
Caceres, A.2
-
8
-
-
0023371190
-
Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules
-
Gundersen G.G., et al. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 1987, 105:251-264.
-
(1987)
J. Cell Biol.
, vol.105
, pp. 251-264
-
-
Gundersen, G.G.1
-
9
-
-
79960930039
-
Preparation of pure tyrosinated or detyrosinated tubulin isoforms
-
Lafanechere L., Job D. Preparation of pure tyrosinated or detyrosinated tubulin isoforms. Methods Mol. Biol. 2011, 777:71-86.
-
(2011)
Methods Mol. Biol.
, vol.777
, pp. 71-86
-
-
Lafanechere, L.1
Job, D.2
-
10
-
-
84874362901
-
Structural basis of tubulin tyrosination by tubulin tyrosine ligase
-
Prota A.E., et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 2013, 200:259-270.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 259-270
-
-
Prota, A.E.1
-
11
-
-
80555122785
-
Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin
-
Szyk A., et al. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 2011, 18:1250-1258.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1250-1258
-
-
Szyk, A.1
-
12
-
-
34248225770
-
Structure and thermodynamics of the tubulin-stathmin interaction
-
Steinmetz M.O. Structure and thermodynamics of the tubulin-stathmin interaction. J. Struct. Biol. 2007, 158:137-147.
-
(2007)
J. Struct. Biol.
, vol.158
, pp. 137-147
-
-
Steinmetz, M.O.1
-
13
-
-
84879554558
-
Tubulin tyrosine ligase and stathmin compete for tubulin binding in vitro
-
Szyk A., et al. Tubulin tyrosine ligase and stathmin compete for tubulin binding in vitro. J. Mol. Biol. 2013, 425:2412-2414.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 2412-2414
-
-
Szyk, A.1
-
14
-
-
0025313509
-
Individual microtubules in the axon consist of domains that differ in both composition and stability
-
Baas P.W., Black M.M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 1990, 111:495-509.
-
(1990)
J. Cell Biol.
, vol.111
, pp. 495-509
-
-
Baas, P.W.1
Black, M.M.2
-
15
-
-
0027537548
-
Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules
-
Brown A., et al. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 1993, 104:339-352.
-
(1993)
J. Cell Sci.
, vol.104
, pp. 339-352
-
-
Brown, A.1
-
16
-
-
0022976646
-
Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells
-
Geuens G., et al. Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J. Cell Biol. 1986, 103:1883-1893.
-
(1986)
J. Cell Biol.
, vol.103
, pp. 1883-1893
-
-
Geuens, G.1
-
17
-
-
20344379695
-
A vital role of tubulin-tyrosine-ligase for neuronal organization
-
Erck C., et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7853-7858.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 7853-7858
-
-
Erck, C.1
-
18
-
-
65549114952
-
Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone
-
Marcos S., et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS ONE 2009, 4:e5405.
-
(2009)
PLoS ONE
, vol.4
, pp. e5405
-
-
Marcos, S.1
-
19
-
-
0025294639
-
Detyrosination of alpha tubulin does not stabilize microtubules in vivo
-
Webster D.R., et al. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J. Cell Biol. 1990, 111:113-122.
-
(1990)
J. Cell Biol.
, vol.111
, pp. 113-122
-
-
Webster, D.R.1
-
20
-
-
77955670180
-
Plus-end-tracking proteins and their interactions at microtubule ends
-
Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr. Biol. 2010, 20:R528-R537.
-
(2010)
Curr. Biol.
, vol.20
, pp. R528-R537
-
-
Galjart, N.1
-
21
-
-
79951552971
-
Microtubule tip-interacting proteins: a view from both ends
-
Jiang K., Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr. Opin. Cell Biol. 2011, 23:94-101.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 94-101
-
-
Jiang, K.1
Akhmanova, A.2
-
22
-
-
59449100831
-
CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites
-
Bieling P., et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 2008, 183:1223-1233.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 1223-1233
-
-
Bieling, P.1
-
23
-
-
38349097870
-
Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin
-
Roll-Mecak A., Vale R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008, 451:363-367.
-
(2008)
Nature
, vol.451
, pp. 363-367
-
-
Roll-Mecak, A.1
Vale, R.D.2
-
24
-
-
0032941748
-
Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism
-
Kreitzer G., et al. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 1999, 10:1105-1118.
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 1105-1118
-
-
Kreitzer, G.1
-
25
-
-
79953304482
-
The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized
-
Quinones G.B., et al. The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized. Mol. Biol. Cell 2011, 22:1045-1057.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1045-1057
-
-
Quinones, G.B.1
-
26
-
-
84875629022
-
Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells
-
Zink S., et al. Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells. J. Cell Sci. 2012, 125:5998-6008.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 5998-6008
-
-
Zink, S.1
-
27
-
-
84867725772
-
Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration
-
Ghosh-Roy A., et al. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev. Cell 2012, 23:716-728.
-
(2012)
Dev. Cell
, vol.23
, pp. 716-728
-
-
Ghosh-Roy, A.1
-
28
-
-
67649580185
-
Motor-dependent microtubule disassembly driven by tubulin tyrosination
-
Peris L., et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 2009, 185:1159-1166.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1159-1166
-
-
Peris, L.1
-
29
-
-
0032540307
-
Kinesin is a candidate for cross-bridging microtubules and intermediate filaments
-
Liao G., Gundersen G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. J. Biol. Chem. 1998, 273:9797-9803.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 9797-9803
-
-
Liao, G.1
Gundersen, G.G.2
-
30
-
-
67349200776
-
Tubulin tyrosination navigates the kinesin-1 motor domain to axons
-
Konishi Y., Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 2009, 12:559-567.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 559-567
-
-
Konishi, Y.1
Setou, M.2
-
31
-
-
43149106461
-
Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells
-
Dunn S., et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 2008, 121:1085-1095.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 1085-1095
-
-
Dunn, S.1
-
32
-
-
76649143069
-
Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons
-
Hammond J.W., et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 2010, 21:572-583.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 572-583
-
-
Hammond, J.W.1
-
33
-
-
84897536393
-
Regulation of microtubule motors by tubulin isotypes and post-translational modifications
-
Sirajuddin M., et al. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 2014, 16:335-344.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 335-344
-
-
Sirajuddin, M.1
-
34
-
-
84857499438
-
Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-tubulin
-
Berezniuk I., et al. Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-tubulin. J. Biol. Chem. 2012, 287:6503-6517.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 6503-6517
-
-
Berezniuk, I.1
-
35
-
-
84923223445
-
The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids
-
Tort O., et al. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 2014, 25:3017-3027.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3017-3027
-
-
Tort, O.1
-
36
-
-
84886940863
-
Cytosolic carboxypeptidase 5 removes alpha- and gamma-linked glutamates from tubulin
-
Berezniuk I., et al. Cytosolic carboxypeptidase 5 removes alpha- and gamma-linked glutamates from tubulin. J. Biol. Chem. 2013, 288:30445-30453.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 30445-30453
-
-
Berezniuk, I.1
-
37
-
-
78149486157
-
A family of protein-deglutamylating enzymes associated with neurodegeneration
-
Rogowski K., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010, 143:564-578.
-
(2010)
Cell
, vol.143
, pp. 564-578
-
-
Rogowski, K.1
-
38
-
-
0028283568
-
Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies
-
Paturle-Lafanechere L., et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 1994, 107(Pt 6):1529-1543.
-
(1994)
J. Cell Sci.
, vol.107
, pp. 1529-1543
-
-
Paturle-Lafanechere, L.1
-
40
-
-
0027934789
-
Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons
-
Audebert S., et al. Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons. J. Cell Sci. 1994, 107(Pt 8):2313-2322.
-
(1994)
J. Cell Sci.
, vol.107
, pp. 2313-2322
-
-
Audebert, S.1
-
41
-
-
21044442747
-
Centrioles resist forces applied on centrosomes during G2/M transition
-
Abal M., et al. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell 2005, 97:425-434.
-
(2005)
Biol. Cell
, vol.97
, pp. 425-434
-
-
Abal, M.1
-
42
-
-
58149349810
-
Ciliary tubulin and its post-translational modifications
-
Gaertig J., Wloga D. Ciliary tubulin and its post-translational modifications. Curr. Top. Dev. Biol. 2008, 85:83-113.
-
(2008)
Curr. Top. Dev. Biol.
, vol.85
, pp. 83-113
-
-
Gaertig, J.1
Wloga, D.2
-
43
-
-
61449248348
-
Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway
-
Mukai M., et al. Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway. Biochemistry 2009, 48:1084-1093.
-
(2009)
Biochemistry
, vol.48
, pp. 1084-1093
-
-
Mukai, M.1
-
44
-
-
42949107713
-
Polyglutamylation is a post-translational modification with a broad range of substrates
-
van Dijk J., et al. Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 2008, 283:3915-3922.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3915-3922
-
-
van Dijk, J.1
-
45
-
-
0242382637
-
Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase
-
Regnard C., et al. Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J. Cell Sci. 2003, 116:4181-4190.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 4181-4190
-
-
Regnard, C.1
-
46
-
-
33847688915
-
Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function
-
Ikegami K., et al. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3213-3218.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 3213-3218
-
-
Ikegami, K.1
-
47
-
-
0036743861
-
Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice
-
Campbell P.K., et al. Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice. Genetics 2002, 162:307-320.
-
(2002)
Genetics
, vol.162
, pp. 307-320
-
-
Campbell, P.K.1
-
48
-
-
0035918287
-
Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation
-
Bonnet C., et al. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J. Biol. Chem. 2001, 276:12839-12848.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12839-12848
-
-
Bonnet, C.1
-
49
-
-
77953598298
-
Tubulin polyglutamylation stimulates spastin-mediated microtubule severing
-
Lacroix B., et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 2010, 189:945-954.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 945-954
-
-
Lacroix, B.1
-
50
-
-
66649098395
-
Synaptic activation modifies microtubules underlying transport of postsynaptic cargo
-
Maas C., et al. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8731-8736.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8731-8736
-
-
Maas, C.1
-
51
-
-
0034533467
-
Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases
-
Harris A., et al. Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases. Mol. Cell. Neurosci. 2000, 16:578-596.
-
(2000)
Mol. Cell. Neurosci.
, vol.16
, pp. 578-596
-
-
Harris, A.1
-
52
-
-
77953672051
-
Posttranslational protein modifications in cilia and flagella
-
Sloboda R.D. Posttranslational protein modifications in cilia and flagella. Methods Cell Biol. 2009, 94:347-363.
-
(2009)
Methods Cell Biol.
, vol.94
, pp. 347-363
-
-
Sloboda, R.D.1
-
53
-
-
66949174087
-
TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia
-
Wloga D., et al. TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 2009, 16:867-876.
-
(2009)
Dev. Cell
, vol.16
, pp. 867-876
-
-
Wloga, D.1
-
54
-
-
66449100635
-
Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation
-
Rogowski K., et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 2009, 137:1076-1087.
-
(2009)
Cell
, vol.137
, pp. 1076-1087
-
-
Rogowski, K.1
-
55
-
-
67349090599
-
TTLL10 can perform tubulin glycylation when co-expressed with TTLL8
-
Ikegami K., Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 2009, 583:1957-1963.
-
(2009)
FEBS Lett.
, vol.583
, pp. 1957-1963
-
-
Ikegami, K.1
Setou, M.2
-
56
-
-
35649017201
-
Mammalian cilia function is independent of the polymeric state of tubulin glycylation
-
Dossou S.J., et al. Mammalian cilia function is independent of the polymeric state of tubulin glycylation. Cell Motil. Cytoskeleton 2007, 64:847-855.
-
(2007)
Cell Motil. Cytoskeleton
, vol.64
, pp. 847-855
-
-
Dossou, S.J.1
-
57
-
-
84908083025
-
Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon
-
Rocha C., et al. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 2014, 33:2247-2260.
-
(2014)
EMBO J.
, vol.33
, pp. 2247-2260
-
-
Rocha, C.1
-
58
-
-
79951855247
-
The ins and outs of tubulin acetylation: more than just a post-translational modification?
-
Perdiz D., et al. The ins and outs of tubulin acetylation: more than just a post-translational modification?. Cell. Signal. 2011, 23:763-771.
-
(2011)
Cell. Signal.
, vol.23
, pp. 763-771
-
-
Perdiz, D.1
-
59
-
-
0021993649
-
Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine
-
L'Hernault S.W., Rosenbaum J.L. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 1985, 24:473-478.
-
(1985)
Biochemistry
, vol.24
, pp. 473-478
-
-
L'Hernault, S.W.1
Rosenbaum, J.L.2
-
60
-
-
84868146124
-
Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules
-
Soppina V., et al. Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS ONE 2012, 7:e48204.
-
(2012)
PLoS ONE
, vol.7
, pp. e48204
-
-
Soppina, V.1
-
61
-
-
84902106884
-
Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase
-
Szyk A., et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 2014, 157:1405-1415.
-
(2014)
Cell
, vol.157
, pp. 1405-1415
-
-
Szyk, A.1
-
62
-
-
0022452231
-
The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules
-
Maruta H., et al. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 1986, 103:571-579.
-
(1986)
J. Cell Biol.
, vol.103
, pp. 571-579
-
-
Maruta, H.1
-
63
-
-
84892547110
-
Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure
-
Howes S.C., et al. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 2014, 25:257-266.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 257-266
-
-
Howes, S.C.1
-
64
-
-
77956525850
-
MEC-17 is an alpha-tubulin acetyltransferase
-
Akella J.S., et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010, 467:218-222.
-
(2010)
Nature
, vol.467
, pp. 218-222
-
-
Akella, J.S.1
-
65
-
-
84891620677
-
AlphaTAT1 is the major alpha-tubulin acetyltransferase in mice
-
Kalebic N., et al. alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun. 2013, 4:1962.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1962
-
-
Kalebic, N.1
-
66
-
-
78650731392
-
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation
-
Shida T., et al. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21517-21522.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 21517-21522
-
-
Shida, T.1
-
67
-
-
84862690126
-
Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization
-
Topalidou I., et al. Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr. Biol. 2012, 22:1057-1065.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1057-1065
-
-
Topalidou, I.1
-
68
-
-
84874709998
-
Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity
-
Kalebic N., et al. Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity. Mol. Cell. Biol. 2013, 33:1114-1123.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 1114-1123
-
-
Kalebic, N.1
-
69
-
-
84886950926
-
AlphaTAT1 catalyses microtubule acetylation at clathrin-coated pits
-
Montagnac G., et al. alphaTAT1 catalyses microtubule acetylation at clathrin-coated pits. Nature 2013, 502:567-570.
-
(2013)
Nature
, vol.502
, pp. 567-570
-
-
Montagnac, G.1
-
70
-
-
84880066266
-
Mice lacking alpha-tubulin acetyltransferase 1 are viable but display alpha-tubulin acetylation deficiency and dentate gyrus distortion
-
Kim G.W., et al. Mice lacking alpha-tubulin acetyltransferase 1 are viable but display alpha-tubulin acetylation deficiency and dentate gyrus distortion. J. Biol. Chem. 2013, 288:20334-20350.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 20334-20350
-
-
Kim, G.W.1
-
71
-
-
0023154428
-
Acetylated alpha-tubulin in Physarum: immunological characterization of the isotype and its usage in particular microtubular organelles
-
Sasse R., et al. Acetylated alpha-tubulin in Physarum: immunological characterization of the isotype and its usage in particular microtubular organelles. J. Cell Biol. 1987, 104:41-49.
-
(1987)
J. Cell Biol.
, vol.104
, pp. 41-49
-
-
Sasse, R.1
-
72
-
-
0027680037
-
Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization
-
Souto-Padron T., et al. Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization. Memorias do Instituto Oswaldo Cruz 1993, 88:517-528.
-
(1993)
Memorias do Instituto Oswaldo Cruz
, vol.88
, pp. 517-528
-
-
Souto-Padron, T.1
-
73
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
74
-
-
79951819919
-
A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation
-
Chu C.W., et al. A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 2011, 22:448-456.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 448-456
-
-
Chu, C.W.1
-
75
-
-
84862658847
-
Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules
-
Cueva J.G., et al. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr. Biol. 2012, 22:1066-1074.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1066-1074
-
-
Cueva, J.G.1
-
76
-
-
59749105117
-
Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53
-
Giustiniani J., et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell. Signal. 2009, 21:529-539.
-
(2009)
Cell. Signal.
, vol.21
, pp. 529-539
-
-
Giustiniani, J.1
-
77
-
-
84896532784
-
Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production
-
Wang B., et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat. Commun. 2014, 5:3479.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3479
-
-
Wang, B.1
-
78
-
-
77953046399
-
Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts
-
Sudo H., Baas P.W. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J. Neurosci. 2010, 30:7215-7226.
-
(2010)
J. Neurosci.
, vol.30
, pp. 7215-7226
-
-
Sudo, H.1
Baas, P.W.2
-
79
-
-
33645221487
-
Tau protects microtubules in the axon from severing by katanin
-
Qiang L., et al. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 2006, 26:3120-3129.
-
(2006)
J. Neurosci.
, vol.26
, pp. 3120-3129
-
-
Qiang, L.1
-
80
-
-
44949204601
-
The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches
-
Yu W., et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 2008, 19:1485-1498.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1485-1498
-
-
Yu, W.1
-
81
-
-
33750618516
-
Microtubule acetylation promotes kinesin-1 binding and transport
-
Reed N.A., et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 2006, 16:2166-2172.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2166-2172
-
-
Reed, N.A.1
-
82
-
-
84864746082
-
Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro
-
Walter W.J., et al. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE 2012, 7:e42218.
-
(2012)
PLoS ONE
, vol.7
, pp. e42218
-
-
Walter, W.J.1
-
83
-
-
61849144810
-
HDAC family: What are the cancer relevant targets?
-
Witt O., et al. HDAC family: What are the cancer relevant targets?. Cancer Lett. 2009, 277:8-21.
-
(2009)
Cancer Lett.
, vol.277
, pp. 8-21
-
-
Witt, O.1
-
84
-
-
79952204427
-
Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates
-
Yao Y.L., Yang W.M. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J. Biomed. Biotechnol. 2011, 2011:146493.
-
(2011)
J. Biomed. Biotechnol.
, vol.2011
, pp. 146493
-
-
Yao, Y.L.1
Yang, W.M.2
-
85
-
-
85045783722
-
HDAC6: Physiological function and its selective inhibitors for cancer treatment
-
Yang P.H., et al. HDAC6: Physiological function and its selective inhibitors for cancer treatment. Drug Discov. Ther. 2013, 7:233-242.
-
(2013)
Drug Discov. Ther.
, vol.7
, pp. 233-242
-
-
Yang, P.H.1
-
86
-
-
33746541576
-
HDAC6-p97/VCP controlled polyubiquitin chain turnover
-
Boyault C., et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006, 25:3357-3366.
-
(2006)
EMBO J.
, vol.25
, pp. 3357-3366
-
-
Boyault, C.1
-
87
-
-
34547684065
-
HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
-
Boyault C., et al. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26:5468-5476.
-
(2007)
Oncogene
, vol.26
, pp. 5468-5476
-
-
Boyault, C.1
-
88
-
-
40749161986
-
Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally
-
Zhang Y., et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 2008, 28:1688-1701.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1688-1701
-
-
Zhang, Y.1
-
89
-
-
84864147535
-
HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration
-
Cho Y., Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 2012, 31:3063-3078.
-
(2012)
EMBO J.
, vol.31
, pp. 3063-3078
-
-
Cho, Y.1
Cavalli, V.2
-
90
-
-
84887959502
-
Injury-induced HDAC5 nuclear export is essential for axon regeneration
-
Cho Y., et al. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 2013, 155:894-908.
-
(2013)
Cell
, vol.155
, pp. 894-908
-
-
Cho, Y.1
-
91
-
-
83455218662
-
Sirtuin 1 (SIRT1): the misunderstood HDAC
-
Stunkel W., Campbell R.M. Sirtuin 1 (SIRT1): the misunderstood HDAC. J. Biomol. Screen. 2011, 16:1153-1169.
-
(2011)
J. Biomol. Screen.
, vol.16
, pp. 1153-1169
-
-
Stunkel, W.1
Campbell, R.M.2
-
92
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North B.J., et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 2003, 11:437-444.
-
(2003)
Mol. Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
-
93
-
-
39149122568
-
Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
-
North B.J., Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS ONE 2007, 2:e784.
-
(2007)
PLoS ONE
, vol.2
, pp. e784
-
-
North, B.J.1
Verdin, E.2
-
94
-
-
34248151365
-
The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
-
Inoue T., et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007, 6:1011-1018.
-
(2007)
Cell Cycle
, vol.6
, pp. 1011-1018
-
-
Inoue, T.1
-
95
-
-
40849113090
-
The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
-
Pandithage R., et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J. Cell Biol. 2008, 180:915-929.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 915-929
-
-
Pandithage, R.1
-
96
-
-
0029022205
-
Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A
-
Shetty V.K., et al. Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J. Neurochem. 1995, 64:2681-2690.
-
(1995)
J. Neurochem.
, vol.64
, pp. 2681-2690
-
-
Shetty, V.K.1
-
98
-
-
84866529842
-
SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
-
Bobrowska A., et al. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS ONE 2012, 7:e34805.
-
(2012)
PLoS ONE
, vol.7
, pp. e34805
-
-
Bobrowska, A.1
-
99
-
-
0021718241
-
Axonal tubulin and axonal microtubules: biochemical evidence for cold stability
-
Brady S.T., et al. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J. Cell Biol. 1984, 99:1716-1724.
-
(1984)
J. Cell Biol.
, vol.99
, pp. 1716-1724
-
-
Brady, S.T.1
-
100
-
-
0036804796
-
Transglutaminase 2: an enigmatic enzyme with diverse functions
-
Fesus L., Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem. Sci. 2002, 27:534-539.
-
(2002)
Trends Biochem. Sci.
, vol.27
, pp. 534-539
-
-
Fesus, L.1
Piacentini, M.2
-
101
-
-
2642536093
-
Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase
-
Mishra S., Murphy L.J. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J. Biol. Chem. 2004, 279:23863-23868.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23863-23868
-
-
Mishra, S.1
Murphy, L.J.2
-
102
-
-
82755161784
-
Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein
-
Kiraly R., et al. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J. 2011, 278:4717-4739.
-
(2011)
FEBS J.
, vol.278
, pp. 4717-4739
-
-
Kiraly, R.1
-
103
-
-
0042068233
-
A novel function of tissue-type transglutaminase: protein disulphide isomerase
-
Hasegawa G., et al. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem. J. 2003, 373:793-803.
-
(2003)
Biochem. J.
, vol.373
, pp. 793-803
-
-
Hasegawa, G.1
-
104
-
-
32844474694
-
The role of transglutaminase-2 and its substrates in human diseases
-
Facchiano F., et al. The role of transglutaminase-2 and its substrates in human diseases. Front. Biosci. 2006, 11:1758-1773.
-
(2006)
Front. Biosci.
, vol.11
, pp. 1758-1773
-
-
Facchiano, F.1
-
105
-
-
84897019327
-
Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1
-
Oono M., et al. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J. Neurochem. 2014, 128:403-418.
-
(2014)
J. Neurochem.
, vol.128
, pp. 403-418
-
-
Oono, M.1
-
106
-
-
84864835917
-
Physio-pathological roles of transglutaminase-catalyzed reactions
-
Ricotta M., et al. Physio-pathological roles of transglutaminase-catalyzed reactions. World J. Biol. Chem. 2010, 1:181-187.
-
(2010)
World J. Biol. Chem.
, vol.1
, pp. 181-187
-
-
Ricotta, M.1
-
107
-
-
84871998866
-
Tissue-specific responses to loss of transglutaminase 2
-
Deasey S., et al. Tissue-specific responses to loss of transglutaminase 2. Amino Acids 2011, 44:179-187.
-
(2011)
Amino Acids
, vol.44
, pp. 179-187
-
-
Deasey, S.1
-
108
-
-
67651071286
-
Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders
-
Iismaa S.E., et al. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol. Rev. 2009, 89:991-1023.
-
(2009)
Physiol. Rev.
, vol.89
, pp. 991-1023
-
-
Iismaa, S.E.1
-
109
-
-
84882628718
-
Stabilization of neuronal microtubules by polyamines and transglutaminase: its roles in brain function
-
University of Illinois at Chicago College of Medicine, pp.
-
Song, Y. (2010) Stabilization of neuronal microtubules by polyamines and transglutaminase: its roles in brain function. In Dept of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, pp. 199, http://search.proquest.com/docview/763102287.
-
(2010)
In Dept of Anatomy and Cell Biology
, pp. 199
-
-
Song, Y.1
-
110
-
-
0035313624
-
Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons
-
Kirkpatrick L.L., et al. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J. Neurosci. 2001, 21:2288-2297.
-
(2001)
J. Neurosci.
, vol.21
, pp. 2288-2297
-
-
Kirkpatrick, L.L.1
-
111
-
-
78049361418
-
Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening
-
Chabot N., et al. Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. Chem. Biol. 2010, 17:1143-1150.
-
(2010)
Chem. Biol.
, vol.17
, pp. 1143-1150
-
-
Chabot, N.1
-
112
-
-
62949141260
-
Some lessons from the tissue transglutaminase knockout mouse
-
Sarang Z., et al. Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 2009, 36:625-631.
-
(2009)
Amino Acids
, vol.36
, pp. 625-631
-
-
Sarang, Z.1
-
113
-
-
0021990889
-
A polymer dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line
-
Gard D.L., Kirschner M. A polymer dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell Biol. 1985, 100:764-774.
-
(1985)
J. Cell Biol.
, vol.100
, pp. 764-774
-
-
Gard, D.L.1
Kirschner, M.2
-
114
-
-
33644865003
-
Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1
-
Fourest-Lieuvin A., et al. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 2006, 17:1041-1050.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1041-1050
-
-
Fourest-Lieuvin, A.1
-
115
-
-
6344242879
-
The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly
-
Laurent C.E., et al. The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly. Mol. Cell. Biol. 2004, 24:9351-9358.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9351-9358
-
-
Laurent, C.E.1
-
116
-
-
51049119252
-
Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin
-
Cicchillitti L., et al. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol. Cancer Ther. 2008, 7:2070-2079.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 2070-2079
-
-
Cicchillitti, L.1
-
117
-
-
0041851031
-
Glycosylation of the alpha and beta tubulin by sialyloligosaccharides
-
Hino M., et al. Glycosylation of the alpha and beta tubulin by sialyloligosaccharides. Zoolog. Sci. 2003, 20:709-715.
-
(2003)
Zoolog. Sci.
, vol.20
, pp. 709-715
-
-
Hino, M.1
-
118
-
-
0030752545
-
The role of axonal cytoskeleton in diabetic neuropathy
-
McLean W.G. The role of axonal cytoskeleton in diabetic neuropathy. Neurochem. Res. 1997, 22:951-956.
-
(1997)
Neurochem. Res.
, vol.22
, pp. 951-956
-
-
McLean, W.G.1
-
119
-
-
79954435787
-
O-GlcNAcylation of tubulin inhibits its polymerization
-
Ji S., et al. O-GlcNAcylation of tubulin inhibits its polymerization. Amino Acids 2011, 40:809-818.
-
(2011)
Amino Acids
, vol.40
, pp. 809-818
-
-
Ji, S.1
-
120
-
-
84862643485
-
Lipid glycation and protein glycation in diabetes and atherosclerosis
-
Miyazawa T., et al. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids 2012, 42:1163-1170.
-
(2012)
Amino Acids
, vol.42
, pp. 1163-1170
-
-
Miyazawa, T.1
-
121
-
-
68149097082
-
Plasma membrane tubulin
-
Wolff J. Plasma membrane tubulin. Biochim. Biophys. Acta 2009, 1788:1415-1433.
-
(2009)
Biochim. Biophys. Acta
, vol.1788
, pp. 1415-1433
-
-
Wolff, J.1
-
122
-
-
77249134163
-
Protein palmitoylation in neuronal development and synaptic plasticity
-
Fukata Y., Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010, 11:161-175.
-
(2010)
Nat. Rev. Neurosci.
, vol.11
, pp. 161-175
-
-
Fukata, Y.1
Fukata, M.2
-
123
-
-
0035166773
-
Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin
-
Caron J.M., et al. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol. Biol. Cell 2001, 12:2672-2687.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2672-2687
-
-
Caron, J.M.1
-
124
-
-
0033865788
-
Autopalmitoylation of tubulin
-
Wolff J., et al. Autopalmitoylation of tubulin. Protein Sci. 2000, 9:1357-1364.
-
(2000)
Protein Sci.
, vol.9
, pp. 1357-1364
-
-
Wolff, J.1
-
125
-
-
33846438222
-
Vinblastine, a chemotherapeutic drug, inhibits palmitoylation of tubulin in human leukemic lymphocytes
-
Caron J.M., Herwood M. Vinblastine, a chemotherapeutic drug, inhibits palmitoylation of tubulin in human leukemic lymphocytes. Chemotherapy 2007, 53:51-58.
-
(2007)
Chemotherapy
, vol.53
, pp. 51-58
-
-
Caron, J.M.1
Herwood, M.2
-
126
-
-
84878944582
-
Sumoylation: a regulatory protein modification in health and disease
-
Flotho A., Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 2013, 82:357-385.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 357-385
-
-
Flotho, A.1
Melchior, F.2
-
127
-
-
84861881296
-
The ubiquitin system, an immense realm
-
Varshavsky A. The ubiquitin system, an immense realm. Annu. Rev. Biochem. 2012, 81:167-176.
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 167-176
-
-
Varshavsky, A.1
-
129
-
-
77953890085
-
Parkinson's disease: insights from pathways
-
Cookson M.R., Bandmann O. Parkinson's disease: insights from pathways. Hum. Mol. Genet. 2010, 19:R21-R27.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. R21-R27
-
-
Cookson, M.R.1
Bandmann, O.2
-
130
-
-
68649097307
-
The genetics of Parkinson's syndromes: a critical review
-
Hardy J., et al. The genetics of Parkinson's syndromes: a critical review. Curr. Opin. Genet. Dev. 2009, 19:254-265.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, pp. 254-265
-
-
Hardy, J.1
-
131
-
-
0037738525
-
Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation
-
Ren Y., et al. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci. 2003, 23:3316-3324.
-
(2003)
J. Neurosci.
, vol.23
, pp. 3316-3324
-
-
Ren, Y.1
-
132
-
-
0242531029
-
Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin
-
Ardley H.C., et al. Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol. Biol. Cell 2003, 14:4541-4556.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4541-4556
-
-
Ardley, H.C.1
-
133
-
-
0347917234
-
Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival
-
Muqit M.M., et al. Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Hum. Mol. Genet. 2004, 13:117-135.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 117-135
-
-
Muqit, M.M.1
-
134
-
-
0038155130
-
Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins
-
Hyun D.H., et al. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J. Neurochem. 2003, 86:363-373.
-
(2003)
J. Neurochem.
, vol.86
, pp. 363-373
-
-
Hyun, D.H.1
-
135
-
-
69449094091
-
The ubiquitin conjugation system is involved in the disassembly of cilia and flagella
-
Huang K., et al. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 2009, 186:601-613.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 601-613
-
-
Huang, K.1
-
136
-
-
4744360999
-
A proteome-wide approach identifies sumoylated substrate proteins in yeast
-
Panse V.G., et al. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 2004, 279:41346-41351.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 41346-41351
-
-
Panse, V.G.1
-
137
-
-
14644402420
-
A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers
-
Rosas-Acosta G., et al. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 2005, 4:56-72.
-
(2005)
Mol. Cell. Proteomics
, vol.4
, pp. 56-72
-
-
Rosas-Acosta, G.1
|