메뉴 건너뛰기




Volumn 25, Issue 3, 2015, Pages 125-136

Post-translational modifications of tubulin: Pathways to functional diversity of microtubules

Author keywords

Acetylation; Detyrosination; Microtubule; Polyamination; Polyglutamylation; Tubulin

Indexed keywords

TUBULIN;

EID: 84923222368     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.10.004     Document Type: Review
Times cited : (299)

References (137)
  • 1
    • 0015549009 scopus 로고
    • A soluble preparation from rat brain that incorporates into its own proteins (14C)arginine by a ribonuclease-sensitive system and (14C)tyrosine by a ribonuclease-insensitive system
    • Barra H.S., et al. A soluble preparation from rat brain that incorporates into its own proteins (14C)arginine by a ribonuclease-sensitive system and (14C)tyrosine by a ribonuclease-insensitive system. J. Neurochem. 1973, 20:97-108.
    • (1973) J. Neurochem. , vol.20 , pp. 97-108
    • Barra, H.S.1
  • 2
    • 84876089948 scopus 로고    scopus 로고
    • Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules
    • Song Y., et al. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013, 78:108-123.
    • (2013) Neuron , vol.78 , pp. 108-123
    • Song, Y.1
  • 3
    • 81855196008 scopus 로고    scopus 로고
    • Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
    • Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12:773-786.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 773-786
    • Janke, C.1    Bulinski, J.C.2
  • 4
    • 77957868249 scopus 로고    scopus 로고
    • Post-translational modifications of microtubules
    • Wloga D., Gaertig J. Post-translational modifications of microtubules. J. Cell Sci. 2010, 123:3447-3455.
    • (2010) J. Cell Sci. , vol.123 , pp. 3447-3455
    • Wloga, D.1    Gaertig, J.2
  • 5
    • 77955272733 scopus 로고    scopus 로고
    • Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton
    • Janke C., Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010, 33:362-372.
    • (2010) Trends Neurosci. , vol.33 , pp. 362-372
    • Janke, C.1    Kneussel, M.2
  • 6
    • 65249107203 scopus 로고    scopus 로고
    • Microtubule assembly, organization and dynamics in axons and dendrites
    • Conde C., Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 2009, 10:319-332.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 319-332
    • Conde, C.1    Caceres, A.2
  • 8
    • 0023371190 scopus 로고
    • Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules
    • Gundersen G.G., et al. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 1987, 105:251-264.
    • (1987) J. Cell Biol. , vol.105 , pp. 251-264
    • Gundersen, G.G.1
  • 9
    • 79960930039 scopus 로고    scopus 로고
    • Preparation of pure tyrosinated or detyrosinated tubulin isoforms
    • Lafanechere L., Job D. Preparation of pure tyrosinated or detyrosinated tubulin isoforms. Methods Mol. Biol. 2011, 777:71-86.
    • (2011) Methods Mol. Biol. , vol.777 , pp. 71-86
    • Lafanechere, L.1    Job, D.2
  • 10
    • 84874362901 scopus 로고    scopus 로고
    • Structural basis of tubulin tyrosination by tubulin tyrosine ligase
    • Prota A.E., et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 2013, 200:259-270.
    • (2013) J. Cell Biol. , vol.200 , pp. 259-270
    • Prota, A.E.1
  • 11
    • 80555122785 scopus 로고    scopus 로고
    • Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin
    • Szyk A., et al. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 2011, 18:1250-1258.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1250-1258
    • Szyk, A.1
  • 12
    • 34248225770 scopus 로고    scopus 로고
    • Structure and thermodynamics of the tubulin-stathmin interaction
    • Steinmetz M.O. Structure and thermodynamics of the tubulin-stathmin interaction. J. Struct. Biol. 2007, 158:137-147.
    • (2007) J. Struct. Biol. , vol.158 , pp. 137-147
    • Steinmetz, M.O.1
  • 13
    • 84879554558 scopus 로고    scopus 로고
    • Tubulin tyrosine ligase and stathmin compete for tubulin binding in vitro
    • Szyk A., et al. Tubulin tyrosine ligase and stathmin compete for tubulin binding in vitro. J. Mol. Biol. 2013, 425:2412-2414.
    • (2013) J. Mol. Biol. , vol.425 , pp. 2412-2414
    • Szyk, A.1
  • 14
    • 0025313509 scopus 로고
    • Individual microtubules in the axon consist of domains that differ in both composition and stability
    • Baas P.W., Black M.M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 1990, 111:495-509.
    • (1990) J. Cell Biol. , vol.111 , pp. 495-509
    • Baas, P.W.1    Black, M.M.2
  • 15
    • 0027537548 scopus 로고
    • Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules
    • Brown A., et al. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 1993, 104:339-352.
    • (1993) J. Cell Sci. , vol.104 , pp. 339-352
    • Brown, A.1
  • 16
    • 0022976646 scopus 로고
    • Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells
    • Geuens G., et al. Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J. Cell Biol. 1986, 103:1883-1893.
    • (1986) J. Cell Biol. , vol.103 , pp. 1883-1893
    • Geuens, G.1
  • 17
    • 20344379695 scopus 로고    scopus 로고
    • A vital role of tubulin-tyrosine-ligase for neuronal organization
    • Erck C., et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7853-7858.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7853-7858
    • Erck, C.1
  • 18
    • 65549114952 scopus 로고    scopus 로고
    • Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone
    • Marcos S., et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS ONE 2009, 4:e5405.
    • (2009) PLoS ONE , vol.4 , pp. e5405
    • Marcos, S.1
  • 19
    • 0025294639 scopus 로고
    • Detyrosination of alpha tubulin does not stabilize microtubules in vivo
    • Webster D.R., et al. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J. Cell Biol. 1990, 111:113-122.
    • (1990) J. Cell Biol. , vol.111 , pp. 113-122
    • Webster, D.R.1
  • 20
    • 77955670180 scopus 로고    scopus 로고
    • Plus-end-tracking proteins and their interactions at microtubule ends
    • Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr. Biol. 2010, 20:R528-R537.
    • (2010) Curr. Biol. , vol.20 , pp. R528-R537
    • Galjart, N.1
  • 21
    • 79951552971 scopus 로고    scopus 로고
    • Microtubule tip-interacting proteins: a view from both ends
    • Jiang K., Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr. Opin. Cell Biol. 2011, 23:94-101.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 94-101
    • Jiang, K.1    Akhmanova, A.2
  • 22
    • 59449100831 scopus 로고    scopus 로고
    • CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites
    • Bieling P., et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 2008, 183:1223-1233.
    • (2008) J. Cell Biol. , vol.183 , pp. 1223-1233
    • Bieling, P.1
  • 23
    • 38349097870 scopus 로고    scopus 로고
    • Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin
    • Roll-Mecak A., Vale R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008, 451:363-367.
    • (2008) Nature , vol.451 , pp. 363-367
    • Roll-Mecak, A.1    Vale, R.D.2
  • 24
    • 0032941748 scopus 로고    scopus 로고
    • Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism
    • Kreitzer G., et al. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 1999, 10:1105-1118.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1105-1118
    • Kreitzer, G.1
  • 25
    • 79953304482 scopus 로고    scopus 로고
    • The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized
    • Quinones G.B., et al. The posttranslational modification of tubulin undergoes a switch from detyrosination to acetylation as epithelial cells become polarized. Mol. Biol. Cell 2011, 22:1045-1057.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1045-1057
    • Quinones, G.B.1
  • 26
    • 84875629022 scopus 로고    scopus 로고
    • Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells
    • Zink S., et al. Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells. J. Cell Sci. 2012, 125:5998-6008.
    • (2012) J. Cell Sci. , vol.125 , pp. 5998-6008
    • Zink, S.1
  • 27
    • 84867725772 scopus 로고    scopus 로고
    • Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration
    • Ghosh-Roy A., et al. Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev. Cell 2012, 23:716-728.
    • (2012) Dev. Cell , vol.23 , pp. 716-728
    • Ghosh-Roy, A.1
  • 28
    • 67649580185 scopus 로고    scopus 로고
    • Motor-dependent microtubule disassembly driven by tubulin tyrosination
    • Peris L., et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 2009, 185:1159-1166.
    • (2009) J. Cell Biol. , vol.185 , pp. 1159-1166
    • Peris, L.1
  • 29
    • 0032540307 scopus 로고    scopus 로고
    • Kinesin is a candidate for cross-bridging microtubules and intermediate filaments
    • Liao G., Gundersen G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. J. Biol. Chem. 1998, 273:9797-9803.
    • (1998) J. Biol. Chem. , vol.273 , pp. 9797-9803
    • Liao, G.1    Gundersen, G.G.2
  • 30
    • 67349200776 scopus 로고    scopus 로고
    • Tubulin tyrosination navigates the kinesin-1 motor domain to axons
    • Konishi Y., Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 2009, 12:559-567.
    • (2009) Nat. Neurosci. , vol.12 , pp. 559-567
    • Konishi, Y.1    Setou, M.2
  • 31
    • 43149106461 scopus 로고    scopus 로고
    • Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells
    • Dunn S., et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 2008, 121:1085-1095.
    • (2008) J. Cell Sci. , vol.121 , pp. 1085-1095
    • Dunn, S.1
  • 32
    • 76649143069 scopus 로고    scopus 로고
    • Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons
    • Hammond J.W., et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 2010, 21:572-583.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 572-583
    • Hammond, J.W.1
  • 33
    • 84897536393 scopus 로고    scopus 로고
    • Regulation of microtubule motors by tubulin isotypes and post-translational modifications
    • Sirajuddin M., et al. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 2014, 16:335-344.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 335-344
    • Sirajuddin, M.1
  • 34
    • 84857499438 scopus 로고    scopus 로고
    • Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-tubulin
    • Berezniuk I., et al. Cytosolic carboxypeptidase 1 is involved in processing alpha- and beta-tubulin. J. Biol. Chem. 2012, 287:6503-6517.
    • (2012) J. Biol. Chem. , vol.287 , pp. 6503-6517
    • Berezniuk, I.1
  • 35
    • 84923223445 scopus 로고    scopus 로고
    • The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids
    • Tort O., et al. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol. Biol. Cell 2014, 25:3017-3027.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3017-3027
    • Tort, O.1
  • 36
    • 84886940863 scopus 로고    scopus 로고
    • Cytosolic carboxypeptidase 5 removes alpha- and gamma-linked glutamates from tubulin
    • Berezniuk I., et al. Cytosolic carboxypeptidase 5 removes alpha- and gamma-linked glutamates from tubulin. J. Biol. Chem. 2013, 288:30445-30453.
    • (2013) J. Biol. Chem. , vol.288 , pp. 30445-30453
    • Berezniuk, I.1
  • 37
    • 78149486157 scopus 로고    scopus 로고
    • A family of protein-deglutamylating enzymes associated with neurodegeneration
    • Rogowski K., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010, 143:564-578.
    • (2010) Cell , vol.143 , pp. 564-578
    • Rogowski, K.1
  • 38
    • 0028283568 scopus 로고
    • Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies
    • Paturle-Lafanechere L., et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 1994, 107(Pt 6):1529-1543.
    • (1994) J. Cell Sci. , vol.107 , pp. 1529-1543
    • Paturle-Lafanechere, L.1
  • 40
    • 0027934789 scopus 로고
    • Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons
    • Audebert S., et al. Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons. J. Cell Sci. 1994, 107(Pt 8):2313-2322.
    • (1994) J. Cell Sci. , vol.107 , pp. 2313-2322
    • Audebert, S.1
  • 41
    • 21044442747 scopus 로고    scopus 로고
    • Centrioles resist forces applied on centrosomes during G2/M transition
    • Abal M., et al. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell 2005, 97:425-434.
    • (2005) Biol. Cell , vol.97 , pp. 425-434
    • Abal, M.1
  • 42
    • 58149349810 scopus 로고    scopus 로고
    • Ciliary tubulin and its post-translational modifications
    • Gaertig J., Wloga D. Ciliary tubulin and its post-translational modifications. Curr. Top. Dev. Biol. 2008, 85:83-113.
    • (2008) Curr. Top. Dev. Biol. , vol.85 , pp. 83-113
    • Gaertig, J.1    Wloga, D.2
  • 43
    • 61449248348 scopus 로고    scopus 로고
    • Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway
    • Mukai M., et al. Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway. Biochemistry 2009, 48:1084-1093.
    • (2009) Biochemistry , vol.48 , pp. 1084-1093
    • Mukai, M.1
  • 44
    • 42949107713 scopus 로고    scopus 로고
    • Polyglutamylation is a post-translational modification with a broad range of substrates
    • van Dijk J., et al. Polyglutamylation is a post-translational modification with a broad range of substrates. J. Biol. Chem. 2008, 283:3915-3922.
    • (2008) J. Biol. Chem. , vol.283 , pp. 3915-3922
    • van Dijk, J.1
  • 45
    • 0242382637 scopus 로고    scopus 로고
    • Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase
    • Regnard C., et al. Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J. Cell Sci. 2003, 116:4181-4190.
    • (2003) J. Cell Sci. , vol.116 , pp. 4181-4190
    • Regnard, C.1
  • 46
    • 33847688915 scopus 로고    scopus 로고
    • Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function
    • Ikegami K., et al. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3213-3218.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 3213-3218
    • Ikegami, K.1
  • 47
    • 0036743861 scopus 로고    scopus 로고
    • Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice
    • Campbell P.K., et al. Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice. Genetics 2002, 162:307-320.
    • (2002) Genetics , vol.162 , pp. 307-320
    • Campbell, P.K.1
  • 48
    • 0035918287 scopus 로고    scopus 로고
    • Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation
    • Bonnet C., et al. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J. Biol. Chem. 2001, 276:12839-12848.
    • (2001) J. Biol. Chem. , vol.276 , pp. 12839-12848
    • Bonnet, C.1
  • 49
    • 77953598298 scopus 로고    scopus 로고
    • Tubulin polyglutamylation stimulates spastin-mediated microtubule severing
    • Lacroix B., et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 2010, 189:945-954.
    • (2010) J. Cell Biol. , vol.189 , pp. 945-954
    • Lacroix, B.1
  • 50
    • 66649098395 scopus 로고    scopus 로고
    • Synaptic activation modifies microtubules underlying transport of postsynaptic cargo
    • Maas C., et al. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8731-8736.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8731-8736
    • Maas, C.1
  • 51
    • 0034533467 scopus 로고    scopus 로고
    • Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases
    • Harris A., et al. Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases. Mol. Cell. Neurosci. 2000, 16:578-596.
    • (2000) Mol. Cell. Neurosci. , vol.16 , pp. 578-596
    • Harris, A.1
  • 52
    • 77953672051 scopus 로고    scopus 로고
    • Posttranslational protein modifications in cilia and flagella
    • Sloboda R.D. Posttranslational protein modifications in cilia and flagella. Methods Cell Biol. 2009, 94:347-363.
    • (2009) Methods Cell Biol. , vol.94 , pp. 347-363
    • Sloboda, R.D.1
  • 53
    • 66949174087 scopus 로고    scopus 로고
    • TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia
    • Wloga D., et al. TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 2009, 16:867-876.
    • (2009) Dev. Cell , vol.16 , pp. 867-876
    • Wloga, D.1
  • 54
    • 66449100635 scopus 로고    scopus 로고
    • Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation
    • Rogowski K., et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 2009, 137:1076-1087.
    • (2009) Cell , vol.137 , pp. 1076-1087
    • Rogowski, K.1
  • 55
    • 67349090599 scopus 로고    scopus 로고
    • TTLL10 can perform tubulin glycylation when co-expressed with TTLL8
    • Ikegami K., Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 2009, 583:1957-1963.
    • (2009) FEBS Lett. , vol.583 , pp. 1957-1963
    • Ikegami, K.1    Setou, M.2
  • 56
    • 35649017201 scopus 로고    scopus 로고
    • Mammalian cilia function is independent of the polymeric state of tubulin glycylation
    • Dossou S.J., et al. Mammalian cilia function is independent of the polymeric state of tubulin glycylation. Cell Motil. Cytoskeleton 2007, 64:847-855.
    • (2007) Cell Motil. Cytoskeleton , vol.64 , pp. 847-855
    • Dossou, S.J.1
  • 57
    • 84908083025 scopus 로고    scopus 로고
    • Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon
    • Rocha C., et al. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 2014, 33:2247-2260.
    • (2014) EMBO J. , vol.33 , pp. 2247-2260
    • Rocha, C.1
  • 58
    • 79951855247 scopus 로고    scopus 로고
    • The ins and outs of tubulin acetylation: more than just a post-translational modification?
    • Perdiz D., et al. The ins and outs of tubulin acetylation: more than just a post-translational modification?. Cell. Signal. 2011, 23:763-771.
    • (2011) Cell. Signal. , vol.23 , pp. 763-771
    • Perdiz, D.1
  • 59
    • 0021993649 scopus 로고
    • Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine
    • L'Hernault S.W., Rosenbaum J.L. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 1985, 24:473-478.
    • (1985) Biochemistry , vol.24 , pp. 473-478
    • L'Hernault, S.W.1    Rosenbaum, J.L.2
  • 60
    • 84868146124 scopus 로고    scopus 로고
    • Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules
    • Soppina V., et al. Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS ONE 2012, 7:e48204.
    • (2012) PLoS ONE , vol.7 , pp. e48204
    • Soppina, V.1
  • 61
    • 84902106884 scopus 로고    scopus 로고
    • Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase
    • Szyk A., et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 2014, 157:1405-1415.
    • (2014) Cell , vol.157 , pp. 1405-1415
    • Szyk, A.1
  • 62
    • 0022452231 scopus 로고
    • The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules
    • Maruta H., et al. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 1986, 103:571-579.
    • (1986) J. Cell Biol. , vol.103 , pp. 571-579
    • Maruta, H.1
  • 63
    • 84892547110 scopus 로고    scopus 로고
    • Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure
    • Howes S.C., et al. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 2014, 25:257-266.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 257-266
    • Howes, S.C.1
  • 64
    • 77956525850 scopus 로고    scopus 로고
    • MEC-17 is an alpha-tubulin acetyltransferase
    • Akella J.S., et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010, 467:218-222.
    • (2010) Nature , vol.467 , pp. 218-222
    • Akella, J.S.1
  • 65
    • 84891620677 scopus 로고    scopus 로고
    • AlphaTAT1 is the major alpha-tubulin acetyltransferase in mice
    • Kalebic N., et al. alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun. 2013, 4:1962.
    • (2013) Nat. Commun. , vol.4 , pp. 1962
    • Kalebic, N.1
  • 66
    • 78650731392 scopus 로고    scopus 로고
    • The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation
    • Shida T., et al. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21517-21522.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 21517-21522
    • Shida, T.1
  • 67
    • 84862690126 scopus 로고    scopus 로고
    • Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization
    • Topalidou I., et al. Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr. Biol. 2012, 22:1057-1065.
    • (2012) Curr. Biol. , vol.22 , pp. 1057-1065
    • Topalidou, I.1
  • 68
    • 84874709998 scopus 로고    scopus 로고
    • Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity
    • Kalebic N., et al. Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity. Mol. Cell. Biol. 2013, 33:1114-1123.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 1114-1123
    • Kalebic, N.1
  • 69
    • 84886950926 scopus 로고    scopus 로고
    • AlphaTAT1 catalyses microtubule acetylation at clathrin-coated pits
    • Montagnac G., et al. alphaTAT1 catalyses microtubule acetylation at clathrin-coated pits. Nature 2013, 502:567-570.
    • (2013) Nature , vol.502 , pp. 567-570
    • Montagnac, G.1
  • 70
    • 84880066266 scopus 로고    scopus 로고
    • Mice lacking alpha-tubulin acetyltransferase 1 are viable but display alpha-tubulin acetylation deficiency and dentate gyrus distortion
    • Kim G.W., et al. Mice lacking alpha-tubulin acetyltransferase 1 are viable but display alpha-tubulin acetylation deficiency and dentate gyrus distortion. J. Biol. Chem. 2013, 288:20334-20350.
    • (2013) J. Biol. Chem. , vol.288 , pp. 20334-20350
    • Kim, G.W.1
  • 71
    • 0023154428 scopus 로고
    • Acetylated alpha-tubulin in Physarum: immunological characterization of the isotype and its usage in particular microtubular organelles
    • Sasse R., et al. Acetylated alpha-tubulin in Physarum: immunological characterization of the isotype and its usage in particular microtubular organelles. J. Cell Biol. 1987, 104:41-49.
    • (1987) J. Cell Biol. , vol.104 , pp. 41-49
    • Sasse, R.1
  • 72
    • 0027680037 scopus 로고
    • Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization
    • Souto-Padron T., et al. Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization. Memorias do Instituto Oswaldo Cruz 1993, 88:517-528.
    • (1993) Memorias do Instituto Oswaldo Cruz , vol.88 , pp. 517-528
    • Souto-Padron, T.1
  • 73
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 74
    • 79951819919 scopus 로고    scopus 로고
    • A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation
    • Chu C.W., et al. A novel acetylation of beta-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol. Biol. Cell 2011, 22:448-456.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 448-456
    • Chu, C.W.1
  • 75
    • 84862658847 scopus 로고    scopus 로고
    • Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules
    • Cueva J.G., et al. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr. Biol. 2012, 22:1066-1074.
    • (2012) Curr. Biol. , vol.22 , pp. 1066-1074
    • Cueva, J.G.1
  • 76
    • 59749105117 scopus 로고    scopus 로고
    • Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53
    • Giustiniani J., et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell. Signal. 2009, 21:529-539.
    • (2009) Cell. Signal. , vol.21 , pp. 529-539
    • Giustiniani, J.1
  • 77
    • 84896532784 scopus 로고    scopus 로고
    • Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production
    • Wang B., et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat. Commun. 2014, 5:3479.
    • (2014) Nat. Commun. , vol.5 , pp. 3479
    • Wang, B.1
  • 78
    • 77953046399 scopus 로고    scopus 로고
    • Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts
    • Sudo H., Baas P.W. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J. Neurosci. 2010, 30:7215-7226.
    • (2010) J. Neurosci. , vol.30 , pp. 7215-7226
    • Sudo, H.1    Baas, P.W.2
  • 79
    • 33645221487 scopus 로고    scopus 로고
    • Tau protects microtubules in the axon from severing by katanin
    • Qiang L., et al. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 2006, 26:3120-3129.
    • (2006) J. Neurosci. , vol.26 , pp. 3120-3129
    • Qiang, L.1
  • 80
    • 44949204601 scopus 로고    scopus 로고
    • The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches
    • Yu W., et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 2008, 19:1485-1498.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1485-1498
    • Yu, W.1
  • 81
    • 33750618516 scopus 로고    scopus 로고
    • Microtubule acetylation promotes kinesin-1 binding and transport
    • Reed N.A., et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 2006, 16:2166-2172.
    • (2006) Curr. Biol. , vol.16 , pp. 2166-2172
    • Reed, N.A.1
  • 82
    • 84864746082 scopus 로고    scopus 로고
    • Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro
    • Walter W.J., et al. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE 2012, 7:e42218.
    • (2012) PLoS ONE , vol.7 , pp. e42218
    • Walter, W.J.1
  • 83
    • 61849144810 scopus 로고    scopus 로고
    • HDAC family: What are the cancer relevant targets?
    • Witt O., et al. HDAC family: What are the cancer relevant targets?. Cancer Lett. 2009, 277:8-21.
    • (2009) Cancer Lett. , vol.277 , pp. 8-21
    • Witt, O.1
  • 84
    • 79952204427 scopus 로고    scopus 로고
    • Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates
    • Yao Y.L., Yang W.M. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J. Biomed. Biotechnol. 2011, 2011:146493.
    • (2011) J. Biomed. Biotechnol. , vol.2011 , pp. 146493
    • Yao, Y.L.1    Yang, W.M.2
  • 85
    • 85045783722 scopus 로고    scopus 로고
    • HDAC6: Physiological function and its selective inhibitors for cancer treatment
    • Yang P.H., et al. HDAC6: Physiological function and its selective inhibitors for cancer treatment. Drug Discov. Ther. 2013, 7:233-242.
    • (2013) Drug Discov. Ther. , vol.7 , pp. 233-242
    • Yang, P.H.1
  • 86
    • 33746541576 scopus 로고    scopus 로고
    • HDAC6-p97/VCP controlled polyubiquitin chain turnover
    • Boyault C., et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006, 25:3357-3366.
    • (2006) EMBO J. , vol.25 , pp. 3357-3366
    • Boyault, C.1
  • 87
    • 34547684065 scopus 로고    scopus 로고
    • HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
    • Boyault C., et al. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26:5468-5476.
    • (2007) Oncogene , vol.26 , pp. 5468-5476
    • Boyault, C.1
  • 88
    • 40749161986 scopus 로고    scopus 로고
    • Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally
    • Zhang Y., et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 2008, 28:1688-1701.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1688-1701
    • Zhang, Y.1
  • 89
    • 84864147535 scopus 로고    scopus 로고
    • HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration
    • Cho Y., Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 2012, 31:3063-3078.
    • (2012) EMBO J. , vol.31 , pp. 3063-3078
    • Cho, Y.1    Cavalli, V.2
  • 90
    • 84887959502 scopus 로고    scopus 로고
    • Injury-induced HDAC5 nuclear export is essential for axon regeneration
    • Cho Y., et al. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 2013, 155:894-908.
    • (2013) Cell , vol.155 , pp. 894-908
    • Cho, Y.1
  • 91
    • 83455218662 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1): the misunderstood HDAC
    • Stunkel W., Campbell R.M. Sirtuin 1 (SIRT1): the misunderstood HDAC. J. Biomol. Screen. 2011, 16:1153-1169.
    • (2011) J. Biomol. Screen. , vol.16 , pp. 1153-1169
    • Stunkel, W.1    Campbell, R.M.2
  • 92
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North B.J., et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 2003, 11:437-444.
    • (2003) Mol. Cell , vol.11 , pp. 437-444
    • North, B.J.1
  • 93
    • 39149122568 scopus 로고    scopus 로고
    • Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
    • North B.J., Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS ONE 2007, 2:e784.
    • (2007) PLoS ONE , vol.2 , pp. e784
    • North, B.J.1    Verdin, E.2
  • 94
    • 34248151365 scopus 로고    scopus 로고
    • The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
    • Inoue T., et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007, 6:1011-1018.
    • (2007) Cell Cycle , vol.6 , pp. 1011-1018
    • Inoue, T.1
  • 95
    • 40849113090 scopus 로고    scopus 로고
    • The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
    • Pandithage R., et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J. Cell Biol. 2008, 180:915-929.
    • (2008) J. Cell Biol. , vol.180 , pp. 915-929
    • Pandithage, R.1
  • 96
    • 0029022205 scopus 로고
    • Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A
    • Shetty V.K., et al. Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J. Neurochem. 1995, 64:2681-2690.
    • (1995) J. Neurochem. , vol.64 , pp. 2681-2690
    • Shetty, V.K.1
  • 98
    • 84866529842 scopus 로고    scopus 로고
    • SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
    • Bobrowska A., et al. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS ONE 2012, 7:e34805.
    • (2012) PLoS ONE , vol.7 , pp. e34805
    • Bobrowska, A.1
  • 99
    • 0021718241 scopus 로고
    • Axonal tubulin and axonal microtubules: biochemical evidence for cold stability
    • Brady S.T., et al. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J. Cell Biol. 1984, 99:1716-1724.
    • (1984) J. Cell Biol. , vol.99 , pp. 1716-1724
    • Brady, S.T.1
  • 100
    • 0036804796 scopus 로고    scopus 로고
    • Transglutaminase 2: an enigmatic enzyme with diverse functions
    • Fesus L., Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem. Sci. 2002, 27:534-539.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 534-539
    • Fesus, L.1    Piacentini, M.2
  • 101
    • 2642536093 scopus 로고    scopus 로고
    • Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase
    • Mishra S., Murphy L.J. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J. Biol. Chem. 2004, 279:23863-23868.
    • (2004) J. Biol. Chem. , vol.279 , pp. 23863-23868
    • Mishra, S.1    Murphy, L.J.2
  • 102
    • 82755161784 scopus 로고    scopus 로고
    • Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein
    • Kiraly R., et al. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J. 2011, 278:4717-4739.
    • (2011) FEBS J. , vol.278 , pp. 4717-4739
    • Kiraly, R.1
  • 103
    • 0042068233 scopus 로고    scopus 로고
    • A novel function of tissue-type transglutaminase: protein disulphide isomerase
    • Hasegawa G., et al. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem. J. 2003, 373:793-803.
    • (2003) Biochem. J. , vol.373 , pp. 793-803
    • Hasegawa, G.1
  • 104
    • 32844474694 scopus 로고    scopus 로고
    • The role of transglutaminase-2 and its substrates in human diseases
    • Facchiano F., et al. The role of transglutaminase-2 and its substrates in human diseases. Front. Biosci. 2006, 11:1758-1773.
    • (2006) Front. Biosci. , vol.11 , pp. 1758-1773
    • Facchiano, F.1
  • 105
    • 84897019327 scopus 로고    scopus 로고
    • Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1
    • Oono M., et al. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J. Neurochem. 2014, 128:403-418.
    • (2014) J. Neurochem. , vol.128 , pp. 403-418
    • Oono, M.1
  • 106
    • 84864835917 scopus 로고    scopus 로고
    • Physio-pathological roles of transglutaminase-catalyzed reactions
    • Ricotta M., et al. Physio-pathological roles of transglutaminase-catalyzed reactions. World J. Biol. Chem. 2010, 1:181-187.
    • (2010) World J. Biol. Chem. , vol.1 , pp. 181-187
    • Ricotta, M.1
  • 107
    • 84871998866 scopus 로고    scopus 로고
    • Tissue-specific responses to loss of transglutaminase 2
    • Deasey S., et al. Tissue-specific responses to loss of transglutaminase 2. Amino Acids 2011, 44:179-187.
    • (2011) Amino Acids , vol.44 , pp. 179-187
    • Deasey, S.1
  • 108
    • 67651071286 scopus 로고    scopus 로고
    • Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders
    • Iismaa S.E., et al. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol. Rev. 2009, 89:991-1023.
    • (2009) Physiol. Rev. , vol.89 , pp. 991-1023
    • Iismaa, S.E.1
  • 109
    • 84882628718 scopus 로고    scopus 로고
    • Stabilization of neuronal microtubules by polyamines and transglutaminase: its roles in brain function
    • University of Illinois at Chicago College of Medicine, pp.
    • Song, Y. (2010) Stabilization of neuronal microtubules by polyamines and transglutaminase: its roles in brain function. In Dept of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, pp. 199, http://search.proquest.com/docview/763102287.
    • (2010) In Dept of Anatomy and Cell Biology , pp. 199
    • Song, Y.1
  • 110
    • 0035313624 scopus 로고    scopus 로고
    • Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons
    • Kirkpatrick L.L., et al. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J. Neurosci. 2001, 21:2288-2297.
    • (2001) J. Neurosci. , vol.21 , pp. 2288-2297
    • Kirkpatrick, L.L.1
  • 111
    • 78049361418 scopus 로고    scopus 로고
    • Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening
    • Chabot N., et al. Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. Chem. Biol. 2010, 17:1143-1150.
    • (2010) Chem. Biol. , vol.17 , pp. 1143-1150
    • Chabot, N.1
  • 112
    • 62949141260 scopus 로고    scopus 로고
    • Some lessons from the tissue transglutaminase knockout mouse
    • Sarang Z., et al. Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 2009, 36:625-631.
    • (2009) Amino Acids , vol.36 , pp. 625-631
    • Sarang, Z.1
  • 113
    • 0021990889 scopus 로고
    • A polymer dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line
    • Gard D.L., Kirschner M. A polymer dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell Biol. 1985, 100:764-774.
    • (1985) J. Cell Biol. , vol.100 , pp. 764-774
    • Gard, D.L.1    Kirschner, M.2
  • 114
    • 33644865003 scopus 로고    scopus 로고
    • Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1
    • Fourest-Lieuvin A., et al. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 2006, 17:1041-1050.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1041-1050
    • Fourest-Lieuvin, A.1
  • 115
    • 6344242879 scopus 로고    scopus 로고
    • The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly
    • Laurent C.E., et al. The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly. Mol. Cell. Biol. 2004, 24:9351-9358.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9351-9358
    • Laurent, C.E.1
  • 116
    • 51049119252 scopus 로고    scopus 로고
    • Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin
    • Cicchillitti L., et al. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol. Cancer Ther. 2008, 7:2070-2079.
    • (2008) Mol. Cancer Ther. , vol.7 , pp. 2070-2079
    • Cicchillitti, L.1
  • 117
    • 0041851031 scopus 로고    scopus 로고
    • Glycosylation of the alpha and beta tubulin by sialyloligosaccharides
    • Hino M., et al. Glycosylation of the alpha and beta tubulin by sialyloligosaccharides. Zoolog. Sci. 2003, 20:709-715.
    • (2003) Zoolog. Sci. , vol.20 , pp. 709-715
    • Hino, M.1
  • 118
    • 0030752545 scopus 로고    scopus 로고
    • The role of axonal cytoskeleton in diabetic neuropathy
    • McLean W.G. The role of axonal cytoskeleton in diabetic neuropathy. Neurochem. Res. 1997, 22:951-956.
    • (1997) Neurochem. Res. , vol.22 , pp. 951-956
    • McLean, W.G.1
  • 119
    • 79954435787 scopus 로고    scopus 로고
    • O-GlcNAcylation of tubulin inhibits its polymerization
    • Ji S., et al. O-GlcNAcylation of tubulin inhibits its polymerization. Amino Acids 2011, 40:809-818.
    • (2011) Amino Acids , vol.40 , pp. 809-818
    • Ji, S.1
  • 120
    • 84862643485 scopus 로고    scopus 로고
    • Lipid glycation and protein glycation in diabetes and atherosclerosis
    • Miyazawa T., et al. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids 2012, 42:1163-1170.
    • (2012) Amino Acids , vol.42 , pp. 1163-1170
    • Miyazawa, T.1
  • 121
    • 68149097082 scopus 로고    scopus 로고
    • Plasma membrane tubulin
    • Wolff J. Plasma membrane tubulin. Biochim. Biophys. Acta 2009, 1788:1415-1433.
    • (2009) Biochim. Biophys. Acta , vol.1788 , pp. 1415-1433
    • Wolff, J.1
  • 122
    • 77249134163 scopus 로고    scopus 로고
    • Protein palmitoylation in neuronal development and synaptic plasticity
    • Fukata Y., Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010, 11:161-175.
    • (2010) Nat. Rev. Neurosci. , vol.11 , pp. 161-175
    • Fukata, Y.1    Fukata, M.2
  • 123
    • 0035166773 scopus 로고    scopus 로고
    • Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin
    • Caron J.M., et al. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol. Biol. Cell 2001, 12:2672-2687.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 2672-2687
    • Caron, J.M.1
  • 124
    • 0033865788 scopus 로고    scopus 로고
    • Autopalmitoylation of tubulin
    • Wolff J., et al. Autopalmitoylation of tubulin. Protein Sci. 2000, 9:1357-1364.
    • (2000) Protein Sci. , vol.9 , pp. 1357-1364
    • Wolff, J.1
  • 125
    • 33846438222 scopus 로고    scopus 로고
    • Vinblastine, a chemotherapeutic drug, inhibits palmitoylation of tubulin in human leukemic lymphocytes
    • Caron J.M., Herwood M. Vinblastine, a chemotherapeutic drug, inhibits palmitoylation of tubulin in human leukemic lymphocytes. Chemotherapy 2007, 53:51-58.
    • (2007) Chemotherapy , vol.53 , pp. 51-58
    • Caron, J.M.1    Herwood, M.2
  • 126
    • 84878944582 scopus 로고    scopus 로고
    • Sumoylation: a regulatory protein modification in health and disease
    • Flotho A., Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 2013, 82:357-385.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 357-385
    • Flotho, A.1    Melchior, F.2
  • 127
    • 84861881296 scopus 로고    scopus 로고
    • The ubiquitin system, an immense realm
    • Varshavsky A. The ubiquitin system, an immense realm. Annu. Rev. Biochem. 2012, 81:167-176.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 167-176
    • Varshavsky, A.1
  • 129
    • 77953890085 scopus 로고    scopus 로고
    • Parkinson's disease: insights from pathways
    • Cookson M.R., Bandmann O. Parkinson's disease: insights from pathways. Hum. Mol. Genet. 2010, 19:R21-R27.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. R21-R27
    • Cookson, M.R.1    Bandmann, O.2
  • 130
    • 68649097307 scopus 로고    scopus 로고
    • The genetics of Parkinson's syndromes: a critical review
    • Hardy J., et al. The genetics of Parkinson's syndromes: a critical review. Curr. Opin. Genet. Dev. 2009, 19:254-265.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 254-265
    • Hardy, J.1
  • 131
    • 0037738525 scopus 로고    scopus 로고
    • Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation
    • Ren Y., et al. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci. 2003, 23:3316-3324.
    • (2003) J. Neurosci. , vol.23 , pp. 3316-3324
    • Ren, Y.1
  • 132
    • 0242531029 scopus 로고    scopus 로고
    • Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin
    • Ardley H.C., et al. Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol. Biol. Cell 2003, 14:4541-4556.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4541-4556
    • Ardley, H.C.1
  • 133
    • 0347917234 scopus 로고    scopus 로고
    • Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival
    • Muqit M.M., et al. Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Hum. Mol. Genet. 2004, 13:117-135.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 117-135
    • Muqit, M.M.1
  • 134
    • 0038155130 scopus 로고    scopus 로고
    • Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins
    • Hyun D.H., et al. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J. Neurochem. 2003, 86:363-373.
    • (2003) J. Neurochem. , vol.86 , pp. 363-373
    • Hyun, D.H.1
  • 135
    • 69449094091 scopus 로고    scopus 로고
    • The ubiquitin conjugation system is involved in the disassembly of cilia and flagella
    • Huang K., et al. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 2009, 186:601-613.
    • (2009) J. Cell Biol. , vol.186 , pp. 601-613
    • Huang, K.1
  • 136
    • 4744360999 scopus 로고    scopus 로고
    • A proteome-wide approach identifies sumoylated substrate proteins in yeast
    • Panse V.G., et al. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 2004, 279:41346-41351.
    • (2004) J. Biol. Chem. , vol.279 , pp. 41346-41351
    • Panse, V.G.1
  • 137
    • 14644402420 scopus 로고    scopus 로고
    • A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers
    • Rosas-Acosta G., et al. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 2005, 4:56-72.
    • (2005) Mol. Cell. Proteomics , vol.4 , pp. 56-72
    • Rosas-Acosta, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.