메뉴 건너뛰기




Volumn 36, Issue 7, 2015, Pages 401-409

Innate immunity at mucosal surfaces: The IRE1-RIDD-RIG-I pathway

Author keywords

Inflammation; Innate immunity; Intestine; IRE1; Mucosal immunity; RIG I

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 6; CHOLERA TOXIN; MEMBRANE PROTEIN; PATTERN RECOGNITION RECEPTOR; PROTEIN IRE1; RETINOIC ACID INDUCIBLE PROTEIN I; RIDD PROTEIN; UNCLASSIFIED DRUG; DDX58 PROTEIN, HUMAN; DEAD BOX PROTEIN; ERN1 PROTEIN, HUMAN; PROTEIN SERINE THREONINE KINASE; RIBONUCLEASE;

EID: 84937639173     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.05.006     Document Type: Review
Times cited : (40)

References (106)
  • 1
    • 77953153048 scopus 로고    scopus 로고
    • Regulation of basal cellular physiology by the homeostatic unfolded protein response
    • Rutkowski D.T., Hegde R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 2010, 189:783-794.
    • (2010) J. Cell Biol. , vol.189 , pp. 783-794
    • Rutkowski, D.T.1    Hegde, R.S.2
  • 2
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: from stress pathway to homeostatic regulation
    • Walter P., Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334:1081-1086.
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 3
    • 81355137930 scopus 로고    scopus 로고
    • The ER in 3D: a multifunctional dynamic membrane network
    • Friedman J.R., Voeltz G.K. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 2011, 21:709-717.
    • (2011) Trends Cell Biol. , vol.21 , pp. 709-717
    • Friedman, J.R.1    Voeltz, G.K.2
  • 4
    • 84874438834 scopus 로고    scopus 로고
    • The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress
    • Jager R., et al. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol. Cell 2012, 104:259-270.
    • (2012) Biol. Cell , vol.104 , pp. 259-270
    • Jager, R.1
  • 5
    • 47949099916 scopus 로고    scopus 로고
    • From endoplasmic-reticulum stress to the inflammatory response
    • Zhang K., Kaufman R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008, 454:455-462.
    • (2008) Nature , vol.454 , pp. 455-462
    • Zhang, K.1    Kaufman, R.J.2
  • 6
    • 75649118565 scopus 로고    scopus 로고
    • Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals
    • Kohno K. Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J. Biochem. 2010, 147:27-33.
    • (2010) J. Biochem. , vol.147 , pp. 27-33
    • Kohno, K.1
  • 7
    • 71949098172 scopus 로고    scopus 로고
    • Signalling pathways in the unfolded protein response: development from yeast to mammals
    • Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem. 2009, 146:743-750.
    • (2009) J. Biochem. , vol.146 , pp. 743-750
    • Mori, K.1
  • 8
    • 84870735655 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress sensing in the unfolded protein response
    • Gardner B.M., et al. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 2013, 5:a013169.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a013169
    • Gardner, B.M.1
  • 9
    • 77649135472 scopus 로고    scopus 로고
    • An essential role for XBP-1 in host protection against immune activation in C. elegans
    • Richardson C.E., et al. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 2010, 463:1092-1095.
    • (2010) Nature , vol.463 , pp. 1092-1095
    • Richardson, C.E.1
  • 10
    • 50249116184 scopus 로고    scopus 로고
    • The endoplasmic reticulum stress response in immunity and autoimmunity
    • Todd D.J., et al. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 2008, 8:663-674.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 663-674
    • Todd, D.J.1
  • 11
    • 84922069715 scopus 로고    scopus 로고
    • Emerging functions of the unfolded protein response in immunity
    • Janssens S., et al. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 2014, 15:910-919.
    • (2014) Nat. Immunol. , vol.15 , pp. 910-919
    • Janssens, S.1
  • 12
    • 0027324844 scopus 로고
    • Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase
    • Cox J.S., et al. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993, 73:1197-1206.
    • (1993) Cell , vol.73 , pp. 1197-1206
    • Cox, J.S.1
  • 13
    • 0027305620 scopus 로고
    • +/CDC28-related kinase activity is required for signaling from the ER to the nucleus
    • +/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 1993, 74:743-756.
    • (1993) Cell , vol.74 , pp. 743-756
    • Mori, K.1
  • 14
    • 84877870687 scopus 로고    scopus 로고
    • The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling
    • Cho J.A., et al. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 2013, 13:558-569.
    • (2013) Cell Host Microbe , vol.13 , pp. 558-569
    • Cho, J.A.1
  • 15
    • 84906230645 scopus 로고    scopus 로고
    • The SKIV2L RNA exosome limits activation of the RIG-I-like receptors
    • Eckard S.C., et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 2014, 15:839-845.
    • (2014) Nat. Immunol. , vol.15 , pp. 839-845
    • Eckard, S.C.1
  • 16
    • 84870159094 scopus 로고    scopus 로고
    • Structural basis of the unfolded protein response
    • Korennykh A., Walter P. Structural basis of the unfolded protein response. Annu. Rev. Cell Dev. Biol. 2012, 28:251-277.
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 251-277
    • Korennykh, A.1    Walter, P.2
  • 17
    • 30044432596 scopus 로고    scopus 로고
    • On the mechanism of sensing unfolded protein in the endoplasmic reticulum
    • Credle J.J., et al. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:18773-18784.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 18773-18784
    • Credle, J.J.1
  • 18
    • 33749233991 scopus 로고    scopus 로고
    • The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response
    • Zhou J., et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14343-14348.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 14343-14348
    • Zhou, J.1
  • 19
    • 79954426601 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells
    • Kimata Y., Kohno K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr. Opin. Cell Biol. 2011, 23:135-142.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 135-142
    • Kimata, Y.1    Kohno, K.2
  • 20
    • 80053369081 scopus 로고    scopus 로고
    • Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response
    • Gardner B.M., Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 2011, 333:1891-1894.
    • (2011) Science , vol.333 , pp. 1891-1894
    • Gardner, B.M.1    Walter, P.2
  • 21
    • 0034694896 scopus 로고    scopus 로고
    • Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast
    • Okamura K., et al. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun. 2000, 279:445-450.
    • (2000) Biochem. Biophys. Res. Commun. , vol.279 , pp. 445-450
    • Okamura, K.1
  • 22
    • 0033782015 scopus 로고    scopus 로고
    • Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response
    • Bertolotti A., et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2000, 2:326-332.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 326-332
    • Bertolotti, A.1
  • 23
    • 59649092854 scopus 로고    scopus 로고
    • Messenger RNA targeting to endoplasmic reticulum stress signalling sites
    • Aragon T., et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2009, 457:736-740.
    • (2009) Nature , vol.457 , pp. 736-740
    • Aragon, T.1
  • 24
    • 77958016968 scopus 로고    scopus 로고
    • Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering
    • Li H., et al. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16113-16118.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16113-16118
    • Li, H.1
  • 25
    • 79959915370 scopus 로고    scopus 로고
    • Structural and functional basis for RNA cleavage by Ire1
    • Korennykh A.V., et al. Structural and functional basis for RNA cleavage by Ire1. BMC Biol. 2011, 9:47.
    • (2011) BMC Biol. , vol.9 , pp. 47
    • Korennykh, A.V.1
  • 26
    • 59649111087 scopus 로고    scopus 로고
    • The unfolded protein response signals through high-order assembly of Ire1
    • Korennykh A.V., et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 2009, 457:687-693.
    • (2009) Nature , vol.457 , pp. 687-693
    • Korennykh, A.V.1
  • 27
    • 35348967427 scopus 로고    scopus 로고
    • Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins
    • Kimata Y., et al. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol. 2007, 179:75-86.
    • (2007) J. Cell Biol. , vol.179 , pp. 75-86
    • Kimata, Y.1
  • 28
    • 84905492694 scopus 로고    scopus 로고
    • Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress
    • Ghosh R., et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 2014, 158:534-548.
    • (2014) Cell , vol.158 , pp. 534-548
    • Ghosh, R.1
  • 29
    • 8444250981 scopus 로고    scopus 로고
    • A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1
    • Kimata Y., et al. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J. Cell Biol. 2004, 167:445-456.
    • (2004) J. Cell Biol. , vol.167 , pp. 445-456
    • Kimata, Y.1
  • 30
    • 67651045789 scopus 로고    scopus 로고
    • Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins
    • Oikawa D., et al. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res. 2009, 315:2496-2504.
    • (2009) Exp. Cell Res. , vol.315 , pp. 2496-2504
    • Oikawa, D.1
  • 31
    • 84875242776 scopus 로고    scopus 로고
    • Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains
    • Volmer R., et al. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:4628-4633.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4628-4633
    • Volmer, R.1
  • 32
    • 33646237823 scopus 로고    scopus 로고
    • Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α
    • Hetz C., et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 2006, 312:572-576.
    • (2006) Science , vol.312 , pp. 572-576
    • Hetz, C.1
  • 33
    • 69749123786 scopus 로고    scopus 로고
    • Fine-tuning of the unfolded protein response: assembling the IRE1α interactome
    • Hetz C., Glimcher L.H. Fine-tuning of the unfolded protein response: assembling the IRE1α interactome. Mol. Cell 2009, 35:551-561.
    • (2009) Mol. Cell , vol.35 , pp. 551-561
    • Hetz, C.1    Glimcher, L.H.2
  • 34
    • 79959902152 scopus 로고    scopus 로고
    • Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1
    • Korennykh A.V., et al. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biol. 2011, 9:48.
    • (2011) BMC Biol. , vol.9 , pp. 48
    • Korennykh, A.V.1
  • 35
    • 77950887221 scopus 로고    scopus 로고
    • Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1
    • Wiseman R.L., et al. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell 2010, 38:291-304.
    • (2010) Mol. Cell , vol.38 , pp. 291-304
    • Wiseman, R.L.1
  • 36
    • 0037011917 scopus 로고    scopus 로고
    • IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
    • Calfon M., et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002, 415:92-96.
    • (2002) Nature , vol.415 , pp. 92-96
    • Calfon, M.1
  • 37
    • 0033152626 scopus 로고    scopus 로고
    • Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway
    • Gonzalez T.N., et al. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 1999, 18:3119-3132.
    • (1999) EMBO J. , vol.18 , pp. 3119-3132
    • Gonzalez, T.N.1
  • 38
    • 0030808558 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response
    • Kawahara T., et al. Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 1997, 8:1845-1862.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1845-1862
    • Kawahara, T.1
  • 39
    • 0030954870 scopus 로고    scopus 로고
    • The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response
    • Sidrauski C., Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997, 90:1031-1039.
    • (1997) Cell , vol.90 , pp. 1031-1039
    • Sidrauski, C.1    Walter, P.2
  • 40
    • 0034723235 scopus 로고    scopus 로고
    • Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
    • Urano F., et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000, 287:664-666.
    • (2000) Science , vol.287 , pp. 664-666
    • Urano, F.1
  • 41
    • 33645815074 scopus 로고    scopus 로고
    • Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression
    • Hu P., et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 2006, 26:3071-3084.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3071-3084
    • Hu, P.1
  • 42
    • 33745893809 scopus 로고    scopus 로고
    • Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response
    • Hollien J., Weissman J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006, 313:104-107.
    • (2006) Science , vol.313 , pp. 104-107
    • Hollien, J.1    Weissman, J.S.2
  • 43
    • 68549092781 scopus 로고    scopus 로고
    • Regulated Ire1-dependent decay of messenger RNAs in mammalian cells
    • Hollien J., et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 2009, 186:323-331.
    • (2009) J. Cell Biol. , vol.186 , pp. 323-331
    • Hollien, J.1
  • 44
    • 84908078105 scopus 로고    scopus 로고
    • The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum
    • Reid D.W., et al. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 2014, 158:1362-1374.
    • (2014) Cell , vol.158 , pp. 1362-1374
    • Reid, D.W.1
  • 45
    • 84868525253 scopus 로고    scopus 로고
    • IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2
    • Upton J.P., et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 2012, 338:818-822.
    • (2012) Science , vol.338 , pp. 818-822
    • Upton, J.P.1
  • 46
    • 84864693470 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome
    • Oslowski C.M., et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012, 16:265-273.
    • (2012) Cell Metab. , vol.16 , pp. 265-273
    • Oslowski, C.M.1
  • 47
    • 84894424803 scopus 로고    scopus 로고
    • + dendritic cells
    • + dendritic cells. Nat. Immunol. 2014, 15:248-257.
    • (2014) Nat. Immunol. , vol.15 , pp. 248-257
    • Osorio, F.1
  • 48
    • 84867038186 scopus 로고    scopus 로고
    • Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice
    • So J.S., et al. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 2012, 16:487-499.
    • (2012) Cell Metab. , vol.16 , pp. 487-499
    • So, J.S.1
  • 49
    • 68049110633 scopus 로고    scopus 로고
    • IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates
    • Han D., et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009, 138:562-575.
    • (2009) Cell , vol.138 , pp. 562-575
    • Han, D.1
  • 50
    • 79957773163 scopus 로고    scopus 로고
    • Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion
    • Lee A.H., et al. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8885-8890.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8885-8890
    • Lee, A.H.1
  • 51
    • 84858699864 scopus 로고    scopus 로고
    • The interplay between endoplasmic reticulum stress and inflammation
    • Hasnain S.Z., et al. The interplay between endoplasmic reticulum stress and inflammation. Immunol. Cell Biol. 2012, 90:260-270.
    • (2012) Immunol. Cell Biol. , vol.90 , pp. 260-270
    • Hasnain, S.Z.1
  • 52
    • 84864682160 scopus 로고    scopus 로고
    • IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress
    • Lerner A.G., et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012, 16:250-264.
    • (2012) Cell Metab. , vol.16 , pp. 250-264
    • Lerner, A.G.1
  • 53
    • 77951290227 scopus 로고    scopus 로고
    • TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages
    • Martinon F., et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. immunol. 2010, 11:411-418.
    • (2010) Nat. immunol. , vol.11 , pp. 411-418
    • Martinon, F.1
  • 54
    • 79951676940 scopus 로고    scopus 로고
    • Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum
    • Martinon F., Glimcher L.H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 2011, 23:35-40.
    • (2011) Curr. Opin. Immunol. , vol.23 , pp. 35-40
    • Martinon, F.1    Glimcher, L.H.2
  • 55
    • 0027427636 scopus 로고
    • A hybrid protein kinase-RNase in an interferon-induced pathway?
    • Bork P., Sander C. A hybrid protein kinase-RNase in an interferon-induced pathway?. FEBS Lett. 1993, 334:149-152.
    • (1993) FEBS Lett. , vol.334 , pp. 149-152
    • Bork, P.1    Sander, C.2
  • 56
    • 34547960175 scopus 로고    scopus 로고
    • Small self-RNA generated by RNase L amplifies antiviral innate immunity
    • Malathi K., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007, 448:816-819.
    • (2007) Nature , vol.448 , pp. 816-819
    • Malathi, K.1
  • 57
    • 79958053294 scopus 로고    scopus 로고
    • PAMPer and tRIGer: ligand-induced activation of RIG-I
    • Bowzard J.B., et al. PAMPer and tRIGer: ligand-induced activation of RIG-I. Trends Biochem. Sci. 2011, 36:314-319.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 314-319
    • Bowzard, J.B.1
  • 58
    • 33750976374 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA is the ligand for RIG-I
    • Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1
  • 59
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1
  • 60
    • 77955508240 scopus 로고    scopus 로고
    • RIG-I 'sees' the 5'-triphosphate
    • Zheng C., Wu H. RIG-I 'sees' the 5'-triphosphate. Structure 2010, 18:894-896.
    • (2010) Structure , vol.18 , pp. 894-896
    • Zheng, C.1    Wu, H.2
  • 61
    • 74049126045 scopus 로고    scopus 로고
    • Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production
    • Poeck H., et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 2010, 11:63-69.
    • (2010) Nat. Immunol. , vol.11 , pp. 63-69
    • Poeck, H.1
  • 62
    • 84919708686 scopus 로고    scopus 로고
    • Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD
    • Tam A.B., et al. Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD. Cell Rep. 2014, 9:850-858.
    • (2014) Cell Rep. , vol.9 , pp. 850-858
    • Tam, A.B.1
  • 63
    • 45849137877 scopus 로고    scopus 로고
    • Regulation of hepatic lipogenesis by the transcription factor XBP1
    • Lee A.H., et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008, 320:1492-1496.
    • (2008) Science , vol.320 , pp. 1492-1496
    • Lee, A.H.1
  • 64
    • 50249086073 scopus 로고    scopus 로고
    • XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
    • Kaser A., et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134:743-756.
    • (2008) Cell , vol.134 , pp. 743-756
    • Kaser, A.1
  • 65
    • 0035094262 scopus 로고    scopus 로고
    • Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice
    • Bertolotti A., et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 2001, 107:585-593.
    • (2001) J. Clin. Invest. , vol.107 , pp. 585-593
    • Bertolotti, A.1
  • 66
    • 0032190546 scopus 로고    scopus 로고
    • Cloning of mammalian Ire1 reveals diversity in the ER stress responses
    • Wang X.Z., et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 1998, 17:5708-5717.
    • (1998) EMBO J. , vol.17 , pp. 5708-5717
    • Wang, X.Z.1
  • 67
    • 39649107997 scopus 로고    scopus 로고
    • RNase domains determine the functional difference between IRE1α and IRE1β
    • Imagawa Y., et al. RNase domains determine the functional difference between IRE1α and IRE1β. FEBS Lett. 2008, 582:656-660.
    • (2008) FEBS Lett. , vol.582 , pp. 656-660
    • Imagawa, Y.1
  • 68
    • 70049099845 scopus 로고    scopus 로고
    • Immune responses to the microbiota at the intestinal mucosal surface
    • Duerkop B.A., et al. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009, 31:368-376.
    • (2009) Immunity , vol.31 , pp. 368-376
    • Duerkop, B.A.1
  • 69
    • 84862276328 scopus 로고    scopus 로고
    • Structure, function and diversity of the healthy human microbiome
    • Huttenhower C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214.
    • (2012) Nature , vol.486 , pp. 207-214
    • Huttenhower, C.1
  • 70
    • 52049092682 scopus 로고    scopus 로고
    • Worlds within worlds: evolution of the vertebrate gut microbiota
    • Ley R.E., et al. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6:776-788.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 776-788
    • Ley, R.E.1
  • 71
    • 15544369658 scopus 로고    scopus 로고
    • Host-bacterial mutualism in the human intestine
    • Backhed F., et al. Host-bacterial mutualism in the human intestine. Science 2005, 307:1915-1920.
    • (2005) Science , vol.307 , pp. 1915-1920
    • Backhed, F.1
  • 72
    • 84876356353 scopus 로고    scopus 로고
    • The ER stress transducer IRE1β is required for airway epithelial mucin production
    • Martino M.B., et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol. 2013, 6:639-654.
    • (2013) Mucosal Immunol. , vol.6 , pp. 639-654
    • Martino, M.B.1
  • 73
    • 84874251933 scopus 로고    scopus 로고
    • Negative feedback by IRE1β optimizes mucin production in goblet cells
    • Tsuru A., et al. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:2864-2869.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 2864-2869
    • Tsuru, A.1
  • 74
    • 0035147411 scopus 로고    scopus 로고
    • Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress
    • Iwawaki T., et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol. 2001, 3:158-164.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 158-164
    • Iwawaki, T.1
  • 75
    • 42649125586 scopus 로고    scopus 로고
    • IRE1β inhibits chylomicron production by selectively degrading MTP mRNA
    • Iqbal J., et al. IRE1β inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab. 2008, 7:445-455.
    • (2008) Cell Metab. , vol.7 , pp. 445-455
    • Iqbal, J.1
  • 76
    • 0021260553 scopus 로고
    • Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin
    • Elson C.O., Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol. 1984, 132:2736-2741.
    • (1984) J. Immunol. , vol.132 , pp. 2736-2741
    • Elson, C.O.1    Ealding, W.2
  • 77
    • 0002868942 scopus 로고
    • Cholera toxin as a mucosal adjuvant
    • CRC Press, D.R. Spriggs, W.C. Koff (Eds.)
    • Dertzbaugh M.T., Elson C.O. Cholera toxin as a mucosal adjuvant. Topics in Vaccine Adjuvant Research 1990, 119-131. CRC Press. D.R. Spriggs, W.C. Koff (Eds.).
    • (1990) Topics in Vaccine Adjuvant Research , pp. 119-131
    • Dertzbaugh, M.T.1    Elson, C.O.2
  • 78
    • 0022380794 scopus 로고
    • Genetic control of the murine immune response to cholera toxin
    • Elson C.O., Ealing W. Genetic control of the murine immune response to cholera toxin. J. Immunol. 1985, 135:930-932.
    • (1985) J. Immunol. , vol.135 , pp. 930-932
    • Elson, C.O.1    Ealing, W.2
  • 79
    • 44849126376 scopus 로고    scopus 로고
    • Cholera toxin, E. coli heat-labile toxin, and non-toxic derivatives induce dendritic cell migration into the follicle-associated epithelium of Peyer's patches
    • Anosova N.G., et al. Cholera toxin, E. coli heat-labile toxin, and non-toxic derivatives induce dendritic cell migration into the follicle-associated epithelium of Peyer's patches. Mucosal Immunol. 2008, 1:59-67.
    • (2008) Mucosal Immunol. , vol.1 , pp. 59-67
    • Anosova, N.G.1
  • 80
    • 0028985871 scopus 로고
    • Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity
    • Dickinson B.L., Clements J.D. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun. 1995, 63:1617-1623.
    • (1995) Infect. Immun. , vol.63 , pp. 1617-1623
    • Dickinson, B.L.1    Clements, J.D.2
  • 81
    • 65449180392 scopus 로고    scopus 로고
    • Cholera caused by Vibrio cholerae O1 induces T-cell responses in the circulation
    • Bhuiyan T.R., et al. Cholera caused by Vibrio cholerae O1 induces T-cell responses in the circulation. Infect. Immun. 2009, 77:1888-1893.
    • (2009) Infect. Immun. , vol.77 , pp. 1888-1893
    • Bhuiyan, T.R.1
  • 82
    • 79961100206 scopus 로고    scopus 로고
    • + T-cell responses in blood and intestinal mucosa of infected humans
    • + T-cell responses in blood and intestinal mucosa of infected humans. Clin. Vaccine Immunol. 2011, 18:1371-1377.
    • (2011) Clin. Vaccine Immunol. , vol.18 , pp. 1371-1377
    • Kuchta, A.1
  • 83
    • 0035859020 scopus 로고    scopus 로고
    • Plant pathogens and integrated defence responses to infection
    • Dangl J.L., Jones J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411:826-833.
    • (2001) Nature , vol.411 , pp. 826-833
    • Dangl, J.L.1    Jones, J.D.2
  • 84
    • 67651091732 scopus 로고    scopus 로고
    • Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system
    • Vance R.E., et al. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009, 6:10-21.
    • (2009) Cell Host Microbe , vol.6 , pp. 10-21
    • Vance, R.E.1
  • 85
    • 84876282419 scopus 로고    scopus 로고
    • Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1
    • Keestra A.M., et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 2013, 496:233-237.
    • (2013) Nature , vol.496 , pp. 233-237
    • Keestra, A.M.1
  • 86
    • 84907270863 scopus 로고    scopus 로고
    • Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
    • Xu H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 2014, 513:237-241.
    • (2014) Nature , vol.513 , pp. 237-241
    • Xu, H.1
  • 87
    • 84923079426 scopus 로고    scopus 로고
    • Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?
    • Celli J., Tsolis R.M. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?. Nat. Rev. Microbiol. 2015, 13:71-82.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 71-82
    • Celli, J.1    Tsolis, R.M.2
  • 88
    • 0037066502 scopus 로고    scopus 로고
    • Decoding the patterns of self and nonself by the innate immune system
    • Medzhitov R., Janeway C.A. Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300.
    • (2002) Science , vol.296 , pp. 298-300
    • Medzhitov, R.1    Janeway, C.A.2
  • 89
    • 84877587978 scopus 로고    scopus 로고
    • Mapping the crossroads of immune activation and cellular stress response pathways
    • Claudio N., et al. Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J. 2013, 32:1214-1224.
    • (2013) EMBO J. , vol.32 , pp. 1214-1224
    • Claudio, N.1
  • 90
    • 0028797157 scopus 로고
    • Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B
    • Pahl H.L., Baeuerle P.A. Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J. Virol. 1995, 69:1480-1484.
    • (1995) J. Virol. , vol.69 , pp. 1480-1484
    • Pahl, H.L.1    Baeuerle, P.A.2
  • 91
    • 0030053047 scopus 로고    scopus 로고
    • Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention
    • Pahl H.L., et al. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J. Cell Biol. 1996, 132:511-522.
    • (1996) J. Cell Biol. , vol.132 , pp. 511-522
    • Pahl, H.L.1
  • 92
    • 33749522548 scopus 로고    scopus 로고
    • 5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP
    • 5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 2006, 443:548-552.
    • (2006) Nature , vol.443 , pp. 548-552
    • Paton, A.W.1
  • 94
    • 84883312419 scopus 로고    scopus 로고
    • Cytomegalovirus downregulates IRE1 to repress the unfolded protein response
    • Stahl S., et al. Cytomegalovirus downregulates IRE1 to repress the unfolded protein response. PLoS Pathog. 2013, 9:e1003544.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003544
    • Stahl, S.1
  • 96
    • 84870868447 scopus 로고    scopus 로고
    • Direct association of unfolded proteins with mammalian ER stress sensor
    • Oikawa D., et al. Direct association of unfolded proteins with mammalian ER stress sensor. IRE1β. PLoS One 2012, 7:e51290.
    • (2012) IRE1β. PLoS One , vol.7 , pp. e51290
    • Oikawa, D.1
  • 97
    • 84907539353 scopus 로고    scopus 로고
    • Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview
    • Dufey E., et al. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am. J. Physiol. Cell Physiol. 2014, 307:C582-C594.
    • (2014) Am. J. Physiol. Cell Physiol. , vol.307 , pp. C582-C594
    • Dufey, E.1
  • 98
    • 0035953543 scopus 로고    scopus 로고
    • The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5
    • Hayashi F., et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410:1099-1103.
    • (2001) Nature , vol.410 , pp. 1099-1103
    • Hayashi, F.1
  • 99
    • 84894236302 scopus 로고    scopus 로고
    • Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association
    • Eletto D., et al. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol. Cell 2014, 53:562-576.
    • (2014) Mol. Cell , vol.53 , pp. 562-576
    • Eletto, D.1
  • 100
    • 84876011203 scopus 로고    scopus 로고
    • Endoplasmic reticulum structure and interconnections with other organelles
    • English A.R., Voeltz G.K. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 2013, 5:a013227.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a013227
    • English, A.R.1    Voeltz, G.K.2
  • 101
    • 77952503750 scopus 로고    scopus 로고
    • Peroxisomes are signaling platforms for antiviral innate immunity
    • Dixit E., et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010, 141:668-681.
    • (2010) Cell , vol.141 , pp. 668-681
    • Dixit, E.1
  • 102
    • 80052281413 scopus 로고    scopus 로고
    • Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
    • Horner S.M., et al. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14590-14595.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14590-14595
    • Horner, S.M.1
  • 103
    • 80053257157 scopus 로고    scopus 로고
    • How viruses and toxins disassemble to enter host cells
    • Inoue T., et al. How viruses and toxins disassemble to enter host cells. Annu. Rev. Microbiol. 2011, 65:287-305.
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 287-305
    • Inoue, T.1
  • 104
    • 75749125021 scopus 로고    scopus 로고
    • Shiga toxins-from cell biology to biomedical applications
    • Johannes L., Romer W. Shiga toxins-from cell biology to biomedical applications. Nature Rev. Microbiol. 2010, 8:105-116.
    • (2010) Nature Rev. Microbiol. , vol.8 , pp. 105-116
    • Johannes, L.1    Romer, W.2
  • 105
    • 84877608194 scopus 로고    scopus 로고
    • Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins
    • Cho J.A., et al. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front Cell Infect. Microbiol. 2012, 2:51.
    • (2012) Front Cell Infect. Microbiol. , vol.2 , pp. 51
    • Cho, J.A.1
  • 106
    • 84896270715 scopus 로고    scopus 로고
    • Quality control: ER-associated degradation: protein quality control and beyond
    • Ruggiano A., et al. Quality control: ER-associated degradation: protein quality control and beyond. Cell Biol. 2014, 204:869-879.
    • (2014) Cell Biol. , vol.204 , pp. 869-879
    • Ruggiano, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.