-
1
-
-
34347273014
-
Human primary immunodeficiencies of type I interferons
-
Jouanguy E., et al. Human primary immunodeficiencies of type I interferons. Biochimie 2007, 89:878-883.
-
(2007)
Biochimie
, vol.89
, pp. 878-883
-
-
Jouanguy, E.1
-
2
-
-
0034767753
-
Antiviral actions of interferons
-
Samuel C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14:778-809.
-
(2001)
Clin. Microbiol. Rev.
, vol.14
, pp. 778-809
-
-
Samuel, C.E.1
-
3
-
-
77952316540
-
An integrated view of humoral innate immunity: pentraxins as a paradigm
-
Bottazzi B., et al. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu. Rev. Immunol. 2010, 28:157-183.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 157-183
-
-
Bottazzi, B.1
-
4
-
-
77951877953
-
Identification and functions of pattern-recognition receptors
-
Kumagai Y., Akira S. Identification and functions of pattern-recognition receptors. J. Allergy Clin. Immunol. 2010, 125:985-992.
-
(2010)
J. Allergy Clin. Immunol.
, vol.125
, pp. 985-992
-
-
Kumagai, Y.1
Akira, S.2
-
5
-
-
67649774331
-
Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs)
-
Sato S., et al. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol. Rev. 2009, 230:172-187.
-
(2009)
Immunol. Rev.
, vol.230
, pp. 172-187
-
-
Sato, S.1
-
6
-
-
38649123396
-
The future of toll-like receptor therapeutics
-
Parkinson T. The future of toll-like receptor therapeutics. Curr. Opin. Mol. Ther. 2008, 10:21-31.
-
(2008)
Curr. Opin. Mol. Ther.
, vol.10
, pp. 21-31
-
-
Parkinson, T.1
-
7
-
-
35648930568
-
Update on toll-like receptor-directed therapies for human disease
-
Tse K., Horner A.A. Update on toll-like receptor-directed therapies for human disease. Ann. Rheum Dis. 2007, 66(Suppl. 3):iii77-iii80.
-
(2007)
Ann. Rheum Dis.
, vol.66
, Issue.SUPPL. 3
-
-
Tse, K.1
Horner, A.A.2
-
8
-
-
68849096790
-
Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells
-
Besch R., et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 2009, 119:2399-2411.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2399-2411
-
-
Besch, R.1
-
9
-
-
77953462221
-
Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication
-
Chakravarthy K.V., et al. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10172-10177.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 10172-10177
-
-
Chakravarthy, K.V.1
-
10
-
-
77954372029
-
Targeted activation of RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells
-
Kubler K., et al. Targeted activation of RNA helicase retinoic acid-inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res. 2010, 70:5293-5304.
-
(2010)
Cancer Res.
, vol.70
, pp. 5293-5304
-
-
Kubler, K.1
-
11
-
-
78651410969
-
Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine
-
Luke J.M., et al. Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine. J. Virol. 2011, 85:1370-1383.
-
(2011)
J. Virol.
, vol.85
, pp. 1370-1383
-
-
Luke, J.M.1
-
12
-
-
77952458811
-
5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication
-
Ranjan P., et al. 5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication. Virol. J. 2010, 7:102.
-
(2010)
Virol. J.
, vol.7
, pp. 102
-
-
Ranjan, P.1
-
13
-
-
69249202248
-
RIG-I activation inhibits ebolavirus replication
-
Spiropoulou C.F., et al. RIG-I activation inhibits ebolavirus replication. Virology 2009, 392:11-15.
-
(2009)
Virology
, vol.392
, pp. 11-15
-
-
Spiropoulou, C.F.1
-
14
-
-
68649096389
-
Cytoplasmic nucleic acid sensors in antiviral immunity
-
Ranjan P., et al. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol. Med. 2009, 15:359-368.
-
(2009)
Trends Mol. Med.
, vol.15
, pp. 359-368
-
-
Ranjan, P.1
-
15
-
-
58149185107
-
RIG-I and dsRNA-induced IFNbeta activation
-
Hausmann S., et al. RIG-I and dsRNA-induced IFNbeta activation. PLoS ONE 2008, 3:e3965.
-
(2008)
PLoS ONE
, vol.3
-
-
Hausmann, S.1
-
16
-
-
59449102889
-
Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor
-
Ranjith-Kumar C.T., et al. Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J. Biol. Chem. 2009, 284:1155-1165.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 1155-1165
-
-
Ranjith-Kumar, C.T.1
-
17
-
-
66149114745
-
Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities
-
Uzri D., Gehrke L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J. Virol. 2009, 83:4174-4184.
-
(2009)
J. Virol.
, vol.83
, pp. 4174-4184
-
-
Uzri, D.1
Gehrke, L.2
-
18
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5:730-737.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
-
19
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
-
Kato H., et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 2008, 205:1601-1610.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
-
20
-
-
33750976374
-
5'-Triphosphate RNA is the ligand for RIG-I
-
Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
-
21
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
-
22
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105.
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
-
23
-
-
37349052379
-
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity
-
Loo Y.M., et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 2008, 82:335-345.
-
(2008)
J. Virol.
, vol.82
, pp. 335-345
-
-
Loo, Y.M.1
-
24
-
-
0028233381
-
RNA template-directed RNA synthesis by T7 RNA polymerase
-
Cazenave C., Uhlenbeck O.C. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:6972-6976.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 6972-6976
-
-
Cazenave, C.1
Uhlenbeck, O.C.2
-
25
-
-
0028924624
-
Self-coded 3'-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase
-
Triana-Alonso F.J., et al. Self-coded 3'-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J. Biol. Chem. 1995, 270:6298-6307.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 6298-6307
-
-
Triana-Alonso, F.J.1
-
26
-
-
68049089651
-
Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee M., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
-
27
-
-
67749133995
-
5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A., et al. 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12067-12072.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
-
28
-
-
38649089789
-
The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I
-
Cui S., et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol. Cell 2008, 29:169-179.
-
(2008)
Mol. Cell
, vol.29
, pp. 169-179
-
-
Cui, S.1
-
29
-
-
67650510680
-
Solution structures of cytosolic RNA sensors MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I like receptors
-
Takahasi K., et al. Solution structures of cytosolic RNA sensors MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I like receptors. J. Biol. Chem. 2009, 284:17465-17474.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 17465-17474
-
-
Takahasi, K.1
-
30
-
-
39649092731
-
Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses
-
Takahasi K., et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 2008, 29:428-440.
-
(2008)
Mol. Cell
, vol.29
, pp. 428-440
-
-
Takahasi, K.1
-
31
-
-
79952325540
-
Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate
-
Lu C., et al. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate. Nucleic Acids Res. 2010, 39:1565-1575.
-
(2010)
Nucleic Acids Res.
, vol.39
, pp. 1565-1575
-
-
Lu, C.1
-
32
-
-
77954386541
-
Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I
-
Wang Y., et al. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. Mol. Biol. 2010, 17:781-787.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 781-787
-
-
Wang, Y.1
-
33
-
-
77955481642
-
The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain
-
Lu C., et al. The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 2010, 18:1032-1043.
-
(2010)
Structure
, vol.18
, pp. 1032-1043
-
-
Lu, C.1
-
34
-
-
34547434301
-
Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells
-
Cheng G., et al. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9035-9040.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 9035-9040
-
-
Cheng, G.1
-
35
-
-
70349459734
-
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate
-
Ablasser A., et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 2009, 10:1065-1072.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1065-1072
-
-
Ablasser, A.1
-
36
-
-
68049092912
-
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
-
Chiu Y.H., et al. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009, 138:576-591.
-
(2009)
Cell
, vol.138
, pp. 576-591
-
-
Chiu, Y.H.1
-
37
-
-
78149324490
-
RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP
-
Malathi K., et al. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 2010, 16:2108-2119.
-
(2010)
RNA
, vol.16
, pp. 2108-2119
-
-
Malathi, K.1
-
38
-
-
79953166075
-
Short dsRNAs with an overhanging 5 prime ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys
-
Marq, J.B. et al. Short dsRNAs with an overhanging 5 prime ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J. Biol. Chem. 286, 6108-16.
-
J. Biol. Chem.
, vol.286
, pp. 6108-16
-
-
Marq, J.B.1
-
39
-
-
77953308262
-
Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I
-
Marq J.B., et al. Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J. Biol. Chem. 2010, 285:18208-18216.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 18208-18216
-
-
Marq, J.B.1
-
40
-
-
77957997708
-
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
-
Baum A., et al. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16303-16308.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 16303-16308
-
-
Baum, A.1
-
41
-
-
75749140581
-
RIG-I detects viral genomic RNA during negative-strand RNA virus infection
-
Rehwinkel J., et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010, 140:397-408.
-
(2010)
Cell
, vol.140
, pp. 397-408
-
-
Rehwinkel, J.1
-
42
-
-
77954912141
-
Influenza A virus-generated small RNAs regulate the switch from transcription to replication
-
Perez J.T., et al. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11525-11530.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11525-11530
-
-
Perez, J.T.1
|