메뉴 건너뛰기




Volumn 29, Issue 7, 2015, Pages 946-962

Minireview: Emerging concepts in islet macrophage biology in type 2 diabetes

Author keywords

[No Author keywords available]

Indexed keywords

INTERLEUKIN 1BETA; VASCULOTROPIN A;

EID: 84936095407     PISSN: 08888809     EISSN: 19449917     Source Type: Journal    
DOI: 10.1210/me.2014-1393     Document Type: Review
Times cited : (44)

References (198)
  • 2
    • 0025104170 scopus 로고
    • Essential contribution of macrophages to islet cell destruction in vivo and in vitro
    • Kolb H, Burkart V, Appels B, et al. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun. 1990;3(suppl 1):117–120.
    • (1990) J Autoimmun , vol.3 , pp. 117-120
    • Kolb, H.1    Burkart, V.2    Appels, B.3
  • 3
    • 0029825447 scopus 로고    scopus 로고
    • Macrophages in islet destruction in autoimmune diabetes mellitus
    • Burkart V, Kolb H. Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiology. 1996;195:601-613.
    • (1996) Immunobiology , vol.195 , pp. 601-613
    • Burkart, V.1    Kolb, H.2
  • 4
    • 0025279590 scopus 로고
    • Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts
    • Kaufman DB, Platt JL, Rabe FL, Dunn DL, Bach FH, Sutherland DE. Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts. J Exp Med. 1990;172:291-302.
    • (1990) J Exp Med , vol.172 , pp. 291-302
    • Kaufman, D.B.1    Platt, J.L.2    Rabe, F.L.3    Dunn, D.L.4    Bach, F.H.5    Sutherland, D.E.6
  • 5
    • 0034637211 scopus 로고    scopus 로고
    • Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice
    • Wu GS, Korsgren O, Zhang JG, Song ZS, Van Rooijen N, Tibell A. Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice. Transplant Proc. 2000;32:1069.
    • (2000) Transplant Proc , vol.32 , pp. 1069
    • Wu, G.S.1    Korsgren, O.2    Zhang, J.G.3    Song, Z.S.4    Van Rooijen, N.5    Tibell, A.6
  • 6
    • 0037372892 scopus 로고    scopus 로고
    • T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts
    • Yi S, Hawthorne WJ, Lehnert AM, et al. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J Immunol. 2003;170:2750–2758.
    • (2003) J Immunol , vol.170 , pp. 2750-2758
    • Yi, S.1    Hawthorne, W.J.2    Lehnert, A.M.3
  • 7
    • 33644747390 scopus 로고    scopus 로고
    • Mechanisms of β -cell death in type 2 diabetes
    • Donath MY, Ehses JA, Maedler K, et al. Mechanisms of β -cell death in type 2 diabetes. Diabetes. 2005;54 (suppl 2):S108-S113.
    • (2005) Diabetes , vol.54 , pp. 108-113
    • Donath, M.Y.1    Ehses, J.A.2    Maedler, K.3
  • 10
    • 84865296710 scopus 로고    scopus 로고
    • Connecting type 1 and type 2 diabetes through innate immunity
    • Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012; 2:a007724.
    • (2012) Cold Spring Harb Perspect Med , vol.2
    • Odegaard, J.I.1    Chawla, A.2
  • 12
    • 84883497939 scopus 로고    scopus 로고
    • Targeting inflammation in the treatment of type 2 diabetes
    • Donath MY. Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab. 2013;15 (suppl 3):193–196.
    • (2013) Diabetes Obes Metab , vol.15 , pp. 193-196
    • Donath, M.Y.1
  • 13
    • 84883530920 scopus 로고    scopus 로고
    • Macrophages and islet inflammation in type 2 diabetes
    • Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 2013;15 (suppl 3):152–158.
    • (2013) Diabetes Obes Metab , vol.15 , pp. 152-158
    • Eguchi, K.1    Manabe, I.2
  • 14
    • 34548431826 scopus 로고    scopus 로고
    • Increased number of isletassociated macrophages in type 2 diabetes
    • Ehses JA, Perren A, Eppler E, et al. Increased number of isletassociated macrophages in type 2 diabetes. Diabetes. 2007;56: 2356–2370.
    • (2007) Diabetes , vol.56 , pp. 2356-2370
    • Ehses, J.A.1    Perren, A.2    Eppler, E.3
  • 16
    • 84906264935 scopus 로고    scopus 로고
    • Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients
    • Kamata K, Mizukami H, Inaba W, et al. Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid. 2014;21:191–201.
    • (2014) Amyloid , vol.21 , pp. 191-201
    • Kamata, K.1    Mizukami, H.2    Inaba, W.3
  • 17
    • 33748306069 scopus 로고    scopus 로고
    • Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat
    • Homo-Delarche F, Calderari S, Irminger JC, et al. Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes. 2006;55:1625–1633.
    • (2006) Diabetes , vol.55 , pp. 1625-1633
    • Homo-Delarche, F.1    Calderari, S.2    Irminger, J.C.3
  • 18
    • 84859449180 scopus 로고    scopus 로고
    • Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation
    • Eguchi K, Manabe I, Oishi-Tanaka Y, et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 2012;15:518–533.
    • (2012) Cell Metab , vol.15 , pp. 518-533
    • Eguchi, K.1    Manabe, I.2    Oishi-Tanaka, Y.3
  • 19
    • 84883784100 scopus 로고    scopus 로고
    • Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes
    • Jourdan T, Godlewski G, Cinar R, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes. Nat Med. 2013;19:1132–1140.
    • (2013) Nat Med , vol.19 , pp. 1132-1140
    • Jourdan, T.1    Godlewski, G.2    Cinar, R.3
  • 20
    • 77956958947 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 β in type 2 diabetes
    • Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 β in type 2 diabetes. Nat Immunol. 2010;11:897–904.
    • (2010) Nat Immunol , vol.11 , pp. 897-904
    • Masters, S.L.1    Dunne, A.2    Subramanian, S.L.3
  • 21
    • 80052650475 scopus 로고    scopus 로고
    • IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction
    • Westwell-Roper C, Dai DL, Soukhatcheva G, et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol. 2011;187:2755–2765.
    • (2011) J Immunol , vol.187 , pp. 2755-2765
    • Westwell-Roper, C.1    Dai, D.L.2    Soukhatcheva, G.3
  • 22
    • 84872018875 scopus 로고    scopus 로고
    • Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes
    • Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62:194–204.
    • (2013) Diabetes , vol.62 , pp. 194-204
    • Lee, H.M.1    Kim, J.J.2    Kim, H.J.3    Shong, M.4    Ku, B.J.5    Jo, E.K.6
  • 23
    • 84904743714 scopus 로고    scopus 로고
    • TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair β cell insulin gene expression via IL-1 and IL-6
    • Nackiewicz D, Dan M, He W, et al. TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair β cell insulin gene expression via IL-1 and IL-6. Diabetologia. 2014;57: 1645–1654.
    • (2014) Diabetologia , vol.57 , pp. 1645-1654
    • Nackiewicz, D.1    Dan, M.2    He, W.3
  • 24
    • 84894518230 scopus 로고    scopus 로고
    • Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β -cell dysfunction
    • Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β -cell dysfunction. Diabetes. 2014;63:1698–1711.
    • (2014) Diabetes , vol.63 , pp. 1698-1711
    • Westwell-Roper, C.Y.1    Ehses, J.A.2    Verchere, C.B.3
  • 25
    • 3442878663 scopus 로고    scopus 로고
    • Insulin cell mass is altered in Csf1op/Csf1op macrophagedeficient mice
    • Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, et al. Insulin cell mass is altered in Csf1op/Csf1op macrophagedeficient mice. J Leukoc Biol. 2004;76:359–367.
    • (2004) J Leukoc Biol , vol.76 , pp. 359-367
    • Banaei-Bouchareb, L.1    Gouon-Evans, V.2    Samara-Boustani, D.3
  • 26
    • 84908281309 scopus 로고    scopus 로고
    • Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β -cell regeneration in mice
    • Criscimanna A, Coudriet GM, Gittes GK, Piganelli JD, Esni F. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β -cell regeneration in mice. Gastroenterology 2014;147:1106–1118 e1111.
    • (2014) Gastroenterology , vol.147 , pp. 1106-1118
    • Criscimanna, A.1    Coudriet, G.M.2    Gittes, G.K.3    Piganelli, J.D.4    Esni, F.5
  • 27
    • 84897568455 scopus 로고    scopus 로고
    • M2 macrophages promote β -cell proliferation by up-regulation of SMAD 7
    • USA
    • Xiao X, Gaffar I, Guo P, et al. M2 macrophages promote β -cell proliferation by up-regulation of SMAD 7. Proc Natl Acad Sci USA. 2014;111:E1211–E1220.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 1211-1220
    • Xiao, X.1    Gaffar, I.2    Guo, P.3
  • 28
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555.
    • (2002) Trends Immunol , vol.23 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3    Allavena, P.4    Sica, A.5
  • 29
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: Time for reassessment
    • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6:13.
    • (2014) F1000prime Rep , vol.6 , pp. 13
    • Martinez, F.O.1    Gordon, S.2
  • 30
    • 84870441676 scopus 로고    scopus 로고
    • Modulation of macrophage activation and programming in immunity
    • Liu G, Yang H. Modulation of macrophage activation and programming in immunity. J Cell Physiol. 2013;228:502–512.
    • (2013) J Cell Physiol , vol.228 , pp. 502-512
    • Liu, G.1    Yang, H.2
  • 31
    • 0037310024 scopus 로고    scopus 로고
    • The many faces of macrophage activation
    • Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73:209–212.
    • (2003) J Leukoc Biol , vol.73 , pp. 209-212
    • Mosser, D.M.1
  • 32
    • 56749174940 scopus 로고    scopus 로고
    • Exploring the full spectrum of macrophage activation
    • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969.
    • (2008) Nat Rev Immunol , vol.8 , pp. 958-969
    • Mosser, D.M.1    Edwards, J.P.2
  • 34
    • 84866554651 scopus 로고    scopus 로고
    • Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction
    • Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012;189:3508–3520.
    • (2012) J Immunol , vol.189 , pp. 3508-3520
    • Zizzo, G.1    Hilliard, B.A.2    Monestier, M.3    Cohen, P.L.4
  • 35
    • 73549104499 scopus 로고    scopus 로고
    • Suppression of PLCβ2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype
    • Grinberg S, Hasko G, Wu D, Leibovich SJ. Suppression of PLCβ2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol. 2009;175:2439–2453.
    • (2009) Am J Pathol , vol.175 , pp. 2439-2453
    • Grinberg, S.1    Hasko, G.2    Wu, D.3    Leibovich, S.J.4
  • 37
    • 70350529527 scopus 로고    scopus 로고
    • Functional plasticity of macrophages: In situ reprogramming of tumor-associated macrophages
    • Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86:1105–1109.
    • (2009) J Leukoc Biol , vol.86 , pp. 1105-1109
    • Stout, R.D.1    Watkins, S.K.2    Suttles, J.3
  • 38
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: Nomenclature and experimental guidelines
    • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.
    • (2014) Immunity , vol.41 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3
  • 39
    • 52649097448 scopus 로고    scopus 로고
    • Immunological Genome Project Consortium. The Immunological Genome Project: Networks of gene expression in immune cells
    • Heng TS, Painter MW, Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9:1091–1094.
    • (2008) Nat Immunol , vol.9 , pp. 1091-1094
    • Heng, T.S.1    Painter, M.W.2
  • 40
    • 84883894867 scopus 로고    scopus 로고
    • Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells
    • Gazit R, Garrison BS, Rao TN, et al. Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. Stem Cell Rep. 2013;1:266–280.
    • (2013) Stem Cell Rep , vol.1 , pp. 266-280
    • Gazit, R.1    Garrison, B.S.2    Rao, T.N.3
  • 41
    • 84878242024 scopus 로고    scopus 로고
    • Identification of transcriptional regulators in the mouse immune system
    • Jojic V, Shay T, Sylvia K, et al. Identification of transcriptional regulators in the mouse immune system. Nat Immunol. 2013;14: 633–643.
    • (2013) Nat Immunol , vol.14 , pp. 633-643
    • Jojic, V.1    Shay, T.2    Sylvia, K.3
  • 42
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier EL, Shay T, Miller J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13: 1118–1128.
    • (2012) Nat Immunol , vol.13 , pp. 1118-1128
    • Gautier, E.L.1    Shay, T.2    Miller, J.3
  • 43
    • 84865418665 scopus 로고    scopus 로고
    • Deciphering the transcriptional network of the dendritic cell lineage
    • Miller JC, Brown BD, Shay T, et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol. 2012; 13:888–899.
    • (2012) Nat Immunol , vol.13 , pp. 888-899
    • Miller, J.C.1    Brown, B.D.2    Shay, T.3
  • 44
    • 84907991703 scopus 로고    scopus 로고
    • Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages
    • Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20:614–625.
    • (2014) Cell Metab , vol.20 , pp. 614-625
    • Kratz, M.1    Coats, B.R.2    Hisert, K.B.3
  • 45
    • 70350435962 scopus 로고    scopus 로고
    • Epigenetic regulation of the alternatively activated macrophage phenotype
    • Ishii M, Wen H, Corsa CA, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114: 3244–3254.
    • (2009) Blood , vol.114 , pp. 3244-3254
    • Ishii, M.1    Wen, H.2    Corsa, C.A.3
  • 46
    • 82955247088 scopus 로고    scopus 로고
    • Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation
    • Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011;25:2480–2488.
    • (2011) Genes Dev , vol.25 , pp. 2480-2488
    • Mullican, S.E.1    Gaddis, C.A.2    Alenghat, T.3
  • 47
    • 84886897279 scopus 로고    scopus 로고
    • Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes
    • Kittan NA, Allen RM, Dhaliwal A, et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One. 2013;8:e78045.
    • (2013) Plos One , vol.8
    • Kittan, N.A.1    Allen, R.M.2    Dhaliwal, A.3
  • 49
    • 84858016069 scopus 로고    scopus 로고
    • Unique proteomic signatures distinguish macrophages and dendritic cells
    • Becker L, Liu NC, Averill MM, et al. Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One. 2012;7: e33297.
    • (2012) Plos One , vol.7
    • Becker, L.1    Liu, N.C.2    Averill, M.M.3
  • 51
    • 9144223683 scopus 로고    scopus 로고
    • Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
    • Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–1830.
    • (2003) J Clin Invest , vol.112 , pp. 1821-1830
    • Xu, H.1    Barnes, G.T.2    Yang, Q.3
  • 52
    • 34548477639 scopus 로고    scopus 로고
    • Adipose tissue macrophages
    • Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol Lett. 2007;112:61–67.
    • (2007) Immunol Lett , vol.112 , pp. 61-67
    • Zeyda, M.1    Stulnig, T.M.2
  • 53
    • 79959216069 scopus 로고    scopus 로고
    • Adipose tissue macrophages: Phenotypic plasticity and diversity in lean and obese states
    • Morris DL, Singer K, Lumeng CN. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care. 2011;14:341–346.
    • (2011) Curr Opin Clin Nutr Metab Care , vol.14 , pp. 341-346
    • Morris, D.L.1    Singer, K.2    Lumeng, C.N.3
  • 54
    • 84918563183 scopus 로고    scopus 로고
    • Macrophage polarization in obesity and type 2 diabetes: Weighing down our understanding of macrophage function?
    • Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470.
    • (2014) Front Immunol , vol.5 , pp. 470
    • Kraakman, M.J.1    Murphy, A.J.2    Jandeleit-Dahm, K.3    Kammoun, H.L.4
  • 55
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–184.
    • (2007) J Clin Invest , vol.117 , pp. 175-184
    • Lumeng, C.N.1    Bodzin, J.L.2    Saltiel, A.R.3
  • 56
    • 36849012057 scopus 로고    scopus 로고
    • Adipocyte death, adipose tissue remodeling, and obesity complications
    • Strissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56:2910–2918.
    • (2007) Diabetes , vol.56 , pp. 2910-2918
    • Strissel, K.J.1    Stancheva, Z.2    Miyoshi, H.3
  • 57
    • 77951822653 scopus 로고    scopus 로고
    • Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice
    • Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes. 2010;59:1171–1181.
    • (2010) Diabetes , vol.59 , pp. 1171-1181
    • Shaul, M.E.1    Bennett, G.2    Strissel, K.J.3    Greenberg, A.S.4    Obin, M.S.5
  • 58
    • 73949125691 scopus 로고    scopus 로고
    • MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity
    • Westcott DJ, Delproposto JB, Geletka LM, et al. MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. J Exp Med. 2009;206:3143–3156.
    • (2009) J Exp Med , vol.206 , pp. 3143-3156
    • Westcott, D.J.1    Delproposto, J.B.2    Geletka, L.M.3
  • 59
    • 84906719512 scopus 로고    scopus 로고
    • Glycoprotein 130 receptor signaling mediates alphacell dysfunction in a rodent model of type 2 diabetes
    • Chow SZ. Glycoprotein 130 receptor signaling mediates alphacell dysfunction in a rodent model of type 2 diabetes. Diabetes. 2014;63:2984–2995.
    • (2014) Diabetes , vol.63 , pp. 2984-2995
    • Chow, S.Z.1
  • 60
    • 33745592735 scopus 로고    scopus 로고
    • Adipose tissue has anti-inflammatory properties: Focus on IL-1 receptor antagonist (IL-1Ra)
    • Dayer JM, Chicheportiche R, Juge-Aubry C, Meier C. Adipose tissue has anti-inflammatory properties: focus on IL-1 receptor antagonist (IL-1Ra). Ann NY Acad Sci. 2006;1069:444–453.
    • (2006) Ann NY Acad Sci , vol.1069 , pp. 444-453
    • Dayer, J.M.1    Chicheportiche, R.2    Juge-Aubry, C.3    Meier, C.4
  • 61
    • 34547469630 scopus 로고    scopus 로고
    • Macrophage polarization and insulin resistance: PPARγ in control
    • Charo IF. Macrophage polarization and insulin resistance: PPARγ in control. Cell Metab. 2007;6:96–98.
    • (2007) Cell Metab , vol.6 , pp. 96-98
    • Charo, I.F.1
  • 62
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage- specific PPARγ controls alternative activation and improves insulin resistance
    • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage- specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–1120.
    • (2007) Nature , vol.447 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3
  • 63
    • 39749200215 scopus 로고    scopus 로고
    • Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue
    • Guri AJ, Hontecillas R, Ferrer G, et al. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem. 2008;19:216–228.
    • (2008) J Nutr Biochem , vol.19 , pp. 216-228
    • Guri, A.J.1    Hontecillas, R.2    Ferrer, G.3
  • 64
    • 44349112305 scopus 로고    scopus 로고
    • Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
    • Kang K, Reilly SM, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–495.
    • (2008) Cell Metab , vol.7 , pp. 485-495
    • Kang, K.1    Reilly, S.M.2    Karabacak, V.3
  • 65
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
    • Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13–24.
    • (2006) Cell Metab , vol.4 , pp. 13-24
    • Vats, D.1    Mukundan, L.2    Odegaard, J.I.3
  • 66
    • 84902094655 scopus 로고    scopus 로고
    • Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
    • Qiu Y, Nguyen KD, Odegaard JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–1308.
    • (2014) Cell , vol.157 , pp. 1292-1308
    • Qiu, Y.1    Nguyen, K.D.2    Odegaard, J.I.3
  • 67
    • 33847073149 scopus 로고    scopus 로고
    • Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity
    • Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.
    • (2007) Diabetes , vol.56 , pp. 16-23
    • Lumeng, C.N.1    Deyoung, S.M.2    Bodzin, J.L.3    Saltiel, A.R.4
  • 68
    • 58149347227 scopus 로고    scopus 로고
    • Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes
    • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–3246.
    • (2008) Diabetes , vol.57 , pp. 3239-3246
    • Lumeng, C.N.1    Delproposto, J.B.2    Westcott, D.J.3    Saltiel, A.R.4
  • 69
    • 31044456529 scopus 로고    scopus 로고
    • CCR2 modulates inflammatory and metabolic effects of high-fat feeding
    • Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2005;116:115–124.
    • (2005) J Clin Invest , vol.116 , pp. 115-124
    • Weisberg, S.P.1    Hunter, D.2    Huber, R.3
  • 70
    • 57549087753 scopus 로고    scopus 로고
    • Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice
    • Tamura Y, Sugimoto M, Murayama T, et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler Thromb Vasc Biol. 2008;28:2195–2201.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 2195-2201
    • Tamura, Y.1    Sugimoto, M.2    Murayama, T.3
  • 71
    • 77957838795 scopus 로고    scopus 로고
    • Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue
    • Kosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–3479.
    • (2010) J Clin Invest , vol.120 , pp. 3466-3479
    • Kosteli, A.1    Sugaru, E.2    Haemmerle, G.3
  • 72
    • 27444437321 scopus 로고    scopus 로고
    • Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans
    • Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–2355.
    • (2005) J Lipid Res , vol.46 , pp. 2347-2355
    • Cinti, S.1    Mitchell, G.2    Barbatelli, G.3
  • 73
    • 50949108719 scopus 로고    scopus 로고
    • Dead adipocytes, detected as crown-like structures (CLS), are prevalent in visceral fat depots of genetically obese mice
    • Murano I, Barbatelli G, Parisani V, et al. Dead adipocytes, detected as crown-like structures (CLS), are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49:1562–1568.
    • (2008) J Lipid Res , vol.49 , pp. 1562-1568
    • Murano, I.1    Barbatelli, G.2    Parisani, V.3
  • 74
    • 33846004396 scopus 로고    scopus 로고
    • Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins
    • Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab. 2007; 292:E166–E174.
    • (2007) Am J Physiol Endocrinol Metab , vol.292 , pp. 166-174
    • Lumeng, C.N.1    Deyoung, S.M.2    Saltiel, A.R.3
  • 76
    • 79751512463 scopus 로고    scopus 로고
    • The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
    • Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–188.
    • (2011) Nat Med , vol.17 , pp. 179-188
    • Vandanmagsar, B.1    Youm, Y.H.2    Ravussin, A.3
  • 77
    • 52749092267 scopus 로고    scopus 로고
    • Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals
    • Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8:301–309.
    • (2008) Cell Metab , vol.8 , pp. 301-309
    • Patsouris, D.1    Li, P.P.2    Thapar, D.3    Chapman, J.4    Olefsky, J.M.5    Neels, J.G.6
  • 78
    • 75149197353 scopus 로고    scopus 로고
    • CD11c expression in adipose tissue and blood and its role in diet-induced obesity
    • Wu H, Perrard XD, Wang Q, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2009;30:186–192.
    • (2009) Arterioscler Thromb Vasc Biol , vol.30 , pp. 186-192
    • Wu, H.1    Perrard, X.D.2    Wang, Q.3
  • 79
    • 84919875183 scopus 로고    scopus 로고
    • An MHC II-dependent activation loop between adipose tissue macrophages and CD4(+) T cells controls obesity-induced inflammation
    • Cho KW, Morris DL, DelProposto JL, et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4(+) T cells controls obesity-induced inflammation. Cell Rep. 2014;9:605–617.
    • (2014) Cell Rep , vol.9 , pp. 605-617
    • Cho, K.W.1    Morris, D.L.2    Delproposto, J.L.3
  • 80
  • 81
    • 84881029152 scopus 로고    scopus 로고
    • Chronic adipose tissue inflammation: All immune cells on the stage
    • Cildir G, Akıncılar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med. 2013;19:487–500.
    • (2013) Trends Mol Med , vol.19 , pp. 487-500
    • Cildir, G.1    Akıncılar, S.C.2    Tergaonkar, V.3
  • 82
    • 84894580064 scopus 로고    scopus 로고
    • Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes
    • Butcher MJ, Hallinger D, Garcia E, et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014;57:491–501.
    • (2014) Diabetologia , vol.57 , pp. 491-501
    • Butcher, M.J.1    Hallinger, D.2    Garcia, E.3
  • 83
    • 84897019577 scopus 로고    scopus 로고
    • Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization
    • Cucak H, Grunnet LG, Rosendahl A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol. 2014;95:149–160.
    • (2014) J Leukoc Biol , vol.95 , pp. 149-160
    • Cucak, H.1    Grunnet, L.G.2    Rosendahl, A.3
  • 84
    • 84897133645 scopus 로고    scopus 로고
    • Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes
    • Cucak H, Mayer C, Tonnesen M, Thomsen LH, Grunnet LG, Rosendahl A. Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One. 2014;9:e90685.
    • (2014) Plos One , vol.9
    • Cucak, H.1    Mayer, C.2    Tonnesen, M.3    Thomsen, L.H.4    Grunnet, L.G.5    Rosendahl, A.6
  • 85
    • 84901920026 scopus 로고    scopus 로고
    • Targeting inflammation in the treatment of type 2 diabetes: Time to start
    • Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13:465–476.
    • (2014) Nat Rev Drug Discov , vol.13 , pp. 465-476
    • Donath, M.Y.1
  • 86
    • 71949118923 scopus 로고    scopus 로고
    • Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I
    • Böni-Schnetzler M, Boller S, Debray S, et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology. 2009;150:5218–5229.
    • (2009) Endocrinology , vol.150 , pp. 5218-5229
    • Böni-Schnetzler, M.1    Boller, S.2    Debray, S.3
  • 87
    • 33750846939 scopus 로고    scopus 로고
    • Low concentration of interleukin-1 β induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets
    • Maedler K, Schumann DM, Sauter N, et al. Low concentration of interleukin-1 β induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets. Diabetes. 2006;55:2713–2722.
    • (2006) Diabetes , vol.55 , pp. 2713-2722
    • Maedler, K.1    Schumann, D.M.2    Sauter, N.3
  • 88
    • 84925004057 scopus 로고    scopus 로고
    • Short term exposure of β cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression
    • Arous C, Ferreira PG, Dermitzakis ET, Halban PA. Short term exposure of β cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem. 2015;290: 6653–6669.
    • (2015) J Biol Chem , vol.290 , pp. 6653-6669
    • Arous, C.1    Ferreira, P.G.2    Dermitzakis, E.T.3    Halban, P.A.4
  • 90
    • 0022491931 scopus 로고
    • Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans
    • Mandrup-Poulsen T, Bendtzen K, Nerup J, Egeberg J, Nielsen JH. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans. Allergy. 1986;41:250–259.
    • (1986) Allergy , vol.41 , pp. 250-259
    • Mandrup-Poulsen, T.1    Bendtzen, K.2    Nerup, J.3    Egeberg, J.4    Nielsen, J.H.5
  • 91
    • 0031897507 scopus 로고    scopus 로고
    • Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1 β and Fas ligation
    • Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1 β and Fas ligation. Diabetes. 1998;47:727–732.
    • (1998) Diabetes , vol.47 , pp. 727-732
    • Loweth, A.C.1    Williams, G.T.2    James, R.F.3    Scarpello, J.H.4    Morgan, N.G.5
  • 92
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–832.
    • (2010) Cell , vol.140 , pp. 821-832
    • Schroder, K.1    Tschopp, J.2
  • 93
    • 12044259166 scopus 로고
    • Characterization of a functional NF- β B site in the human interleukin 1 β promoter: Evidence for a positive autoregulatory loop
    • Hiscott J, Marois J, Garoufalis J, et al. Characterization of a functional NF- β B site in the human interleukin 1 β promoter: evidence for a positive autoregulatory loop. Mol Cell Biol. 1993;13:6231–6240.
    • (1993) Mol Cell Biol , vol.13 , pp. 6231-6240
    • Hiscott, J.1    Marois, J.2    Garoufalis, J.3
  • 94
    • 34347399563 scopus 로고    scopus 로고
    • Metabolic endotoxemia initiates obesity and insulin resistance
    • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.
    • (2007) Diabetes , vol.56 , pp. 1761-1772
    • Cani, P.D.1    Amar, J.2    Iglesias, M.A.3
  • 95
    • 33947182436 scopus 로고    scopus 로고
    • Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes
    • Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–E747.
    • (2007) Am J Physiol Endocrinol Metab , vol.292 , pp. 740-747
    • Creely, S.J.1    McTernan, P.G.2    Kusminski, C.M.3
  • 96
    • 77953060025 scopus 로고    scopus 로고
    • Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects
    • Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–868.
    • (2010) Diabetes Care , vol.33 , pp. 861-868
    • Dasu, M.R.1    Devaraj, S.2    Park, S.3    Jialal, I.4
  • 97
    • 84925773113 scopus 로고    scopus 로고
    • Alarmin highmobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β -cells
    • Lond
    • Guzman-Ruiz R, Ortega F, Rodriguez A, et al. Alarmin highmobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β -cells. Int J Obes (Lond). 2014;38:1545–1554.
    • (2014) Int J Obes , vol.38 , pp. 1545-1554
    • Guzman-Ruiz, R.1    Ortega, F.2    Rodriguez, A.3
  • 98
    • 84860539468 scopus 로고    scopus 로고
    • Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes
    • Li M, Song L, Gao X, Chang W, Qin X. Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med. 2012;44:260–267.
    • (2012) Exp Mol Med , vol.44 , pp. 260-267
    • Li, M.1    Song, L.2    Gao, X.3    Chang, W.4    Qin, X.5
  • 99
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β
    • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10:417–426.
    • (2002) Mol Cell , vol.10 , pp. 417-426
    • Martinon, F.1    Burns, K.2    Tschopp, J.3
  • 100
    • 74549184092 scopus 로고    scopus 로고
    • The NLRP3 inflammasome: A sensor for metabolic danger?
    • Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327:296–300.
    • (2010) Science , vol.327 , pp. 296-300
    • Schroder, K.1    Zhou, R.2    Tschopp, J.3
  • 101
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–415.
    • (2011) Nat Immunol , vol.12 , pp. 408-415
    • Wen, H.1    Gris, D.2    Lei, Y.3
  • 102
    • 84899425498 scopus 로고    scopus 로고
    • Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes
    • Westwell-Roper C, Nackiewicz D, Dan M, Ehses JA. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol Cell Biol. 2014;92:314–323.
    • (2014) Immunol Cell Biol , vol.92 , pp. 314-323
    • Westwell-Roper, C.1    Nackiewicz, D.2    Dan, M.3    Ehses, J.A.4
  • 103
    • 80054903245 scopus 로고    scopus 로고
    • Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage
    • Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology. 2011;152:4039–4045.
    • (2011) Endocrinology , vol.152 , pp. 4039-4045
    • Youm, Y.H.1    Adijiang, A.2    Vandanmagsar, B.3    Burk, D.4    Ravussin, A.5    Dixit, V.D.6
  • 104
    • 32944470765 scopus 로고    scopus 로고
    • Cryopyrin activates the inflammasome in response to toxins and ATP
    • Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440: 228–232.
    • (2006) Nature , vol.440 , pp. 228-232
    • Mariathasan, S.1    Weiss, D.S.2    Newton, K.3
  • 105
    • 75649096002 scopus 로고    scopus 로고
    • Thioredoxininteracting protein links oxidative stress to inflammasome activation
    • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxininteracting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–140.
    • (2010) Nat Immunol , vol.11 , pp. 136-140
    • Zhou, R.1    Tardivel, A.2    Thorens, B.3    Choi, I.4    Tschopp, J.5
  • 106
    • 0032969276 scopus 로고    scopus 로고
    • Islet amyloid: A longrecognized but underappreciated pathological feature of type 2 diabetes
    • Kahn SE, Andrikopoulos S, Verchere CB. Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes. Diabetes. 1999;48:241–253.
    • (1999) Diabetes , vol.48 , pp. 241-253
    • Kahn, S.E.1    Rikopoulos, S.2    Verchere, C.B.3
  • 107
    • 0035969513 scopus 로고    scopus 로고
    • Islet amyloid and type 2 diabetes: From molecular misfolding to islet pathophysiology
    • Jaikaran ET, Clark A. Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta. 2001;1537:179–203.
    • (2001) Biochim Biophys Acta , vol.1537 , pp. 179-203
    • Jaikaran, E.T.1    Clark, A.2
  • 108
    • 0031889824 scopus 로고    scopus 로고
    • Fibrillar islet amyloid polypeptide (Amylin) is internalised by macrophages but resists proteolytic degradation
    • Badman MK, Pryce RA, Chargé SB, Morris JF, Clark A. Fibrillar islet amyloid polypeptide (amylin) is internalised by macrophages but resists proteolytic degradation. Cell Tissue Res. 1998;291: 285–294.
    • (1998) Cell Tissue Res , vol.291 , pp. 285-294
    • Badman, M.K.1    Pryce, R.A.2    Chargé, S.B.3    Morris, J.F.4    Clark, A.5
  • 109
    • 0031920985 scopus 로고    scopus 로고
    • Islet amyloid-associated diabetes in obese A(Vy)/a mice expressing human islet amyloid polypeptide
    • Soeller WC, Janson J, Hart SE, et al. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes. 1998;47:743–750.
    • (1998) Diabetes , vol.47 , pp. 743-750
    • Soeller, W.C.1    Janson, J.2    Hart, S.E.3
  • 110
    • 0037315790 scopus 로고    scopus 로고
    • Increased dietary fat promotes islet amyloid formation and β -cell secretory dysfunction in a transgenic mouse model of islet amyloid
    • Hull RL, Andrikopoulos S, Verchere CB, et al. Increased dietary fat promotes islet amyloid formation and β -cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes. 2003; 52:372–379.
    • (2003) Diabetes , vol.52 , pp. 372-379
    • Hull, R.L.1    Rikopoulos, S.2    Verchere, C.B.3
  • 111
    • 76449107634 scopus 로고    scopus 로고
    • Monocytes in atherosclerosis: Subsets and functions
    • Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7:77–86.
    • (2010) Nat Rev Cardiol , vol.7 , pp. 77-86
    • Woollard, K.J.1    Geissmann, F.2
  • 112
    • 65149093082 scopus 로고    scopus 로고
    • Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease
    • King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113: 3190–3197.
    • (2009) Blood , vol.113 , pp. 3190-3197
    • King, I.L.1    Dickendesher, T.L.2    Segal, B.M.3
  • 114
    • 84925496446 scopus 로고    scopus 로고
    • IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice
    • Westwell-Roper CY, Chehroudi CA, Denroche HC, Courtade JA, Ehses JA, Verchere CB. IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice. Diabetologia. 2015;58:575–585.
    • (2015) Diabetologia , vol.58 , pp. 575-585
    • Westwell-Roper, C.Y.1    Chehroudi, C.A.2    Denroche, H.C.3    Courtade, J.A.4    Ehses, J.A.5    Verchere, C.B.6
  • 115
    • 48149101434 scopus 로고    scopus 로고
    • The endocannabinoid system in obesity and type 2 diabetes
    • Di Marzo V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia. 2008;51:1356–1367.
    • (2008) Diabetologia , vol.51 , pp. 1356-1367
    • Di Marzo, V.1
  • 116
    • 0028856096 scopus 로고
    • Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis
    • Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol. 1995;9:1760–1770.
    • (1995) Mol Endocrinol , vol.9 , pp. 1760-1770
    • Christofori, G.1    Naik, P.2    Hanahan, D.3
  • 117
    • 0036491615 scopus 로고    scopus 로고
    • VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis
    • Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell. 2002;1:193–202.
    • (2002) Cancer Cell , vol.1 , pp. 193-202
    • Inoue, M.1    Hager, J.H.2    Ferrara, N.3    Gerber, H.P.4    Hanahan, D.5
  • 118
    • 33845540482 scopus 로고    scopus 로고
    • Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function
    • Brissova M, Shostak A, Shiota M, et al. Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55: 2974–2985.
    • (2006) Diabetes , vol.55 , pp. 2974-2985
    • Brissova, M.1    Shostak, A.2    Shiota, M.3
  • 119
    • 34648817337 scopus 로고    scopus 로고
    • Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic β cell-specific vascular endothelial growth factor-A knock-out mice
    • Iwashita N, Uchida T, Choi JB, et al. Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic β cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia. 2007;50:380–389.
    • (2007) Diabetologia , vol.50 , pp. 380-389
    • Iwashita, N.1    Uchida, T.2    Choi, J.B.3
  • 120
    • 54549108972 scopus 로고    scopus 로고
    • Reduced insulin secretion and content in VEGF-a deficient mouse pancreatic islets
    • Jabs N, Franklin I, Brenner MB, et al. Reduced insulin secretion and content in VEGF-a deficient mouse pancreatic islets. Exp Clin Endocrinol Diabetes. 2008;116(suppl 1):S46–S49.
    • (2008) Exp Clin Endocrinol Diabetes , vol.116 , pp. 46-49
    • Jabs, N.1    Franklin, I.2    Brenner, M.B.3
  • 121
    • 84870510472 scopus 로고    scopus 로고
    • VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue
    • Christoffersson G, Vagesjo E, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120: 4653–4662.
    • (2012) Blood , vol.120 , pp. 4653-4662
    • Christoffersson, G.1    Vagesjo, E.2    Vandooren, J.3
  • 122
    • 0029551876 scopus 로고
    • The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy
    • Nakamura M, Kitamura H, Konishi S, et al. The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy. Diabetes Res Clin Pract. 1995;30:89–100.
    • (1995) Diabetes Res Clin Pract , vol.30 , pp. 89-100
    • Nakamura, M.1    Kitamura, H.2    Konishi, S.3
  • 123
    • 10744229027 scopus 로고    scopus 로고
    • Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats
    • Ko SH, Kwon HS, Kim SR, et al. Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem Biophys Res Commun. 2004;316:114–122.
    • (2004) Biochem Biophys Res Commun , vol.316 , pp. 114-122
    • Ko, S.H.1    Kwon, H.S.2    Kim, S.R.3
  • 124
    • 33845582804 scopus 로고    scopus 로고
    • Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
    • Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–2973.
    • (2006) Diabetes , vol.55 , pp. 2965-2973
    • Li, X.1    Zhang, L.2    Meshinchi, S.3
  • 125
    • 84868027191 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β -cell mass
    • Agudo J, Ayuso E, Jimenez V, et al. Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β -cell mass. Diabetes. 2012;61: 2851–2861.
    • (2012) Diabetes , vol.61 , pp. 2851-2861
    • Agudo, J.1    Ayuso, E.2    Jimenez, V.3
  • 126
    • 84896690404 scopus 로고    scopus 로고
    • Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration
    • Brissova M, Aamodt K, Brahmachary P, et al. Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration. Cell Metab. 2014;19:498–511.
    • (2014) Cell Metab , vol.19 , pp. 498-511
    • Brissova, M.1    Aamodt, K.2    Brahmachary, P.3
  • 127
    • 34447645515 scopus 로고    scopus 로고
    • Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter
    • Rae F, Woods K, Sasmono T, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–246.
    • (2007) Dev Biol , vol.308 , pp. 232-246
    • Rae, F.1    Woods, K.2    Sasmono, T.3
  • 128
    • 0027225992 scopus 로고
    • Macrophages are required for cell death and tissue remodeling in the developing mouse eye
    • Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993;74: 453–462.
    • (1993) Cell , vol.74 , pp. 453-462
    • Lang, R.A.1    Bishop, J.M.2
  • 130
    • 84891358332 scopus 로고    scopus 로고
    • Macrophages and CSF-1: Implications for development and beyond
    • Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis. 2013;9:249–260.
    • (2013) Organogenesis , vol.9 , pp. 249-260
    • Jones, C.V.1    Ricardo, S.D.2
  • 131
    • 62549109923 scopus 로고    scopus 로고
    • High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors
    • Ojalvo LS, King W, Cox D, Pollard JW. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009;174:1048–1064.
    • (2009) Am J Pathol , vol.174 , pp. 1048-1064
    • Ojalvo, L.S.1    King, W.2    Cox, D.3    Pollard, J.W.4
  • 132
    • 0025323482 scopus 로고
    • Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (Op/op) mouse
    • USA
    • Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Jr., et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA. 1990; 87:4828–4832.
    • (1990) Proc Natl Acad Sci , vol.87 , pp. 4828-4832
    • Wiktor-Jedrzejczak, W.1    Bartocci, A.2    Ferrante, A.W.3
  • 133
    • 25644441744 scopus 로고    scopus 로고
    • Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro
    • Geutskens SB, Otonkoski T, Pulkkinen MA, Drexhage HA, Leenen PJ. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J Leukoc Biol. 2005; 78:845–852.
    • (2005) J Leukoc Biol , vol.78 , pp. 845-852
    • Geutskens, S.B.1    Otonkoski, T.2    Pulkkinen, M.A.3    Drexhage, H.A.4    Leenen, P.J.5
  • 134
    • 58549093915 scopus 로고    scopus 로고
    • Developmental biology of the pancreas: A comprehensive review
    • Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009;326:4–35.
    • (2009) Dev Biol , vol.326 , pp. 4-35
    • Gittes, G.K.1
  • 135
    • 0036777339 scopus 로고    scopus 로고
    • Signaling and transcriptional control of pancreatic organogenesis
    • Kim SK, MacDonald RJ. Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev. 2002;12:540–547.
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 540-547
    • Kim, S.K.1    Macdonald, R.J.2
  • 136
    • 33645211764 scopus 로고    scopus 로고
    • A transient microenvironment loaded mainly with macrophages in the early developing human pancreas
    • Banaei-Bouchareb L, Peuchmaur M, Czernichow P, Polak M. A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J Endocrinol. 2006;188: 467–480.
    • (2006) J Endocrinol , vol.188 , pp. 467-480
    • Banaei-Bouchareb, L.1    Peuchmaur, M.2    Czernichow, P.3    Polak, M.4
  • 137
    • 0028111419 scopus 로고
    • Colony stimulating factor 1 is required for mammary gland development during pregnancy
    • USA
    • Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA. 1994;91:9312–9316.
    • (1994) Proc Natl Acad Sci , vol.91 , pp. 9312-9316
    • Pollard, J.W.1    Hennighausen, L.2
  • 138
    • 0034092368 scopus 로고    scopus 로고
    • Postnatal mammary gland development requires macrophages and eosinophils
    • Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127:2269–2282.
    • (2000) Development , vol.127 , pp. 2269-2282
    • Gouon-Evans, V.1    Rothenberg, M.E.2    Pollard, J.W.3
  • 139
    • 84897769167 scopus 로고    scopus 로고
    • Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors
    • Mussar K, Tucker A, McLennan L, et al. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors. PLoS One. 2014;9:e89492.
    • (2014) Plos One , vol.9
    • Mussar, K.1    Tucker, A.2    McLennan, L.3
  • 140
    • 0034652287 scopus 로고    scopus 로고
    • Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
    • USA
    • Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA. 2000;97:1607–1611.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 1607-1611
    • Gradwohl, G.1    Dierich, A.2    Lemeur, M.3    Guillemot, F.4
  • 141
    • 19244372001 scopus 로고    scopus 로고
    • Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn 3
    • Jacquemin P, Durviaux SM, Jensen J, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn 3. Mol Cell Biol. 2000;20:4445–4454.
    • (2000) Mol Cell Biol , vol.20 , pp. 4445-4454
    • Jacquemin, P.1    Durviaux, S.M.2    Jensen, J.3
  • 142
    • 70350608140 scopus 로고    scopus 로고
    • Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation
    • Zhang H, Ables ET, Pope CF, et al. Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mech Dev. 2009;126:958–973.
    • (2009) Mech Dev , vol.126 , pp. 958-973
    • Zhang, H.1    Ables, E.T.2    Pope, C.F.3
  • 143
    • 2342510386 scopus 로고    scopus 로고
    • Adult pancreatic β -cells are formed by self-duplication rather than stem-cell differentiation
    • Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β -cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–46.
    • (2004) Nature , vol.429 , pp. 41-46
    • Dor, Y.1    Brown, J.2    Martinez, O.I.3    Melton, D.A.4
  • 144
    • 34247644369 scopus 로고    scopus 로고
    • Growth and regeneration of adult β cells does not involve specialized progenitors
    • Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell. 2007;12:817–826.
    • (2007) Dev Cell , vol.12 , pp. 817-826
    • Teta, M.1    Rankin, M.M.2    Long, S.Y.3    Stein, G.M.4    Kushner, J.A.5
  • 145
    • 84874638291 scopus 로고    scopus 로고
    • The role of aging upon β cell turnover
    • Kushner JA. The role of aging upon β cell turnover. J Clin Invest. 2013;123:990–995.
    • (2013) J Clin Invest , vol.123 , pp. 990-995
    • Kushner, J.A.1
  • 146
    • 77949289481 scopus 로고    scopus 로고
    • The long lifespan and low turnover of human islet β cells estimated by mathematical modelling of lipofuscin accumulation
    • Cnop M, Hughes SJ, Igoillo-Esteve M, et al. The long lifespan and low turnover of human islet β cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia. 2010;53: 321–330.
    • (2010) Diabetologia , vol.53 , pp. 321-330
    • Cnop, M.1    Hughes, S.J.2    Igoillo-Esteve, M.3
  • 148
    • 84884594497 scopus 로고    scopus 로고
    • The use of stem cells for pancreatic regeneration in diabetes mellitus
    • Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9:598–606.
    • (2013) Nat Rev Endocrinol , vol.9 , pp. 598-606
    • Bouwens, L.1    Houbracken, I.2    Mfopou, J.K.3
  • 149
    • 84892985085 scopus 로고    scopus 로고
    • Beyond islet transplantation in diabetes cell therapy: From embryonic stem cells to transdifferentiation of adult cells
    • Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc. 2013;45: 2019–2024.
    • (2013) Transplant Proc , vol.45 , pp. 2019-2024
    • Gioviale, M.C.1    Bellavia, M.2    Damiano, G.3    Lo Monte, A.I.4
  • 150
    • 84874149674 scopus 로고    scopus 로고
    • Myocardial regenerative properties of macrophage populations and stem cells
    • Santini MP, Rosenthal N. Myocardial regenerative properties of macrophage populations and stem cells. J Cardiovasc Transl Res. 2012;5:700–712.
    • (2012) J Cardiovasc Transl Res , vol.5 , pp. 700-712
    • Santini, M.P.1    Rosenthal, N.2
  • 151
    • 84886575052 scopus 로고    scopus 로고
    • Dissecting the damaging versus regenerative roles of CNS macrophages: Implications for the use of immunomodulatory therapeutics
    • Miron VE. Dissecting the damaging versus regenerative roles of CNS macrophages: implications for the use of immunomodulatory therapeutics. Regen Med. 2013;8:673–676.
    • (2013) Regen Med , vol.8 , pp. 673-676
    • Miron, V.E.1
  • 152
    • 84919435543 scopus 로고    scopus 로고
    • Rethinking regenerative medicine: A macrophage-centered approach
    • Brown, BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol. 2014;5: 510.
    • (2014) Front Immunol , vol.5 , pp. 510
    • Brown, B.N.1    Sicari, B.M.2    Badylak, S.F.3
  • 153
    • 0028793314 scopus 로고
    • Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats
    • Wang RN, Klöppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38:1405–1411.
    • (1995) Diabetologia , vol.38 , pp. 1405-1411
    • Wang, R.N.1    Klöppel, G.2    Bouwens, L.3
  • 154
    • 84875479006 scopus 로고    scopus 로고
    • TGF β receptor signaling is essential for inflammation-induced but not β -cell workload-induced β -cell proliferation
    • Xiao X, Wiersch J, El-Gohary Y, et al. TGF β receptor signaling is essential for inflammation-induced but not β -cell workload-induced β -cell proliferation. Diabetes. 2013;62:1217–1226.
    • (2013) Diabetes , vol.62 , pp. 1217-1226
    • Xiao, X.1    Wiersch, J.2    El-Gohary, Y.3
  • 155
    • 84929030461 scopus 로고    scopus 로고
    • Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas
    • Van Gassen N, Van Overmeire E, Leuckx G, et al. Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. Eur J Immunol. 2015; 45:1482–1493.
    • (2015) Eur J Immunol , vol.45 , pp. 1482-1493
    • Van Gassen, N.1    Van Overmeire, E.2    Leuckx, G.3
  • 156
    • 0030825432 scopus 로고    scopus 로고
    • Adaptation of islets of Langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones
    • Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res. 1997;29:301–307.
    • (1997) Horm Metab Res , vol.29 , pp. 301-307
    • Sorenson, R.L.1    Brelje, T.C.2
  • 157
    • 12944320856 scopus 로고    scopus 로고
    • Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice
    • Sone H, Kagawa Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia. 2005;48:58–67.
    • (2005) Diabetologia , vol.48 , pp. 58-67
    • Sone, H.1    Kagawa, Y.2
  • 158
    • 84877707122 scopus 로고    scopus 로고
    • Betatrophin: A hormone that controls pancreatic β cell proliferation
    • Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell. 2013;153:747–758.
    • (2013) Cell , vol.153 , pp. 747-758
    • Yi, P.1    Park, J.S.2    Melton, D.A.3
  • 160
    • 31544441610 scopus 로고    scopus 로고
    • Distinct role of macrophages in different tumor microenvironments
    • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–612.
    • (2006) Cancer Res , vol.66 , pp. 605-612
    • Lewis, C.E.1    Pollard, J.W.2
  • 161
    • 67349168435 scopus 로고    scopus 로고
    • Role of macrophages in tumour progression
    • Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett. 2009;123:97–102.
    • (2009) Immunol Lett , vol.123 , pp. 97-102
    • Siveen, K.S.1    Kuttan, G.2
  • 162
    • 77954672503 scopus 로고    scopus 로고
    • Adipose tissue macrophages: Their role in adipose tissue remodeling
    • Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33–39.
    • (2010) J Leukoc Biol , vol.88 , pp. 33-39
    • Suganami, T.1    Ogawa, Y.2
  • 163
    • 84897933309 scopus 로고    scopus 로고
    • Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues
    • Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127.
    • (2014) Front Immunol , vol.5 , pp. 127
    • Van Overmeire, E.1    Laoui, D.2    Keirsse, J.3    Van Ginderachter, J.A.4    Sarukhan, A.5
  • 164
    • 84860237015 scopus 로고    scopus 로고
    • Macrophages: Yolky beginnings
    • Bird L. Macrophages: yolky beginnings. Nat Rev Immunol. 2012; 12:322–323.
    • (2012) Nat Rev Immunol , vol.12 , pp. 322-323
    • Bird, L.1
  • 165
    • 84904401883 scopus 로고    scopus 로고
    • Origin and functions of tissue macrophages
    • Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41:21–35.
    • (2014) Immunity , vol.41 , pp. 21-35
    • Epelman, S.1    Lavine, K.J.2    Randolph, G.J.3
  • 166
    • 84911077979 scopus 로고    scopus 로고
    • Tissue macrophage identity and self-renewal
    • Gentek R, Molawi K, Sieweke MH. Tissue macrophage identity and self-renewal. Immunol Rev. 2014;262:56–73.
    • (2014) Immunol Rev , vol.262 , pp. 56-73
    • Gentek, R.1    Molawi, K.2    Sieweke, M.H.3
  • 168
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1    Gomez Perdiguero, E.2    Chorro, L.3
  • 169
    • 0032737272 scopus 로고    scopus 로고
    • Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain
    • Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res. 1999;117:145–152.
    • (1999) Brain Res Dev Brain Res , vol.117 , pp. 145-152
    • Alliot, F.1    Godin, I.2    Pessac, B.3
  • 170
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1    Greter, M.2    Leboeuf, M.3
  • 171
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.
    • (2013) Immunity , vol.38 , pp. 79-91
    • Yona, S.1    Kim, K.W.2    Wolf, Y.3
  • 172
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38: 792–804.
    • (2013) Immunity , vol.38 , pp. 792-804
    • Hashimoto, D.1    Chow, A.2    Noizat, C.3
  • 173
    • 84894559222 scopus 로고    scopus 로고
    • Local proliferation of macrophages in adipose tissue during obesity-induced inflammation
    • Haase J, Weyer U, Immig K, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57:562–571.
    • (2014) Diabetologia , vol.57 , pp. 562-571
    • Haase, J.1    Weyer, U.2    Immig, K.3
  • 174
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317:666–670.
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1    Fogg, D.2    Garfa, M.3
  • 176
    • 85040657852 scopus 로고    scopus 로고
    • Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases
    • Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.
    • (2014) Biomark Res , vol.2 , pp. 1
    • Yang, J.1    Zhang, L.2    Yu, C.3    Yang, X.F.4    Wang, H.5
  • 177
    • 77954062061 scopus 로고    scopus 로고
    • CD14CD16 monocyte subset levels in heart failure patients
    • Barisione C, Garibaldi S, Ghigliotti G, et al. CD14CD16 monocyte subset levels in heart failure patients. Dis Markers. 2010;28: 115–124.
    • (2010) Dis Markers , vol.28 , pp. 115-124
    • Barisione, C.1    Garibaldi, S.2    Ghigliotti, G.3
  • 178
    • 84857712400 scopus 로고    scopus 로고
    • The CD14(Bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population
    • Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 2012;64:671–677.
    • (2012) Arthritis Rheum , vol.64 , pp. 671-677
    • Rossol, M.1    Kraus, S.2    Pierer, M.3    Baerwald, C.4    Wagner, U.5
  • 179
    • 0037097415 scopus 로고    scopus 로고
    • Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30>, or =30)
    • Kullo IJ, Hensrud DD, Allison TG. Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30>, or =30). Am J Cardiol. 2002;89: 1441–1443.
    • (2002) Am J Cardiol , vol.89 , pp. 1441-1443
    • Kullo, I.J.1    Hensrud, D.D.2    Allison, T.G.3
  • 180
    • 80052962325 scopus 로고    scopus 로고
    • CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: Relationships with fat mass and subclinical atherosclerosis
    • Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2322–2330.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 2322-2330
    • Poitou, C.1    Dalmas, E.2    Renovato, M.3
  • 181
    • 84859426417 scopus 로고    scopus 로고
    • Proinflammatory CD14+CD16+monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia
    • Yang M, Gan H, Shen Q, Tang W, Du X, Chen D. Proinflammatory CD14+CD16+monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia. Inflammation. 2012;35:388–396.
    • (2012) Inflammation , vol.35 , pp. 388-396
    • Yang, M.1    Gan, H.2    Shen, Q.3    Tang, W.4    Du, X.5    Chen, D.6
  • 182
    • 84904045292 scopus 로고    scopus 로고
    • Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity
    • Krinninger P, Ensenauer R, Ehlers K, et al. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J Clin Endocrinol Metab. 2014;99:2500–509.
    • (2014) J Clin Endocrinol Metab , vol.99 , pp. 2500-2509
    • Krinninger, P.1    Ensenauer, R.2    Ehlers, K.3
  • 183
    • 84921374185 scopus 로고    scopus 로고
    • Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14CD16 monocytes in patients with type 2 diabetes
    • Terasawa T, Aso Y, Omori K, Fukushima M, Momobayashi A, Inukai T. Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14CD16 monocytes in patients with type 2 diabetes. Transl Res. 2015;165:336–345.
    • (2015) Transl Res , vol.165 , pp. 336-345
    • Terasawa, T.1    Aso, Y.2    Omori, K.3    Fukushima, M.4    Momobayashi, A.5    Inukai, T.6
  • 184
    • 84877270004 scopus 로고    scopus 로고
    • Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis
    • Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708.
    • (2013) Cell Metab , vol.17 , pp. 695-708
    • Nagareddy, P.R.1    Murphy, A.J.2    Stirzaker, R.A.3
  • 185
    • 84899948384 scopus 로고    scopus 로고
    • Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity
    • Nagareddy PR, Kraakman M, Masters SL, et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19:821–835.
    • (2014) Cell Metab , vol.19 , pp. 821-835
    • Nagareddy, P.R.1    Kraakman, M.2    Masters, S.L.3
  • 186
    • 84906275325 scopus 로고    scopus 로고
    • Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells
    • Singer K, DelProposto J, Morris DL, et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab. 2014;3:664–675.
    • (2014) Mol Metab , vol.3 , pp. 664-675
    • Singer, K.1    Delproposto, J.2    Morris, D.L.3
  • 187
    • 84962019243 scopus 로고    scopus 로고
    • Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes
    • Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015; 64:1420–1430.
    • (2015) Diabetes , vol.64 , pp. 1420-1430
    • Gallagher, K.A.1    Joshi, A.2    Carson, W.F.3
  • 188
    • 77955658618 scopus 로고    scopus 로고
    • Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes
    • Igoillo-Esteve M, Marselli L, Cunha DA, et al. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes. Diabetologia. 2010; 53:1395–1405.
    • (2010) Diabetologia , vol.53 , pp. 1395-1405
    • Igoillo-Esteve, M.1    Marselli, L.2    Cunha, D.A.3
  • 189
    • 84904826541 scopus 로고    scopus 로고
    • TLR4 is required for the obesityinduced pancreatic β cell dysfunction
    • Li J, Chen L, Zhang Y, et al. TLR4 is required for the obesityinduced pancreatic β cell dysfunction. Acta Biochim Biophys Sin (Shanghai). 2013;45:1030–1038.
    • (2013) Acta Biochim Biophys Sin (Shanghai) , vol.45 , pp. 1030-1038
    • Li, J.1    Chen, L.2    Zhang, Y.3
  • 190
    • 84905576671 scopus 로고    scopus 로고
    • Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice
    • Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE. Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia. 2014;57:1884–1888.
    • (2014) Diabetologia , vol.57 , pp. 1884-1888
    • Meier, D.T.1    Morcos, M.2    Samarasekera, T.3    Zraika, S.4    Hull, R.L.5    Kahn, S.E.6
  • 191
    • 0031178464 scopus 로고    scopus 로고
    • Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: Abrogation by a second transgene expressing systemic MCP-1
    • Grewal IS, Rutledge BJ, Fiorillo JA, et al. Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J Immunol. 1997;159: 401–408.
    • (1997) J Immunol , vol.159 , pp. 401-408
    • Grewal, I.S.1    Rutledge, B.J.2    Fiorillo, J.A.3
  • 192
    • 58149347630 scopus 로고    scopus 로고
    • Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes
    • Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes. 2008;57:3025–3033.
    • (2008) Diabetes , vol.57 , pp. 3025-3033
    • Martin, A.P.1    Rankin, S.2    Pitchford, S.3    Charo, I.F.4    Furtado, G.C.5    Lira, S.A.6
  • 193
    • 0032572719 scopus 로고    scopus 로고
    • Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis
    • Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894–897.
    • (1998) Nature , vol.394 , pp. 894-897
    • Boring, L.1    Gosling, J.2    Cleary, M.3    Charo, I.F.4
  • 194
    • 33845989083 scopus 로고    scopus 로고
    • Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
    • Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007;117:185–194.
    • (2007) J Clin Invest , vol.117 , pp. 185-194
    • Tacke, F.1    Alvarez, D.2    Kaplan, T.J.3
  • 195
    • 41649107036 scopus 로고    scopus 로고
    • Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis
    • Saederup N, Chan L, Lira SA, Charo IF. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation. 2008;117: 1642–1648.
    • (2008) Circulation , vol.117 , pp. 1642-1648
    • Saederup, N.1    Chan, L.2    Lira, S.A.3    Charo, I.F.4
  • 196
    • 84911865268 scopus 로고    scopus 로고
    • Impact of islet autoimmunity on the progressive _-cell functional decline in type 2 diabetes
    • Brooks-Worrell BM, Boyko EJ, Palmer JP. Impact of islet autoimmunity on the progressive _-cell functional decline in type 2 diabetes. Diabetes Care. 2014;37:3286–3293.
    • (2014) Diabetes Care , vol.37 , pp. 3286-3293
    • Brooks-Worrell, B.M.1    Boyko, E.J.2    Palmer, J.P.3
  • 197
    • 84899074071 scopus 로고    scopus 로고
    • CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes
    • Sarikonda G, Pettus J, Phatak S, et al. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J Autoimmun. 2014;50:77–82.
    • (2014) J Autoimmun , vol.50 , pp. 77-82
    • Sarikonda, G.1    Pettus, J.2    Phatak, S.3
  • 198
    • 84887571639 scopus 로고    scopus 로고
    • The central role of antigen presentation in islets of Langerhans in autoimmune diabetes
    • Calderon B, Carrero JA, Unanue ER. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol. 2014;26:32–40
    • (2014) Curr Opin Immunol , vol.26 , pp. 32-40
    • Calderon, B.1    Carrero, J.A.2    Unanue, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.