-
1
-
-
0024344041
-
Spontaneous cytotoxicity of macrophages against pancreatic islet cells
-
Appels B, Burkart V, Kantwerk-Funke G, Funda J, Kolb-Bachofen V, Kolb H. Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol. 1989;142:3803-3808.
-
(1989)
J Immunol
, vol.142
, pp. 3803-3808
-
-
Appels, B.1
Burkart, V.2
Kantwerk-Funke, G.3
Funda, J.4
Kolb-Bachofen, V.5
Kolb, H.6
-
2
-
-
0025104170
-
Essential contribution of macrophages to islet cell destruction in vivo and in vitro
-
Kolb H, Burkart V, Appels B, et al. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun. 1990;3(suppl 1):117–120.
-
(1990)
J Autoimmun
, vol.3
, pp. 117-120
-
-
Kolb, H.1
Burkart, V.2
Appels, B.3
-
3
-
-
0029825447
-
Macrophages in islet destruction in autoimmune diabetes mellitus
-
Burkart V, Kolb H. Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiology. 1996;195:601-613.
-
(1996)
Immunobiology
, vol.195
, pp. 601-613
-
-
Burkart, V.1
Kolb, H.2
-
4
-
-
0025279590
-
Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts
-
Kaufman DB, Platt JL, Rabe FL, Dunn DL, Bach FH, Sutherland DE. Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts. J Exp Med. 1990;172:291-302.
-
(1990)
J Exp Med
, vol.172
, pp. 291-302
-
-
Kaufman, D.B.1
Platt, J.L.2
Rabe, F.L.3
Dunn, D.L.4
Bach, F.H.5
Sutherland, D.E.6
-
5
-
-
0034637211
-
Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice
-
Wu GS, Korsgren O, Zhang JG, Song ZS, Van Rooijen N, Tibell A. Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice. Transplant Proc. 2000;32:1069.
-
(2000)
Transplant Proc
, vol.32
, pp. 1069
-
-
Wu, G.S.1
Korsgren, O.2
Zhang, J.G.3
Song, Z.S.4
Van Rooijen, N.5
Tibell, A.6
-
6
-
-
0037372892
-
T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts
-
Yi S, Hawthorne WJ, Lehnert AM, et al. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J Immunol. 2003;170:2750–2758.
-
(2003)
J Immunol
, vol.170
, pp. 2750-2758
-
-
Yi, S.1
Hawthorne, W.J.2
Lehnert, A.M.3
-
7
-
-
33644747390
-
Mechanisms of β -cell death in type 2 diabetes
-
Donath MY, Ehses JA, Maedler K, et al. Mechanisms of β -cell death in type 2 diabetes. Diabetes. 2005;54 (suppl 2):S108-S113.
-
(2005)
Diabetes
, vol.54
, pp. 108-113
-
-
Donath, M.Y.1
Ehses, J.A.2
Maedler, K.3
-
10
-
-
84865296710
-
Connecting type 1 and type 2 diabetes through innate immunity
-
Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012; 2:a007724.
-
(2012)
Cold Spring Harb Perspect Med
, vol.2
-
-
Odegaard, J.I.1
Chawla, A.2
-
11
-
-
45249119338
-
Macrophages, cytokines and β -cell death in Type 2 diabetes
-
Ehses JA, Böni-Schnetzler M, Faulenbach M, Donath MY. Macrophages, cytokines and β -cell death in Type 2 diabetes. Biochem Soc Trans. 2008;36:340–342.
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 340-342
-
-
Ehses, J.A.1
Böni-Schnetzler, M.2
Faulenbach, M.3
Donath, M.Y.4
-
12
-
-
84883497939
-
Targeting inflammation in the treatment of type 2 diabetes
-
Donath MY. Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab. 2013;15 (suppl 3):193–196.
-
(2013)
Diabetes Obes Metab
, vol.15
, pp. 193-196
-
-
Donath, M.Y.1
-
13
-
-
84883530920
-
Macrophages and islet inflammation in type 2 diabetes
-
Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 2013;15 (suppl 3):152–158.
-
(2013)
Diabetes Obes Metab
, vol.15
, pp. 152-158
-
-
Eguchi, K.1
Manabe, I.2
-
14
-
-
34548431826
-
Increased number of isletassociated macrophages in type 2 diabetes
-
Ehses JA, Perren A, Eppler E, et al. Increased number of isletassociated macrophages in type 2 diabetes. Diabetes. 2007;56: 2356–2370.
-
(2007)
Diabetes
, vol.56
, pp. 2356-2370
-
-
Ehses, J.A.1
Perren, A.2
Eppler, E.3
-
15
-
-
67650685521
-
Islet-associated macrophages in type 2 diabetes
-
Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. Islet-associated macrophages in type 2 diabetes. Diabetologia. 2009;52:1686–1688.
-
(2009)
Diabetologia
, vol.52
, pp. 1686-1688
-
-
Richardson, S.J.1
Willcox, A.2
Bone, A.J.3
Foulis, A.K.4
Morgan, N.G.5
-
16
-
-
84906264935
-
Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients
-
Kamata K, Mizukami H, Inaba W, et al. Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid. 2014;21:191–201.
-
(2014)
Amyloid
, vol.21
, pp. 191-201
-
-
Kamata, K.1
Mizukami, H.2
Inaba, W.3
-
17
-
-
33748306069
-
Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat
-
Homo-Delarche F, Calderari S, Irminger JC, et al. Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes. 2006;55:1625–1633.
-
(2006)
Diabetes
, vol.55
, pp. 1625-1633
-
-
Homo-Delarche, F.1
Calderari, S.2
Irminger, J.C.3
-
18
-
-
84859449180
-
Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation
-
Eguchi K, Manabe I, Oishi-Tanaka Y, et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 2012;15:518–533.
-
(2012)
Cell Metab
, vol.15
, pp. 518-533
-
-
Eguchi, K.1
Manabe, I.2
Oishi-Tanaka, Y.3
-
19
-
-
84883784100
-
Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes
-
Jourdan T, Godlewski G, Cinar R, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes. Nat Med. 2013;19:1132–1140.
-
(2013)
Nat Med
, vol.19
, pp. 1132-1140
-
-
Jourdan, T.1
Godlewski, G.2
Cinar, R.3
-
20
-
-
77956958947
-
Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 β in type 2 diabetes
-
Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 β in type 2 diabetes. Nat Immunol. 2010;11:897–904.
-
(2010)
Nat Immunol
, vol.11
, pp. 897-904
-
-
Masters, S.L.1
Dunne, A.2
Subramanian, S.L.3
-
21
-
-
80052650475
-
IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction
-
Westwell-Roper C, Dai DL, Soukhatcheva G, et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol. 2011;187:2755–2765.
-
(2011)
J Immunol
, vol.187
, pp. 2755-2765
-
-
Westwell-Roper, C.1
Dai, D.L.2
Soukhatcheva, G.3
-
22
-
-
84872018875
-
Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes
-
Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62:194–204.
-
(2013)
Diabetes
, vol.62
, pp. 194-204
-
-
Lee, H.M.1
Kim, J.J.2
Kim, H.J.3
Shong, M.4
Ku, B.J.5
Jo, E.K.6
-
23
-
-
84904743714
-
TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair β cell insulin gene expression via IL-1 and IL-6
-
Nackiewicz D, Dan M, He W, et al. TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair β cell insulin gene expression via IL-1 and IL-6. Diabetologia. 2014;57: 1645–1654.
-
(2014)
Diabetologia
, vol.57
, pp. 1645-1654
-
-
Nackiewicz, D.1
Dan, M.2
He, W.3
-
24
-
-
84894518230
-
Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β -cell dysfunction
-
Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β -cell dysfunction. Diabetes. 2014;63:1698–1711.
-
(2014)
Diabetes
, vol.63
, pp. 1698-1711
-
-
Westwell-Roper, C.Y.1
Ehses, J.A.2
Verchere, C.B.3
-
25
-
-
3442878663
-
Insulin cell mass is altered in Csf1op/Csf1op macrophagedeficient mice
-
Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, et al. Insulin cell mass is altered in Csf1op/Csf1op macrophagedeficient mice. J Leukoc Biol. 2004;76:359–367.
-
(2004)
J Leukoc Biol
, vol.76
, pp. 359-367
-
-
Banaei-Bouchareb, L.1
Gouon-Evans, V.2
Samara-Boustani, D.3
-
26
-
-
84908281309
-
Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β -cell regeneration in mice
-
Criscimanna A, Coudriet GM, Gittes GK, Piganelli JD, Esni F. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β -cell regeneration in mice. Gastroenterology 2014;147:1106–1118 e1111.
-
(2014)
Gastroenterology
, vol.147
, pp. 1106-1118
-
-
Criscimanna, A.1
Coudriet, G.M.2
Gittes, G.K.3
Piganelli, J.D.4
Esni, F.5
-
27
-
-
84897568455
-
M2 macrophages promote β -cell proliferation by up-regulation of SMAD 7
-
USA
-
Xiao X, Gaffar I, Guo P, et al. M2 macrophages promote β -cell proliferation by up-regulation of SMAD 7. Proc Natl Acad Sci USA. 2014;111:E1211–E1220.
-
(2014)
Proc Natl Acad Sci
, vol.111
, pp. 1211-1220
-
-
Xiao, X.1
Gaffar, I.2
Guo, P.3
-
28
-
-
0036839143
-
Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
-
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555.
-
(2002)
Trends Immunol
, vol.23
, pp. 549-555
-
-
Mantovani, A.1
Sozzani, S.2
Locati, M.3
Allavena, P.4
Sica, A.5
-
29
-
-
84897556094
-
The M1 and M2 paradigm of macrophage activation: Time for reassessment
-
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014; 6:13.
-
(2014)
F1000prime Rep
, vol.6
, pp. 13
-
-
Martinez, F.O.1
Gordon, S.2
-
30
-
-
84870441676
-
Modulation of macrophage activation and programming in immunity
-
Liu G, Yang H. Modulation of macrophage activation and programming in immunity. J Cell Physiol. 2013;228:502–512.
-
(2013)
J Cell Physiol
, vol.228
, pp. 502-512
-
-
Liu, G.1
Yang, H.2
-
31
-
-
0037310024
-
The many faces of macrophage activation
-
Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73:209–212.
-
(2003)
J Leukoc Biol
, vol.73
, pp. 209-212
-
-
Mosser, D.M.1
-
32
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
34
-
-
84866554651
-
Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction
-
Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012;189:3508–3520.
-
(2012)
J Immunol
, vol.189
, pp. 3508-3520
-
-
Zizzo, G.1
Hilliard, B.A.2
Monestier, M.3
Cohen, P.L.4
-
35
-
-
73549104499
-
Suppression of PLCβ2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype
-
Grinberg S, Hasko G, Wu D, Leibovich SJ. Suppression of PLCβ2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol. 2009;175:2439–2453.
-
(2009)
Am J Pathol
, vol.175
, pp. 2439-2453
-
-
Grinberg, S.1
Hasko, G.2
Wu, D.3
Leibovich, S.J.4
-
37
-
-
70350529527
-
Functional plasticity of macrophages: In situ reprogramming of tumor-associated macrophages
-
Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86:1105–1109.
-
(2009)
J Leukoc Biol
, vol.86
, pp. 1105-1109
-
-
Stout, R.D.1
Watkins, S.K.2
Suttles, J.3
-
38
-
-
84904394690
-
Macrophage activation and polarization: Nomenclature and experimental guidelines
-
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.
-
(2014)
Immunity
, vol.41
, pp. 14-20
-
-
Murray, P.J.1
Allen, J.E.2
Biswas, S.K.3
-
39
-
-
52649097448
-
Immunological Genome Project Consortium. The Immunological Genome Project: Networks of gene expression in immune cells
-
Heng TS, Painter MW, Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9:1091–1094.
-
(2008)
Nat Immunol
, vol.9
, pp. 1091-1094
-
-
Heng, T.S.1
Painter, M.W.2
-
40
-
-
84883894867
-
Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells
-
Gazit R, Garrison BS, Rao TN, et al. Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. Stem Cell Rep. 2013;1:266–280.
-
(2013)
Stem Cell Rep
, vol.1
, pp. 266-280
-
-
Gazit, R.1
Garrison, B.S.2
Rao, T.N.3
-
41
-
-
84878242024
-
Identification of transcriptional regulators in the mouse immune system
-
Jojic V, Shay T, Sylvia K, et al. Identification of transcriptional regulators in the mouse immune system. Nat Immunol. 2013;14: 633–643.
-
(2013)
Nat Immunol
, vol.14
, pp. 633-643
-
-
Jojic, V.1
Shay, T.2
Sylvia, K.3
-
42
-
-
84867740805
-
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
-
Gautier EL, Shay T, Miller J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13: 1118–1128.
-
(2012)
Nat Immunol
, vol.13
, pp. 1118-1128
-
-
Gautier, E.L.1
Shay, T.2
Miller, J.3
-
43
-
-
84865418665
-
Deciphering the transcriptional network of the dendritic cell lineage
-
Miller JC, Brown BD, Shay T, et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol. 2012; 13:888–899.
-
(2012)
Nat Immunol
, vol.13
, pp. 888-899
-
-
Miller, J.C.1
Brown, B.D.2
Shay, T.3
-
44
-
-
84907991703
-
Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages
-
Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20:614–625.
-
(2014)
Cell Metab
, vol.20
, pp. 614-625
-
-
Kratz, M.1
Coats, B.R.2
Hisert, K.B.3
-
45
-
-
70350435962
-
Epigenetic regulation of the alternatively activated macrophage phenotype
-
Ishii M, Wen H, Corsa CA, et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114: 3244–3254.
-
(2009)
Blood
, vol.114
, pp. 3244-3254
-
-
Ishii, M.1
Wen, H.2
Corsa, C.A.3
-
46
-
-
82955247088
-
Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation
-
Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011;25:2480–2488.
-
(2011)
Genes Dev
, vol.25
, pp. 2480-2488
-
-
Mullican, S.E.1
Gaddis, C.A.2
Alenghat, T.3
-
47
-
-
84886897279
-
Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes
-
Kittan NA, Allen RM, Dhaliwal A, et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One. 2013;8:e78045.
-
(2013)
Plos One
, vol.8
-
-
Kittan, N.A.1
Allen, R.M.2
Dhaliwal, A.3
-
48
-
-
79951957545
-
Extracellular proteomes of M-CSF (CSF-1) and GM-CSF-dependent macrophages
-
Bailey MJ, Lacey DC, de Kok BV, Veith PD, Reynolds EC, Hamilton JA. Extracellular proteomes of M-CSF (CSF-1) and GM-CSF-dependent macrophages. Immunol Cell Biol. 2011;89: 283–293.
-
(2011)
Immunol Cell Biol
, vol.89
, pp. 283-293
-
-
Bailey, M.J.1
Lacey, D.C.2
De Kok, B.V.3
Veith, P.D.4
Reynolds, E.C.5
Hamilton, J.A.6
-
49
-
-
84858016069
-
Unique proteomic signatures distinguish macrophages and dendritic cells
-
Becker L, Liu NC, Averill MM, et al. Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One. 2012;7: e33297.
-
(2012)
Plos One
, vol.7
-
-
Becker, L.1
Liu, N.C.2
Averill, M.M.3
-
50
-
-
0348230958
-
Obesity is associated with macrophage accumulation in adipose tissue
-
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–1808.
-
(2003)
J Clin Invest
, vol.112
, pp. 1796-1808
-
-
Weisberg, S.P.1
McCann, D.2
Desai, M.3
Rosenbaum, M.4
Leibel, R.L.5
Ferrante, A.W.6
-
51
-
-
9144223683
-
Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
-
Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–1830.
-
(2003)
J Clin Invest
, vol.112
, pp. 1821-1830
-
-
Xu, H.1
Barnes, G.T.2
Yang, Q.3
-
52
-
-
34548477639
-
Adipose tissue macrophages
-
Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol Lett. 2007;112:61–67.
-
(2007)
Immunol Lett
, vol.112
, pp. 61-67
-
-
Zeyda, M.1
Stulnig, T.M.2
-
53
-
-
79959216069
-
Adipose tissue macrophages: Phenotypic plasticity and diversity in lean and obese states
-
Morris DL, Singer K, Lumeng CN. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care. 2011;14:341–346.
-
(2011)
Curr Opin Clin Nutr Metab Care
, vol.14
, pp. 341-346
-
-
Morris, D.L.1
Singer, K.2
Lumeng, C.N.3
-
54
-
-
84918563183
-
Macrophage polarization in obesity and type 2 diabetes: Weighing down our understanding of macrophage function?
-
Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470.
-
(2014)
Front Immunol
, vol.5
, pp. 470
-
-
Kraakman, M.J.1
Murphy, A.J.2
Jandeleit-Dahm, K.3
Kammoun, H.L.4
-
55
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–184.
-
(2007)
J Clin Invest
, vol.117
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
56
-
-
36849012057
-
Adipocyte death, adipose tissue remodeling, and obesity complications
-
Strissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56:2910–2918.
-
(2007)
Diabetes
, vol.56
, pp. 2910-2918
-
-
Strissel, K.J.1
Stancheva, Z.2
Miyoshi, H.3
-
57
-
-
77951822653
-
Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice
-
Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes. 2010;59:1171–1181.
-
(2010)
Diabetes
, vol.59
, pp. 1171-1181
-
-
Shaul, M.E.1
Bennett, G.2
Strissel, K.J.3
Greenberg, A.S.4
Obin, M.S.5
-
58
-
-
73949125691
-
MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity
-
Westcott DJ, Delproposto JB, Geletka LM, et al. MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. J Exp Med. 2009;206:3143–3156.
-
(2009)
J Exp Med
, vol.206
, pp. 3143-3156
-
-
Westcott, D.J.1
Delproposto, J.B.2
Geletka, L.M.3
-
59
-
-
84906719512
-
Glycoprotein 130 receptor signaling mediates alphacell dysfunction in a rodent model of type 2 diabetes
-
Chow SZ. Glycoprotein 130 receptor signaling mediates alphacell dysfunction in a rodent model of type 2 diabetes. Diabetes. 2014;63:2984–2995.
-
(2014)
Diabetes
, vol.63
, pp. 2984-2995
-
-
Chow, S.Z.1
-
60
-
-
33745592735
-
Adipose tissue has anti-inflammatory properties: Focus on IL-1 receptor antagonist (IL-1Ra)
-
Dayer JM, Chicheportiche R, Juge-Aubry C, Meier C. Adipose tissue has anti-inflammatory properties: focus on IL-1 receptor antagonist (IL-1Ra). Ann NY Acad Sci. 2006;1069:444–453.
-
(2006)
Ann NY Acad Sci
, vol.1069
, pp. 444-453
-
-
Dayer, J.M.1
Chicheportiche, R.2
Juge-Aubry, C.3
Meier, C.4
-
61
-
-
34547469630
-
Macrophage polarization and insulin resistance: PPARγ in control
-
Charo IF. Macrophage polarization and insulin resistance: PPARγ in control. Cell Metab. 2007;6:96–98.
-
(2007)
Cell Metab
, vol.6
, pp. 96-98
-
-
Charo, I.F.1
-
62
-
-
34347354309
-
Macrophage- specific PPARγ controls alternative activation and improves insulin resistance
-
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage- specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–1120.
-
(2007)
Nature
, vol.447
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
-
63
-
-
39749200215
-
Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue
-
Guri AJ, Hontecillas R, Ferrer G, et al. Loss of PPARγ in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem. 2008;19:216–228.
-
(2008)
J Nutr Biochem
, vol.19
, pp. 216-228
-
-
Guri, A.J.1
Hontecillas, R.2
Ferrer, G.3
-
64
-
-
44349112305
-
Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
-
Kang K, Reilly SM, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–495.
-
(2008)
Cell Metab
, vol.7
, pp. 485-495
-
-
Kang, K.1
Reilly, S.M.2
Karabacak, V.3
-
65
-
-
33745428666
-
Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
-
Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13–24.
-
(2006)
Cell Metab
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
-
66
-
-
84902094655
-
Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
-
Qiu Y, Nguyen KD, Odegaard JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–1308.
-
(2014)
Cell
, vol.157
, pp. 1292-1308
-
-
Qiu, Y.1
Nguyen, K.D.2
Odegaard, J.I.3
-
67
-
-
33847073149
-
Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity
-
Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.
-
(2007)
Diabetes
, vol.56
, pp. 16-23
-
-
Lumeng, C.N.1
Deyoung, S.M.2
Bodzin, J.L.3
Saltiel, A.R.4
-
68
-
-
58149347227
-
Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes
-
Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–3246.
-
(2008)
Diabetes
, vol.57
, pp. 3239-3246
-
-
Lumeng, C.N.1
Delproposto, J.B.2
Westcott, D.J.3
Saltiel, A.R.4
-
69
-
-
31044456529
-
CCR2 modulates inflammatory and metabolic effects of high-fat feeding
-
Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2005;116:115–124.
-
(2005)
J Clin Invest
, vol.116
, pp. 115-124
-
-
Weisberg, S.P.1
Hunter, D.2
Huber, R.3
-
70
-
-
57549087753
-
Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice
-
Tamura Y, Sugimoto M, Murayama T, et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler Thromb Vasc Biol. 2008;28:2195–2201.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 2195-2201
-
-
Tamura, Y.1
Sugimoto, M.2
Murayama, T.3
-
71
-
-
77957838795
-
Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue
-
Kosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–3479.
-
(2010)
J Clin Invest
, vol.120
, pp. 3466-3479
-
-
Kosteli, A.1
Sugaru, E.2
Haemmerle, G.3
-
72
-
-
27444437321
-
Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans
-
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–2355.
-
(2005)
J Lipid Res
, vol.46
, pp. 2347-2355
-
-
Cinti, S.1
Mitchell, G.2
Barbatelli, G.3
-
73
-
-
50949108719
-
Dead adipocytes, detected as crown-like structures (CLS), are prevalent in visceral fat depots of genetically obese mice
-
Murano I, Barbatelli G, Parisani V, et al. Dead adipocytes, detected as crown-like structures (CLS), are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49:1562–1568.
-
(2008)
J Lipid Res
, vol.49
, pp. 1562-1568
-
-
Murano, I.1
Barbatelli, G.2
Parisani, V.3
-
74
-
-
33846004396
-
Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins
-
Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab. 2007; 292:E166–E174.
-
(2007)
Am J Physiol Endocrinol Metab
, vol.292
, pp. 166-174
-
-
Lumeng, C.N.1
Deyoung, S.M.2
Saltiel, A.R.3
-
76
-
-
79751512463
-
The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
-
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–188.
-
(2011)
Nat Med
, vol.17
, pp. 179-188
-
-
Vandanmagsar, B.1
Youm, Y.H.2
Ravussin, A.3
-
77
-
-
52749092267
-
Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals
-
Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8:301–309.
-
(2008)
Cell Metab
, vol.8
, pp. 301-309
-
-
Patsouris, D.1
Li, P.P.2
Thapar, D.3
Chapman, J.4
Olefsky, J.M.5
Neels, J.G.6
-
78
-
-
75149197353
-
CD11c expression in adipose tissue and blood and its role in diet-induced obesity
-
Wu H, Perrard XD, Wang Q, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2009;30:186–192.
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 186-192
-
-
Wu, H.1
Perrard, X.D.2
Wang, Q.3
-
79
-
-
84919875183
-
An MHC II-dependent activation loop between adipose tissue macrophages and CD4(+) T cells controls obesity-induced inflammation
-
Cho KW, Morris DL, DelProposto JL, et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4(+) T cells controls obesity-induced inflammation. Cell Rep. 2014;9:605–617.
-
(2014)
Cell Rep
, vol.9
, pp. 605-617
-
-
Cho, K.W.1
Morris, D.L.2
Delproposto, J.L.3
-
81
-
-
84881029152
-
Chronic adipose tissue inflammation: All immune cells on the stage
-
Cildir G, Akıncılar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med. 2013;19:487–500.
-
(2013)
Trends Mol Med
, vol.19
, pp. 487-500
-
-
Cildir, G.1
Akıncılar, S.C.2
Tergaonkar, V.3
-
82
-
-
84894580064
-
Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes
-
Butcher MJ, Hallinger D, Garcia E, et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014;57:491–501.
-
(2014)
Diabetologia
, vol.57
, pp. 491-501
-
-
Butcher, M.J.1
Hallinger, D.2
Garcia, E.3
-
83
-
-
84897019577
-
Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization
-
Cucak H, Grunnet LG, Rosendahl A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol. 2014;95:149–160.
-
(2014)
J Leukoc Biol
, vol.95
, pp. 149-160
-
-
Cucak, H.1
Grunnet, L.G.2
Rosendahl, A.3
-
84
-
-
84897133645
-
Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes
-
Cucak H, Mayer C, Tonnesen M, Thomsen LH, Grunnet LG, Rosendahl A. Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One. 2014;9:e90685.
-
(2014)
Plos One
, vol.9
-
-
Cucak, H.1
Mayer, C.2
Tonnesen, M.3
Thomsen, L.H.4
Grunnet, L.G.5
Rosendahl, A.6
-
85
-
-
84901920026
-
Targeting inflammation in the treatment of type 2 diabetes: Time to start
-
Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13:465–476.
-
(2014)
Nat Rev Drug Discov
, vol.13
, pp. 465-476
-
-
Donath, M.Y.1
-
86
-
-
71949118923
-
Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I
-
Böni-Schnetzler M, Boller S, Debray S, et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology. 2009;150:5218–5229.
-
(2009)
Endocrinology
, vol.150
, pp. 5218-5229
-
-
Böni-Schnetzler, M.1
Boller, S.2
Debray, S.3
-
87
-
-
33750846939
-
Low concentration of interleukin-1 β induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets
-
Maedler K, Schumann DM, Sauter N, et al. Low concentration of interleukin-1 β induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets. Diabetes. 2006;55:2713–2722.
-
(2006)
Diabetes
, vol.55
, pp. 2713-2722
-
-
Maedler, K.1
Schumann, D.M.2
Sauter, N.3
-
88
-
-
84925004057
-
Short term exposure of β cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression
-
Arous C, Ferreira PG, Dermitzakis ET, Halban PA. Short term exposure of β cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem. 2015;290: 6653–6669.
-
(2015)
J Biol Chem
, vol.290
, pp. 6653-6669
-
-
Arous, C.1
Ferreira, P.G.2
Dermitzakis, E.T.3
Halban, P.A.4
-
89
-
-
0022445268
-
Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans
-
Bendtzen K, Mandrup-Poulsen T, Nerup J, Nielsen JH, Dinarello CA, Svenson M. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science. 1986;232:1545–1547.
-
(1986)
Science
, vol.232
, pp. 1545-1547
-
-
Bendtzen, K.1
Mandrup-Poulsen, T.2
Nerup, J.3
Nielsen, J.H.4
Dinarello, C.A.5
Svenson, M.6
-
90
-
-
0022491931
-
Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans
-
Mandrup-Poulsen T, Bendtzen K, Nerup J, Egeberg J, Nielsen JH. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans. Allergy. 1986;41:250–259.
-
(1986)
Allergy
, vol.41
, pp. 250-259
-
-
Mandrup-Poulsen, T.1
Bendtzen, K.2
Nerup, J.3
Egeberg, J.4
Nielsen, J.H.5
-
91
-
-
0031897507
-
Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1 β and Fas ligation
-
Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1 β and Fas ligation. Diabetes. 1998;47:727–732.
-
(1998)
Diabetes
, vol.47
, pp. 727-732
-
-
Loweth, A.C.1
Williams, G.T.2
James, R.F.3
Scarpello, J.H.4
Morgan, N.G.5
-
92
-
-
77950362382
-
The inflammasomes
-
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–832.
-
(2010)
Cell
, vol.140
, pp. 821-832
-
-
Schroder, K.1
Tschopp, J.2
-
93
-
-
12044259166
-
Characterization of a functional NF- β B site in the human interleukin 1 β promoter: Evidence for a positive autoregulatory loop
-
Hiscott J, Marois J, Garoufalis J, et al. Characterization of a functional NF- β B site in the human interleukin 1 β promoter: evidence for a positive autoregulatory loop. Mol Cell Biol. 1993;13:6231–6240.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 6231-6240
-
-
Hiscott, J.1
Marois, J.2
Garoufalis, J.3
-
94
-
-
34347399563
-
Metabolic endotoxemia initiates obesity and insulin resistance
-
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.
-
(2007)
Diabetes
, vol.56
, pp. 1761-1772
-
-
Cani, P.D.1
Amar, J.2
Iglesias, M.A.3
-
95
-
-
33947182436
-
Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes
-
Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–E747.
-
(2007)
Am J Physiol Endocrinol Metab
, vol.292
, pp. 740-747
-
-
Creely, S.J.1
McTernan, P.G.2
Kusminski, C.M.3
-
96
-
-
77953060025
-
Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects
-
Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–868.
-
(2010)
Diabetes Care
, vol.33
, pp. 861-868
-
-
Dasu, M.R.1
Devaraj, S.2
Park, S.3
Jialal, I.4
-
97
-
-
84925773113
-
Alarmin highmobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β -cells
-
Lond
-
Guzman-Ruiz R, Ortega F, Rodriguez A, et al. Alarmin highmobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β -cells. Int J Obes (Lond). 2014;38:1545–1554.
-
(2014)
Int J Obes
, vol.38
, pp. 1545-1554
-
-
Guzman-Ruiz, R.1
Ortega, F.2
Rodriguez, A.3
-
98
-
-
84860539468
-
Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes
-
Li M, Song L, Gao X, Chang W, Qin X. Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med. 2012;44:260–267.
-
(2012)
Exp Mol Med
, vol.44
, pp. 260-267
-
-
Li, M.1
Song, L.2
Gao, X.3
Chang, W.4
Qin, X.5
-
99
-
-
0036671894
-
The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β
-
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10:417–426.
-
(2002)
Mol Cell
, vol.10
, pp. 417-426
-
-
Martinon, F.1
Burns, K.2
Tschopp, J.3
-
100
-
-
74549184092
-
The NLRP3 inflammasome: A sensor for metabolic danger?
-
Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327:296–300.
-
(2010)
Science
, vol.327
, pp. 296-300
-
-
Schroder, K.1
Zhou, R.2
Tschopp, J.3
-
101
-
-
79955038882
-
Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
-
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–415.
-
(2011)
Nat Immunol
, vol.12
, pp. 408-415
-
-
Wen, H.1
Gris, D.2
Lei, Y.3
-
102
-
-
84899425498
-
Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes
-
Westwell-Roper C, Nackiewicz D, Dan M, Ehses JA. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol Cell Biol. 2014;92:314–323.
-
(2014)
Immunol Cell Biol
, vol.92
, pp. 314-323
-
-
Westwell-Roper, C.1
Nackiewicz, D.2
Dan, M.3
Ehses, J.A.4
-
103
-
-
80054903245
-
Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage
-
Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology. 2011;152:4039–4045.
-
(2011)
Endocrinology
, vol.152
, pp. 4039-4045
-
-
Youm, Y.H.1
Adijiang, A.2
Vandanmagsar, B.3
Burk, D.4
Ravussin, A.5
Dixit, V.D.6
-
104
-
-
32944470765
-
Cryopyrin activates the inflammasome in response to toxins and ATP
-
Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440: 228–232.
-
(2006)
Nature
, vol.440
, pp. 228-232
-
-
Mariathasan, S.1
Weiss, D.S.2
Newton, K.3
-
105
-
-
75649096002
-
Thioredoxininteracting protein links oxidative stress to inflammasome activation
-
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxininteracting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–140.
-
(2010)
Nat Immunol
, vol.11
, pp. 136-140
-
-
Zhou, R.1
Tardivel, A.2
Thorens, B.3
Choi, I.4
Tschopp, J.5
-
106
-
-
0032969276
-
Islet amyloid: A longrecognized but underappreciated pathological feature of type 2 diabetes
-
Kahn SE, Andrikopoulos S, Verchere CB. Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes. Diabetes. 1999;48:241–253.
-
(1999)
Diabetes
, vol.48
, pp. 241-253
-
-
Kahn, S.E.1
Rikopoulos, S.2
Verchere, C.B.3
-
107
-
-
0035969513
-
Islet amyloid and type 2 diabetes: From molecular misfolding to islet pathophysiology
-
Jaikaran ET, Clark A. Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta. 2001;1537:179–203.
-
(2001)
Biochim Biophys Acta
, vol.1537
, pp. 179-203
-
-
Jaikaran, E.T.1
Clark, A.2
-
108
-
-
0031889824
-
Fibrillar islet amyloid polypeptide (Amylin) is internalised by macrophages but resists proteolytic degradation
-
Badman MK, Pryce RA, Chargé SB, Morris JF, Clark A. Fibrillar islet amyloid polypeptide (amylin) is internalised by macrophages but resists proteolytic degradation. Cell Tissue Res. 1998;291: 285–294.
-
(1998)
Cell Tissue Res
, vol.291
, pp. 285-294
-
-
Badman, M.K.1
Pryce, R.A.2
Chargé, S.B.3
Morris, J.F.4
Clark, A.5
-
109
-
-
0031920985
-
Islet amyloid-associated diabetes in obese A(Vy)/a mice expressing human islet amyloid polypeptide
-
Soeller WC, Janson J, Hart SE, et al. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes. 1998;47:743–750.
-
(1998)
Diabetes
, vol.47
, pp. 743-750
-
-
Soeller, W.C.1
Janson, J.2
Hart, S.E.3
-
110
-
-
0037315790
-
Increased dietary fat promotes islet amyloid formation and β -cell secretory dysfunction in a transgenic mouse model of islet amyloid
-
Hull RL, Andrikopoulos S, Verchere CB, et al. Increased dietary fat promotes islet amyloid formation and β -cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes. 2003; 52:372–379.
-
(2003)
Diabetes
, vol.52
, pp. 372-379
-
-
Hull, R.L.1
Rikopoulos, S.2
Verchere, C.B.3
-
111
-
-
76449107634
-
Monocytes in atherosclerosis: Subsets and functions
-
Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7:77–86.
-
(2010)
Nat Rev Cardiol
, vol.7
, pp. 77-86
-
-
Woollard, K.J.1
Geissmann, F.2
-
112
-
-
65149093082
-
Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease
-
King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113: 3190–3197.
-
(2009)
Blood
, vol.113
, pp. 3190-3197
-
-
King, I.L.1
Dickendesher, T.L.2
Segal, B.M.3
-
114
-
-
84925496446
-
IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice
-
Westwell-Roper CY, Chehroudi CA, Denroche HC, Courtade JA, Ehses JA, Verchere CB. IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice. Diabetologia. 2015;58:575–585.
-
(2015)
Diabetologia
, vol.58
, pp. 575-585
-
-
Westwell-Roper, C.Y.1
Chehroudi, C.A.2
Denroche, H.C.3
Courtade, J.A.4
Ehses, J.A.5
Verchere, C.B.6
-
115
-
-
48149101434
-
The endocannabinoid system in obesity and type 2 diabetes
-
Di Marzo V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia. 2008;51:1356–1367.
-
(2008)
Diabetologia
, vol.51
, pp. 1356-1367
-
-
Di Marzo, V.1
-
116
-
-
0028856096
-
Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis
-
Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol. 1995;9:1760–1770.
-
(1995)
Mol Endocrinol
, vol.9
, pp. 1760-1770
-
-
Christofori, G.1
Naik, P.2
Hanahan, D.3
-
117
-
-
0036491615
-
VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis
-
Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell. 2002;1:193–202.
-
(2002)
Cancer Cell
, vol.1
, pp. 193-202
-
-
Inoue, M.1
Hager, J.H.2
Ferrara, N.3
Gerber, H.P.4
Hanahan, D.5
-
118
-
-
33845540482
-
Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function
-
Brissova M, Shostak A, Shiota M, et al. Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55: 2974–2985.
-
(2006)
Diabetes
, vol.55
, pp. 2974-2985
-
-
Brissova, M.1
Shostak, A.2
Shiota, M.3
-
119
-
-
34648817337
-
Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic β cell-specific vascular endothelial growth factor-A knock-out mice
-
Iwashita N, Uchida T, Choi JB, et al. Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic β cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia. 2007;50:380–389.
-
(2007)
Diabetologia
, vol.50
, pp. 380-389
-
-
Iwashita, N.1
Uchida, T.2
Choi, J.B.3
-
120
-
-
54549108972
-
Reduced insulin secretion and content in VEGF-a deficient mouse pancreatic islets
-
Jabs N, Franklin I, Brenner MB, et al. Reduced insulin secretion and content in VEGF-a deficient mouse pancreatic islets. Exp Clin Endocrinol Diabetes. 2008;116(suppl 1):S46–S49.
-
(2008)
Exp Clin Endocrinol Diabetes
, vol.116
, pp. 46-49
-
-
Jabs, N.1
Franklin, I.2
Brenner, M.B.3
-
121
-
-
84870510472
-
VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue
-
Christoffersson G, Vagesjo E, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120: 4653–4662.
-
(2012)
Blood
, vol.120
, pp. 4653-4662
-
-
Christoffersson, G.1
Vagesjo, E.2
Vandooren, J.3
-
122
-
-
0029551876
-
The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy
-
Nakamura M, Kitamura H, Konishi S, et al. The endocrine pancreas of spontaneously diabetic db/db mice: microangiopathy as revealed by transmission electron microscopy. Diabetes Res Clin Pract. 1995;30:89–100.
-
(1995)
Diabetes Res Clin Pract
, vol.30
, pp. 89-100
-
-
Nakamura, M.1
Kitamura, H.2
Konishi, S.3
-
123
-
-
10744229027
-
Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats
-
Ko SH, Kwon HS, Kim SR, et al. Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem Biophys Res Commun. 2004;316:114–122.
-
(2004)
Biochem Biophys Res Commun
, vol.316
, pp. 114-122
-
-
Ko, S.H.1
Kwon, H.S.2
Kim, S.R.3
-
124
-
-
33845582804
-
Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
-
Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–2973.
-
(2006)
Diabetes
, vol.55
, pp. 2965-2973
-
-
Li, X.1
Zhang, L.2
Meshinchi, S.3
-
125
-
-
84868027191
-
Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β -cell mass
-
Agudo J, Ayuso E, Jimenez V, et al. Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β -cell mass. Diabetes. 2012;61: 2851–2861.
-
(2012)
Diabetes
, vol.61
, pp. 2851-2861
-
-
Agudo, J.1
Ayuso, E.2
Jimenez, V.3
-
126
-
-
84896690404
-
Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration
-
Brissova M, Aamodt K, Brahmachary P, et al. Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration. Cell Metab. 2014;19:498–511.
-
(2014)
Cell Metab
, vol.19
, pp. 498-511
-
-
Brissova, M.1
Aamodt, K.2
Brahmachary, P.3
-
127
-
-
34447645515
-
Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter
-
Rae F, Woods K, Sasmono T, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–246.
-
(2007)
Dev Biol
, vol.308
, pp. 232-246
-
-
Rae, F.1
Woods, K.2
Sasmono, T.3
-
128
-
-
0027225992
-
Macrophages are required for cell death and tissue remodeling in the developing mouse eye
-
Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993;74: 453–462.
-
(1993)
Cell
, vol.74
, pp. 453-462
-
-
Lang, R.A.1
Bishop, J.M.2
-
129
-
-
1942447829
-
Microglia promote the death of developing Purkinje cells
-
Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–547.
-
(2004)
Neuron
, vol.41
, pp. 535-547
-
-
Marín-Teva, J.L.1
Dusart, I.2
Colin, C.3
Gervais, A.4
Van Rooijen, N.5
Mallat, M.6
-
130
-
-
84891358332
-
Macrophages and CSF-1: Implications for development and beyond
-
Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis. 2013;9:249–260.
-
(2013)
Organogenesis
, vol.9
, pp. 249-260
-
-
Jones, C.V.1
Ricardo, S.D.2
-
131
-
-
62549109923
-
High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors
-
Ojalvo LS, King W, Cox D, Pollard JW. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol. 2009;174:1048–1064.
-
(2009)
Am J Pathol
, vol.174
, pp. 1048-1064
-
-
Ojalvo, L.S.1
King, W.2
Cox, D.3
Pollard, J.W.4
-
132
-
-
0025323482
-
Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (Op/op) mouse
-
USA
-
Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Jr., et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA. 1990; 87:4828–4832.
-
(1990)
Proc Natl Acad Sci
, vol.87
, pp. 4828-4832
-
-
Wiktor-Jedrzejczak, W.1
Bartocci, A.2
Ferrante, A.W.3
-
133
-
-
25644441744
-
Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro
-
Geutskens SB, Otonkoski T, Pulkkinen MA, Drexhage HA, Leenen PJ. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J Leukoc Biol. 2005; 78:845–852.
-
(2005)
J Leukoc Biol
, vol.78
, pp. 845-852
-
-
Geutskens, S.B.1
Otonkoski, T.2
Pulkkinen, M.A.3
Drexhage, H.A.4
Leenen, P.J.5
-
134
-
-
58549093915
-
Developmental biology of the pancreas: A comprehensive review
-
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009;326:4–35.
-
(2009)
Dev Biol
, vol.326
, pp. 4-35
-
-
Gittes, G.K.1
-
135
-
-
0036777339
-
Signaling and transcriptional control of pancreatic organogenesis
-
Kim SK, MacDonald RJ. Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev. 2002;12:540–547.
-
(2002)
Curr Opin Genet Dev
, vol.12
, pp. 540-547
-
-
Kim, S.K.1
Macdonald, R.J.2
-
136
-
-
33645211764
-
A transient microenvironment loaded mainly with macrophages in the early developing human pancreas
-
Banaei-Bouchareb L, Peuchmaur M, Czernichow P, Polak M. A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J Endocrinol. 2006;188: 467–480.
-
(2006)
J Endocrinol
, vol.188
, pp. 467-480
-
-
Banaei-Bouchareb, L.1
Peuchmaur, M.2
Czernichow, P.3
Polak, M.4
-
137
-
-
0028111419
-
Colony stimulating factor 1 is required for mammary gland development during pregnancy
-
USA
-
Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA. 1994;91:9312–9316.
-
(1994)
Proc Natl Acad Sci
, vol.91
, pp. 9312-9316
-
-
Pollard, J.W.1
Hennighausen, L.2
-
138
-
-
0034092368
-
Postnatal mammary gland development requires macrophages and eosinophils
-
Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127:2269–2282.
-
(2000)
Development
, vol.127
, pp. 2269-2282
-
-
Gouon-Evans, V.1
Rothenberg, M.E.2
Pollard, J.W.3
-
139
-
-
84897769167
-
Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors
-
Mussar K, Tucker A, McLennan L, et al. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors. PLoS One. 2014;9:e89492.
-
(2014)
Plos One
, vol.9
-
-
Mussar, K.1
Tucker, A.2
McLennan, L.3
-
140
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
USA
-
Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA. 2000;97:1607–1611.
-
(2000)
Proc Natl Acad Sci
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
Dierich, A.2
Lemeur, M.3
Guillemot, F.4
-
141
-
-
19244372001
-
Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn 3
-
Jacquemin P, Durviaux SM, Jensen J, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn 3. Mol Cell Biol. 2000;20:4445–4454.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 4445-4454
-
-
Jacquemin, P.1
Durviaux, S.M.2
Jensen, J.3
-
142
-
-
70350608140
-
Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation
-
Zhang H, Ables ET, Pope CF, et al. Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mech Dev. 2009;126:958–973.
-
(2009)
Mech Dev
, vol.126
, pp. 958-973
-
-
Zhang, H.1
Ables, E.T.2
Pope, C.F.3
-
143
-
-
2342510386
-
Adult pancreatic β -cells are formed by self-duplication rather than stem-cell differentiation
-
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β -cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–46.
-
(2004)
Nature
, vol.429
, pp. 41-46
-
-
Dor, Y.1
Brown, J.2
Martinez, O.I.3
Melton, D.A.4
-
144
-
-
34247644369
-
Growth and regeneration of adult β cells does not involve specialized progenitors
-
Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell. 2007;12:817–826.
-
(2007)
Dev Cell
, vol.12
, pp. 817-826
-
-
Teta, M.1
Rankin, M.M.2
Long, S.Y.3
Stein, G.M.4
Kushner, J.A.5
-
145
-
-
84874638291
-
The role of aging upon β cell turnover
-
Kushner JA. The role of aging upon β cell turnover. J Clin Invest. 2013;123:990–995.
-
(2013)
J Clin Invest
, vol.123
, pp. 990-995
-
-
Kushner, J.A.1
-
146
-
-
77949289481
-
The long lifespan and low turnover of human islet β cells estimated by mathematical modelling of lipofuscin accumulation
-
Cnop M, Hughes SJ, Igoillo-Esteve M, et al. The long lifespan and low turnover of human islet β cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia. 2010;53: 321–330.
-
(2010)
Diabetologia
, vol.53
, pp. 321-330
-
-
Cnop, M.1
Hughes, S.J.2
Igoillo-Esteve, M.3
-
147
-
-
81055140543
-
Cell-based therapy of diabetes: What are the new sources of β cells?
-
Soggia A, Hoarau E, Bechetoille C, Simon MT, Heinis M, Duvillie B. Cell-based therapy of diabetes: what are the new sources of β cells? Diabetes Metab. 2011;37:371–375.
-
(2011)
Diabetes Metab
, vol.37
, pp. 371-375
-
-
Soggia, A.1
Hoarau, E.2
Bechetoille, C.3
Simon, M.T.4
Heinis, M.5
Duvillie, B.6
-
148
-
-
84884594497
-
The use of stem cells for pancreatic regeneration in diabetes mellitus
-
Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9:598–606.
-
(2013)
Nat Rev Endocrinol
, vol.9
, pp. 598-606
-
-
Bouwens, L.1
Houbracken, I.2
Mfopou, J.K.3
-
149
-
-
84892985085
-
Beyond islet transplantation in diabetes cell therapy: From embryonic stem cells to transdifferentiation of adult cells
-
Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc. 2013;45: 2019–2024.
-
(2013)
Transplant Proc
, vol.45
, pp. 2019-2024
-
-
Gioviale, M.C.1
Bellavia, M.2
Damiano, G.3
Lo Monte, A.I.4
-
150
-
-
84874149674
-
Myocardial regenerative properties of macrophage populations and stem cells
-
Santini MP, Rosenthal N. Myocardial regenerative properties of macrophage populations and stem cells. J Cardiovasc Transl Res. 2012;5:700–712.
-
(2012)
J Cardiovasc Transl Res
, vol.5
, pp. 700-712
-
-
Santini, M.P.1
Rosenthal, N.2
-
151
-
-
84886575052
-
Dissecting the damaging versus regenerative roles of CNS macrophages: Implications for the use of immunomodulatory therapeutics
-
Miron VE. Dissecting the damaging versus regenerative roles of CNS macrophages: implications for the use of immunomodulatory therapeutics. Regen Med. 2013;8:673–676.
-
(2013)
Regen Med
, vol.8
, pp. 673-676
-
-
Miron, V.E.1
-
152
-
-
84919435543
-
Rethinking regenerative medicine: A macrophage-centered approach
-
Brown, BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol. 2014;5: 510.
-
(2014)
Front Immunol
, vol.5
, pp. 510
-
-
Brown, B.N.1
Sicari, B.M.2
Badylak, S.F.3
-
153
-
-
0028793314
-
Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats
-
Wang RN, Klöppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38:1405–1411.
-
(1995)
Diabetologia
, vol.38
, pp. 1405-1411
-
-
Wang, R.N.1
Klöppel, G.2
Bouwens, L.3
-
154
-
-
84875479006
-
TGF β receptor signaling is essential for inflammation-induced but not β -cell workload-induced β -cell proliferation
-
Xiao X, Wiersch J, El-Gohary Y, et al. TGF β receptor signaling is essential for inflammation-induced but not β -cell workload-induced β -cell proliferation. Diabetes. 2013;62:1217–1226.
-
(2013)
Diabetes
, vol.62
, pp. 1217-1226
-
-
Xiao, X.1
Wiersch, J.2
El-Gohary, Y.3
-
155
-
-
84929030461
-
Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas
-
Van Gassen N, Van Overmeire E, Leuckx G, et al. Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. Eur J Immunol. 2015; 45:1482–1493.
-
(2015)
Eur J Immunol
, vol.45
, pp. 1482-1493
-
-
Van Gassen, N.1
Van Overmeire, E.2
Leuckx, G.3
-
156
-
-
0030825432
-
Adaptation of islets of Langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones
-
Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res. 1997;29:301–307.
-
(1997)
Horm Metab Res
, vol.29
, pp. 301-307
-
-
Sorenson, R.L.1
Brelje, T.C.2
-
157
-
-
12944320856
-
Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice
-
Sone H, Kagawa Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia. 2005;48:58–67.
-
(2005)
Diabetologia
, vol.48
, pp. 58-67
-
-
Sone, H.1
Kagawa, Y.2
-
158
-
-
84877707122
-
Betatrophin: A hormone that controls pancreatic β cell proliferation
-
Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell. 2013;153:747–758.
-
(2013)
Cell
, vol.153
, pp. 747-758
-
-
Yi, P.1
Park, J.S.2
Melton, D.A.3
-
159
-
-
84897869437
-
-
Jiao Y, Le Lay J, Yu M, Naji A, Kaestner KH. Elevated mouse hepatic betatrophin expression does not increase human β -cell replication in the transplant setting. Diabetes. 2014;63:1283–1288.
-
(2014)
Elevated mouse hepatic betatrophin expression does not increase human β -cell replication in the transplant setting. Diabetes
, vol.63
, pp. 1283-1288
-
-
Jiao, Y.1
Le Lay, J.2
Yu, M.3
Naji, A.4
Kaestner, K.H.5
-
160
-
-
31544441610
-
Distinct role of macrophages in different tumor microenvironments
-
Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–612.
-
(2006)
Cancer Res
, vol.66
, pp. 605-612
-
-
Lewis, C.E.1
Pollard, J.W.2
-
161
-
-
67349168435
-
Role of macrophages in tumour progression
-
Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett. 2009;123:97–102.
-
(2009)
Immunol Lett
, vol.123
, pp. 97-102
-
-
Siveen, K.S.1
Kuttan, G.2
-
162
-
-
77954672503
-
Adipose tissue macrophages: Their role in adipose tissue remodeling
-
Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33–39.
-
(2010)
J Leukoc Biol
, vol.88
, pp. 33-39
-
-
Suganami, T.1
Ogawa, Y.2
-
163
-
-
84897933309
-
Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues
-
Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127.
-
(2014)
Front Immunol
, vol.5
, pp. 127
-
-
Van Overmeire, E.1
Laoui, D.2
Keirsse, J.3
Van Ginderachter, J.A.4
Sarukhan, A.5
-
164
-
-
84860237015
-
Macrophages: Yolky beginnings
-
Bird L. Macrophages: yolky beginnings. Nat Rev Immunol. 2012; 12:322–323.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 322-323
-
-
Bird, L.1
-
166
-
-
84911077979
-
Tissue macrophage identity and self-renewal
-
Gentek R, Molawi K, Sieweke MH. Tissue macrophage identity and self-renewal. Immunol Rev. 2014;262:56–73.
-
(2014)
Immunol Rev
, vol.262
, pp. 56-73
-
-
Gentek, R.1
Molawi, K.2
Sieweke, M.H.3
-
168
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.
-
(2012)
Science
, vol.336
, pp. 86-90
-
-
Schulz, C.1
Gomez Perdiguero, E.2
Chorro, L.3
-
169
-
-
0032737272
-
Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain
-
Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res. 1999;117:145–152.
-
(1999)
Brain Res Dev Brain Res
, vol.117
, pp. 145-152
-
-
Alliot, F.1
Godin, I.2
Pessac, B.3
-
170
-
-
78149360132
-
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
-
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–845.
-
(2010)
Science
, vol.330
, pp. 841-845
-
-
Ginhoux, F.1
Greter, M.2
Leboeuf, M.3
-
171
-
-
84872765982
-
Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
-
Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.
-
(2013)
Immunity
, vol.38
, pp. 79-91
-
-
Yona, S.1
Kim, K.W.2
Wolf, Y.3
-
172
-
-
84876775203
-
Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
-
Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38: 792–804.
-
(2013)
Immunity
, vol.38
, pp. 792-804
-
-
Hashimoto, D.1
Chow, A.2
Noizat, C.3
-
173
-
-
84894559222
-
Local proliferation of macrophages in adipose tissue during obesity-induced inflammation
-
Haase J, Weyer U, Immig K, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57:562–571.
-
(2014)
Diabetologia
, vol.57
, pp. 562-571
-
-
Haase, J.1
Weyer, U.2
Immig, K.3
-
174
-
-
34547728312
-
Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
-
Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007;317:666–670.
-
(2007)
Science
, vol.317
, pp. 666-670
-
-
Auffray, C.1
Fogg, D.2
Garfa, M.3
-
176
-
-
85040657852
-
Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases
-
Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.
-
(2014)
Biomark Res
, vol.2
, pp. 1
-
-
Yang, J.1
Zhang, L.2
Yu, C.3
Yang, X.F.4
Wang, H.5
-
177
-
-
77954062061
-
CD14CD16 monocyte subset levels in heart failure patients
-
Barisione C, Garibaldi S, Ghigliotti G, et al. CD14CD16 monocyte subset levels in heart failure patients. Dis Markers. 2010;28: 115–124.
-
(2010)
Dis Markers
, vol.28
, pp. 115-124
-
-
Barisione, C.1
Garibaldi, S.2
Ghigliotti, G.3
-
178
-
-
84857712400
-
The CD14(Bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population
-
Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 2012;64:671–677.
-
(2012)
Arthritis Rheum
, vol.64
, pp. 671-677
-
-
Rossol, M.1
Kraus, S.2
Pierer, M.3
Baerwald, C.4
Wagner, U.5
-
179
-
-
0037097415
-
Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30>, or =30)
-
Kullo IJ, Hensrud DD, Allison TG. Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30>, or =30). Am J Cardiol. 2002;89: 1441–1443.
-
(2002)
Am J Cardiol
, vol.89
, pp. 1441-1443
-
-
Kullo, I.J.1
Hensrud, D.D.2
Allison, T.G.3
-
180
-
-
80052962325
-
CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: Relationships with fat mass and subclinical atherosclerosis
-
Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2322–2330.
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 2322-2330
-
-
Poitou, C.1
Dalmas, E.2
Renovato, M.3
-
181
-
-
84859426417
-
Proinflammatory CD14+CD16+monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia
-
Yang M, Gan H, Shen Q, Tang W, Du X, Chen D. Proinflammatory CD14+CD16+monocytes are associated with microinflammation in patients with type 2 diabetes mellitus and diabetic nephropathy uremia. Inflammation. 2012;35:388–396.
-
(2012)
Inflammation
, vol.35
, pp. 388-396
-
-
Yang, M.1
Gan, H.2
Shen, Q.3
Tang, W.4
Du, X.5
Chen, D.6
-
182
-
-
84904045292
-
Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity
-
Krinninger P, Ensenauer R, Ehlers K, et al. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J Clin Endocrinol Metab. 2014;99:2500–509.
-
(2014)
J Clin Endocrinol Metab
, vol.99
, pp. 2500-2509
-
-
Krinninger, P.1
Ensenauer, R.2
Ehlers, K.3
-
183
-
-
84921374185
-
Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14CD16 monocytes in patients with type 2 diabetes
-
Terasawa T, Aso Y, Omori K, Fukushima M, Momobayashi A, Inukai T. Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14CD16 monocytes in patients with type 2 diabetes. Transl Res. 2015;165:336–345.
-
(2015)
Transl Res
, vol.165
, pp. 336-345
-
-
Terasawa, T.1
Aso, Y.2
Omori, K.3
Fukushima, M.4
Momobayashi, A.5
Inukai, T.6
-
184
-
-
84877270004
-
Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis
-
Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708.
-
(2013)
Cell Metab
, vol.17
, pp. 695-708
-
-
Nagareddy, P.R.1
Murphy, A.J.2
Stirzaker, R.A.3
-
185
-
-
84899948384
-
Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity
-
Nagareddy PR, Kraakman M, Masters SL, et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19:821–835.
-
(2014)
Cell Metab
, vol.19
, pp. 821-835
-
-
Nagareddy, P.R.1
Kraakman, M.2
Masters, S.L.3
-
186
-
-
84906275325
-
Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells
-
Singer K, DelProposto J, Morris DL, et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab. 2014;3:664–675.
-
(2014)
Mol Metab
, vol.3
, pp. 664-675
-
-
Singer, K.1
Delproposto, J.2
Morris, D.L.3
-
187
-
-
84962019243
-
Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes
-
Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015; 64:1420–1430.
-
(2015)
Diabetes
, vol.64
, pp. 1420-1430
-
-
Gallagher, K.A.1
Joshi, A.2
Carson, W.F.3
-
188
-
-
77955658618
-
Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes
-
Igoillo-Esteve M, Marselli L, Cunha DA, et al. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes. Diabetologia. 2010; 53:1395–1405.
-
(2010)
Diabetologia
, vol.53
, pp. 1395-1405
-
-
Igoillo-Esteve, M.1
Marselli, L.2
Cunha, D.A.3
-
189
-
-
84904826541
-
TLR4 is required for the obesityinduced pancreatic β cell dysfunction
-
Li J, Chen L, Zhang Y, et al. TLR4 is required for the obesityinduced pancreatic β cell dysfunction. Acta Biochim Biophys Sin (Shanghai). 2013;45:1030–1038.
-
(2013)
Acta Biochim Biophys Sin (Shanghai)
, vol.45
, pp. 1030-1038
-
-
Li, J.1
Chen, L.2
Zhang, Y.3
-
190
-
-
84905576671
-
Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice
-
Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE. Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia. 2014;57:1884–1888.
-
(2014)
Diabetologia
, vol.57
, pp. 1884-1888
-
-
Meier, D.T.1
Morcos, M.2
Samarasekera, T.3
Zraika, S.4
Hull, R.L.5
Kahn, S.E.6
-
191
-
-
0031178464
-
Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: Abrogation by a second transgene expressing systemic MCP-1
-
Grewal IS, Rutledge BJ, Fiorillo JA, et al. Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. J Immunol. 1997;159: 401–408.
-
(1997)
J Immunol
, vol.159
, pp. 401-408
-
-
Grewal, I.S.1
Rutledge, B.J.2
Fiorillo, J.A.3
-
192
-
-
58149347630
-
Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes
-
Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes. 2008;57:3025–3033.
-
(2008)
Diabetes
, vol.57
, pp. 3025-3033
-
-
Martin, A.P.1
Rankin, S.2
Pitchford, S.3
Charo, I.F.4
Furtado, G.C.5
Lira, S.A.6
-
193
-
-
0032572719
-
Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis
-
Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894–897.
-
(1998)
Nature
, vol.394
, pp. 894-897
-
-
Boring, L.1
Gosling, J.2
Cleary, M.3
Charo, I.F.4
-
194
-
-
33845989083
-
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
-
Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007;117:185–194.
-
(2007)
J Clin Invest
, vol.117
, pp. 185-194
-
-
Tacke, F.1
Alvarez, D.2
Kaplan, T.J.3
-
195
-
-
41649107036
-
Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis
-
Saederup N, Chan L, Lira SA, Charo IF. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation. 2008;117: 1642–1648.
-
(2008)
Circulation
, vol.117
, pp. 1642-1648
-
-
Saederup, N.1
Chan, L.2
Lira, S.A.3
Charo, I.F.4
-
196
-
-
84911865268
-
Impact of islet autoimmunity on the progressive _-cell functional decline in type 2 diabetes
-
Brooks-Worrell BM, Boyko EJ, Palmer JP. Impact of islet autoimmunity on the progressive _-cell functional decline in type 2 diabetes. Diabetes Care. 2014;37:3286–3293.
-
(2014)
Diabetes Care
, vol.37
, pp. 3286-3293
-
-
Brooks-Worrell, B.M.1
Boyko, E.J.2
Palmer, J.P.3
-
197
-
-
84899074071
-
CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes
-
Sarikonda G, Pettus J, Phatak S, et al. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J Autoimmun. 2014;50:77–82.
-
(2014)
J Autoimmun
, vol.50
, pp. 77-82
-
-
Sarikonda, G.1
Pettus, J.2
Phatak, S.3
-
198
-
-
84887571639
-
The central role of antigen presentation in islets of Langerhans in autoimmune diabetes
-
Calderon B, Carrero JA, Unanue ER. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol. 2014;26:32–40
-
(2014)
Curr Opin Immunol
, vol.26
, pp. 32-40
-
-
Calderon, B.1
Carrero, J.A.2
Unanue, E.R.3
|