메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 30-44

Cell based advanced therapeutic medicinal products for bone repair: Keep it simple?

Author keywords

Enabling technology; Musculoskeletal; Regenerative medicine; Stem cell; Therapy; Tissue engineering

Indexed keywords

BONE; CYTOLOGY; REGENERATIVE MEDICINE; REPAIR; STEM CELLS; TISSUE ENGINEERING;

EID: 84929128339     PISSN: 0169409X     EISSN: 18728294     Source Type: Journal    
DOI: 10.1016/j.addr.2014.10.025     Document Type: Review
Times cited : (39)

References (202)
  • 1
    • 67449126802 scopus 로고    scopus 로고
    • From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges
    • Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J. Pharm. Sci. 2009, 98:1317-1375.
    • (2009) J. Pharm. Sci. , vol.98 , pp. 1317-1375
    • Baroli, B.1
  • 3
    • 71849118757 scopus 로고    scopus 로고
    • Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science
    • Lenas P., Moos M., Luyten F.P. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. B Rev. 2009, 15:395-422.
    • (2009) Tissue Eng. B Rev. , vol.15 , pp. 395-422
    • Lenas, P.1    Moos, M.2    Luyten, F.P.3
  • 4
    • 71849086405 scopus 로고    scopus 로고
    • Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development
    • Lenas P., Moos M., Luyten F.P. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. B Rev. 2009, 15:381-394.
    • (2009) Tissue Eng. B Rev. , vol.15 , pp. 381-394
    • Lenas, P.1    Moos, M.2    Luyten, F.P.3
  • 5
    • 0142125883 scopus 로고    scopus 로고
    • Homogeneous seeding of mesenchymal stem cells into nonwoven fabric for tissue engineering
    • Takahashi Y., Tabata Y. Homogeneous seeding of mesenchymal stem cells into nonwoven fabric for tissue engineering. Tissue Eng. 2003, 9:931-938.
    • (2003) Tissue Eng. , vol.9 , pp. 931-938
    • Takahashi, Y.1    Tabata, Y.2
  • 6
    • 66249146049 scopus 로고    scopus 로고
    • Complexity in biomaterials for tissue engineering
    • Place E.S., Evans N.D., Stevens M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8:457-470.
    • (2009) Nat. Mater. , vol.8 , pp. 457-470
    • Place, E.S.1    Evans, N.D.2    Stevens, M.M.3
  • 10
    • 84894315706 scopus 로고    scopus 로고
    • Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis
    • Brady K., Dickinson S.C., Guillot P.V., Polak J., Blom A.W., Kafienah W., Hollander A.P. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev. 2014, 23:541-554.
    • (2014) Stem Cells Dev. , vol.23 , pp. 541-554
    • Brady, K.1    Dickinson, S.C.2    Guillot, P.V.3    Polak, J.4    Blom, A.W.5    Kafienah, W.6    Hollander, A.P.7
  • 11
    • 0034782891 scopus 로고    scopus 로고
    • Osteoinduction, osteoconduction and osseointegration
    • Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10(Suppl. 2):S96-S101.
    • (2001) Eur. Spine J. , vol.10 , pp. S96-S101
    • Albrektsson, T.1    Johansson, C.2
  • 12
    • 34548732504 scopus 로고    scopus 로고
    • Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
    • Barrere F., van Blitterswijk C.A., de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine 2006, 1:317-332.
    • (2006) Int. J. Nanomedicine , vol.1 , pp. 317-332
    • Barrere, F.1    van Blitterswijk, C.A.2    de Groot, K.3
  • 14
    • 78751665490 scopus 로고    scopus 로고
    • The use of hydrogels in bone-tissue engineering
    • Park J.B. The use of hydrogels in bone-tissue engineering. Med. Oral Patol. Oral Cir. Bucal 2011, 16:e115-e118.
    • (2011) Med. Oral Patol. Oral Cir. Bucal , vol.16 , pp. e115-e118
    • Park, J.B.1
  • 15
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 16
    • 77958005764 scopus 로고    scopus 로고
    • Metallic scaffolds for bone regeneration
    • Alvarez K., Nakajima H. Metallic scaffolds for bone regeneration. Materials 2009, 2:790-832.
    • (2009) Materials , vol.2 , pp. 790-832
    • Alvarez, K.1    Nakajima, H.2
  • 17
    • 77956718260 scopus 로고    scopus 로고
    • Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates
    • Poellmann M.J., Harrell P.A., King W.P., Wagoner Johnson A.J. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomater. 2010, 6:3514-3523.
    • (2010) Acta Biomater. , vol.6 , pp. 3514-3523
    • Poellmann, M.J.1    Harrell, P.A.2    King, W.P.3    Wagoner Johnson, A.J.4
  • 20
    • 42149178627 scopus 로고    scopus 로고
    • Biomaterials for bone tissue engineering
    • Stevens M.M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11:18-25.
    • (2008) Mater. Today , vol.11 , pp. 18-25
    • Stevens, M.M.1
  • 21
    • 84876239919 scopus 로고    scopus 로고
    • Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications
    • Giuliani A., Manescu A., Langer M., Rustichelli F., Desiderio V., Paino F., De Rosa A., Laino L., d'Aquino R., Tirino V., Papaccio G. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl. Med. 2013, 2:316-324.
    • (2013) Stem Cells Transl. Med. , vol.2 , pp. 316-324
    • Giuliani, A.1    Manescu, A.2    Langer, M.3    Rustichelli, F.4    Desiderio, V.5    Paino, F.6    De Rosa, A.7    Laino, L.8    d'Aquino, R.9    Tirino, V.10    Papaccio, G.11
  • 23
    • 67849101009 scopus 로고    scopus 로고
    • The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells
    • Biggs M.J., Richards R.G., Gadegaard N., Wilkinson C.D., Oreffo R.O., Dalby M.J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 2009, 30:5094-5103.
    • (2009) Biomaterials , vol.30 , pp. 5094-5103
    • Biggs, M.J.1    Richards, R.G.2    Gadegaard, N.3    Wilkinson, C.D.4    Oreffo, R.O.5    Dalby, M.J.6
  • 24
    • 77957111124 scopus 로고    scopus 로고
    • Nanotopographical modification: a regulator of cellular function through focal adhesions
    • Biggs M.J., Richards R.G., Dalby M.J. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 2010, 6:619-633.
    • (2010) Nanomedicine , vol.6 , pp. 619-633
    • Biggs, M.J.1    Richards, R.G.2    Dalby, M.J.3
  • 26
    • 77951764386 scopus 로고    scopus 로고
    • Nano-topography sensing by osteoclasts
    • Geblinger D., Addadi L., Geiger B. Nano-topography sensing by osteoclasts. J. Cell Sci. 2010, 123:1503-1510.
    • (2010) J. Cell Sci. , vol.123 , pp. 1503-1510
    • Geblinger, D.1    Addadi, L.2    Geiger, B.3
  • 27
    • 84878726901 scopus 로고    scopus 로고
    • The control of mesenchymal stromal cell osteogenic differentiation through modified surfaces
    • Logan N., Brett P. The control of mesenchymal stromal cell osteogenic differentiation through modified surfaces. Stem Cells Int. 2013, 2013:361637.
    • (2013) Stem Cells Int. , vol.2013 , pp. 361637
    • Logan, N.1    Brett, P.2
  • 29
    • 37349056774 scopus 로고    scopus 로고
    • Osteoinductive biomaterials-properties and relevance in bone repair
    • Habibovic P., de Groot K. Osteoinductive biomaterials-properties and relevance in bone repair. J. Tissue Eng. Regen. Med. 2007, 1:25-32.
    • (2007) J. Tissue Eng. Regen. Med. , vol.1 , pp. 25-32
    • Habibovic, P.1    de Groot, K.2
  • 30
    • 0035284541 scopus 로고    scopus 로고
    • Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells
    • Mann B.K., Schmedlen R.H., West J.L. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 2001, 22:439-444.
    • (2001) Biomaterials , vol.22 , pp. 439-444
    • Mann, B.K.1    Schmedlen, R.H.2    West, J.L.3
  • 31
    • 79957900892 scopus 로고    scopus 로고
    • The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide
    • Leslie-Barbick J.E., Saik J.E., Gould D.J., Dickinson M.E., West J.L. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 2011, 32:5782-5789.
    • (2011) Biomaterials , vol.32 , pp. 5782-5789
    • Leslie-Barbick, J.E.1    Saik, J.E.2    Gould, D.J.3    Dickinson, M.E.4    West, J.L.5
  • 32
    • 84899835650 scopus 로고    scopus 로고
    • Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles
    • Furuya H., Tabata Y., Kaneko K. Bone regeneration for murine femur fracture by gelatin hydrogels incorporating basic fibroblast growth factor with different release profiles. Tissue Eng. Part A 2014, 20:1531-1541.
    • (2014) Tissue Eng. Part A , vol.20 , pp. 1531-1541
    • Furuya, H.1    Tabata, Y.2    Kaneko, K.3
  • 33
    • 84859766697 scopus 로고    scopus 로고
    • A comprehensive review of techniques for biofunctionalization of titanium
    • Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontol. Implant Sci. 2011, 41:263-272.
    • (2011) J. Periodontol. Implant Sci. , vol.41 , pp. 263-272
    • Hanawa, T.1
  • 34
    • 84890457779 scopus 로고    scopus 로고
    • Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor
    • Farokhi M., Mottaghitalab F., Shokrgozar M.A., Ai J., Hadjati J., Azami M. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35:401-410.
    • (2014) Mater. Sci. Eng. C Mater. Biol. Appl. , vol.35 , pp. 401-410
    • Farokhi, M.1    Mottaghitalab, F.2    Shokrgozar, M.A.3    Ai, J.4    Hadjati, J.5    Azami, M.6
  • 36
    • 0035003125 scopus 로고    scopus 로고
    • Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate
    • Tanihara M., Suzuki Y., Yamamoto E., Noguchi A., Mizushima Y. Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J. Biomed. Mater. Res. 2001, 56:216-221.
    • (2001) J. Biomed. Mater. Res. , vol.56 , pp. 216-221
    • Tanihara, M.1    Suzuki, Y.2    Yamamoto, E.3    Noguchi, A.4    Mizushima, Y.5
  • 38
    • 84901980193 scopus 로고    scopus 로고
    • Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates
    • Ma J., Wang J., Ai X., Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnol. Adv. 2014, 32:744-760.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 744-760
    • Ma, J.1    Wang, J.2    Ai, X.3    Zhang, S.4
  • 39
    • 85027926477 scopus 로고    scopus 로고
    • Growth factor delivery through self-assembling peptide scaffolds
    • Miller R.E., Kopesky P.W., Grodzinsky A.J. Growth factor delivery through self-assembling peptide scaffolds. Clin. Orthop. Relat. Res. 2011, 469:2716-2724.
    • (2011) Clin. Orthop. Relat. Res. , vol.469 , pp. 2716-2724
    • Miller, R.E.1    Kopesky, P.W.2    Grodzinsky, A.J.3
  • 40
    • 45249115763 scopus 로고    scopus 로고
    • Modulation of the inflammatory response for enhanced bone tissue regeneration
    • Mountziaris P.M., Mikos A.G. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. B Rev. 2008, 14:179-186.
    • (2008) Tissue Eng. B Rev. , vol.14 , pp. 179-186
    • Mountziaris, P.M.1    Mikos, A.G.2
  • 42
    • 77957711583 scopus 로고    scopus 로고
    • Extracellular matrix produced by osteoblasts cultured under low-magnitude, high-frequency stimulation is favourable to osteogenic differentiation of mesenchymal stem cells
    • Dumas V., Ducharne B., Perrier A., Fournier C., Guignandon A., Thomas M., Peyroche S., Guyomar D., Vico L., Rattner A. Extracellular matrix produced by osteoblasts cultured under low-magnitude, high-frequency stimulation is favourable to osteogenic differentiation of mesenchymal stem cells. Calcif. Tissue Int. 2010, 87:351-364.
    • (2010) Calcif. Tissue Int. , vol.87 , pp. 351-364
    • Dumas, V.1    Ducharne, B.2    Perrier, A.3    Fournier, C.4    Guignandon, A.5    Thomas, M.6    Peyroche, S.7    Guyomar, D.8    Vico, L.9    Rattner, A.10
  • 43
    • 79959902042 scopus 로고    scopus 로고
    • Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2
    • Kang Y., Kim S., Khademhosseini A., Yang Y. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials 2011, 32:6119-6130.
    • (2011) Biomaterials , vol.32 , pp. 6119-6130
    • Kang, Y.1    Kim, S.2    Khademhosseini, A.3    Yang, Y.4
  • 44
    • 84894997668 scopus 로고    scopus 로고
    • The induction of bone formation by the recombinant human transforming growth factor-beta3
    • Klar R.M., Duarte R., Dix-Peek T., Ripamonti U. The induction of bone formation by the recombinant human transforming growth factor-beta3. Biomaterials 2014, 35:2773-2788.
    • (2014) Biomaterials , vol.35 , pp. 2773-2788
    • Klar, R.M.1    Duarte, R.2    Dix-Peek, T.3    Ripamonti, U.4
  • 45
    • 84895469356 scopus 로고    scopus 로고
    • Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering
    • Cheng C.W., Solorio L.D., Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol. Adv. 2014, 32:462-484.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 462-484
    • Cheng, C.W.1    Solorio, L.D.2    Alsberg, E.3
  • 46
    • 84897116478 scopus 로고    scopus 로고
    • Decellularized scaffolds as a platform for bioengineered organs
    • Tapias L.F., Ott H.C. Decellularized scaffolds as a platform for bioengineered organs. Curr. Opin. Organ Transplant. 2014, 19:145-152.
    • (2014) Curr. Opin. Organ Transplant. , vol.19 , pp. 145-152
    • Tapias, L.F.1    Ott, H.C.2
  • 47
    • 84899845035 scopus 로고    scopus 로고
    • Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold
    • Xu H., Xu B., Yang Q., Li X., Ma X., Xia Q., Zhang Y., Zhang C., Wu Y., Zhang Y. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE 2014, 9:e86723.
    • (2014) PLoS ONE , vol.9 , pp. e86723
    • Xu, H.1    Xu, B.2    Yang, Q.3    Li, X.4    Ma, X.5    Xia, Q.6    Zhang, Y.7    Zhang, C.8    Wu, Y.9    Zhang, Y.10
  • 48
    • 0242438832 scopus 로고    scopus 로고
    • Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source
    • Declercq H., Van den Vreken N., De Maeyer E., Verbeeck R., Schacht E., De Ridder L., Cornelissen M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 2004, 25:757-768.
    • (2004) Biomaterials , vol.25 , pp. 757-768
    • Declercq, H.1    Van den Vreken, N.2    De Maeyer, E.3    Verbeeck, R.4    Schacht, E.5    De Ridder, L.6    Cornelissen, M.7
  • 50
    • 8344232501 scopus 로고    scopus 로고
    • Cell lines and primary cell cultures in the study of bone cell biology
    • Kartsogiannis V., Ng K.W. Cell lines and primary cell cultures in the study of bone cell biology. Mol. Cell. Endocrinol. 2004, 228:79-102.
    • (2004) Mol. Cell. Endocrinol. , vol.228 , pp. 79-102
    • Kartsogiannis, V.1    Ng, K.W.2
  • 52
    • 84873038745 scopus 로고    scopus 로고
    • Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells
    • Gharibi B., Hughes F.J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl. Med. 2012, 1:771-782.
    • (2012) Stem Cells Transl. Med. , vol.1 , pp. 771-782
    • Gharibi, B.1    Hughes, F.J.2
  • 53
    • 78650889459 scopus 로고    scopus 로고
    • Osteogenic potential of mesenchymal stem cells on expanded polytetrafluoroethylene coated with both a poly-amino-acid urethane copolymer and collagen
    • Matsumoto T., Hattori K., Matsushima A., Tadokoro M., Yagyuu T., Kodama M., Sato J., Ohgushi H. Osteogenic potential of mesenchymal stem cells on expanded polytetrafluoroethylene coated with both a poly-amino-acid urethane copolymer and collagen. Tissue Eng. A 2011, 17:171-180.
    • (2011) Tissue Eng. A , vol.17 , pp. 171-180
    • Matsumoto, T.1    Hattori, K.2    Matsushima, A.3    Tadokoro, M.4    Yagyuu, T.5    Kodama, M.6    Sato, J.7    Ohgushi, H.8
  • 54
    • 34247141436 scopus 로고    scopus 로고
    • Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture
    • Yang Y., Rossi F.M., Putnins E.E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials 2007, 28:3110-3120.
    • (2007) Biomaterials , vol.28 , pp. 3110-3120
    • Yang, Y.1    Rossi, F.M.2    Putnins, E.E.3
  • 61
    • 58149343768 scopus 로고    scopus 로고
    • Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation
    • Csaki C., Matis U., Mobasheri A., Shakibaei M. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem. Cell Biol. 2009, 131:251-266.
    • (2009) Histochem. Cell Biol. , vol.131 , pp. 251-266
    • Csaki, C.1    Matis, U.2    Mobasheri, A.3    Shakibaei, M.4
  • 63
    • 34447249326 scopus 로고    scopus 로고
    • Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials
    • Unger R.E., Sartoris A., Peters K., Motta A., Migliaresi C., Kunkel M., Bulnheim U., Rychly J., Kirkpatrick C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28:3965-3976.
    • (2007) Biomaterials , vol.28 , pp. 3965-3976
    • Unger, R.E.1    Sartoris, A.2    Peters, K.3    Motta, A.4    Migliaresi, C.5    Kunkel, M.6    Bulnheim, U.7    Rychly, J.8    Kirkpatrick, C.J.9
  • 66
    • 84878941148 scopus 로고    scopus 로고
    • Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function
    • Dariima T., Jin G.Z., Lee E.J., Wall I.B., Kim H.W. Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function. Biotechnol. Lett. 2013, 35:1135-1143.
    • (2013) Biotechnol. Lett. , vol.35 , pp. 1135-1143
    • Dariima, T.1    Jin, G.Z.2    Lee, E.J.3    Wall, I.B.4    Kim, H.W.5
  • 67
    • 84878029794 scopus 로고    scopus 로고
    • Human triple cell co-culture for evaluation of bone implant materials
    • Wein F., Bruinink A. Human triple cell co-culture for evaluation of bone implant materials. Integr. Biol. (Camb) 2013, 5:703-711.
    • (2013) Integr. Biol. (Camb) , vol.5 , pp. 703-711
    • Wein, F.1    Bruinink, A.2
  • 68
    • 70449705826 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair
    • Zisa D., Shabbir A., Suzuki G., Lee T. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochem. Biophys. Res. Commun. 2009, 390:834-838.
    • (2009) Biochem. Biophys. Res. Commun. , vol.390 , pp. 834-838
    • Zisa, D.1    Shabbir, A.2    Suzuki, G.3    Lee, T.4
  • 69
    • 84882343592 scopus 로고    scopus 로고
    • Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture
    • Wu L., Leijten J., van Blitterswijk C.A., Karperien M. Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture. Stem Cells Dev. 2013, 22:2356-2367.
    • (2013) Stem Cells Dev. , vol.22 , pp. 2356-2367
    • Wu, L.1    Leijten, J.2    van Blitterswijk, C.A.3    Karperien, M.4
  • 70
    • 79955016688 scopus 로고    scopus 로고
    • Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation
    • Wu L., Leijten J.C., Georgi N., Post J.N., van Blitterswijk C.A., Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. A 2011, 17:1425-1436.
    • (2011) Tissue Eng. A , vol.17 , pp. 1425-1436
    • Wu, L.1    Leijten, J.C.2    Georgi, N.3    Post, J.N.4    van Blitterswijk, C.A.5    Karperien, M.6
  • 71
    • 84873357987 scopus 로고    scopus 로고
    • Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures
    • Leijten J.C., Georgi N., Wu L., van Blitterswijk C.A., Karperien M. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng. B Rev. 2013, 19:31-40.
    • (2013) Tissue Eng. B Rev. , vol.19 , pp. 31-40
    • Leijten, J.C.1    Georgi, N.2    Wu, L.3    van Blitterswijk, C.A.4    Karperien, M.5
  • 72
    • 84865012015 scopus 로고    scopus 로고
    • BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner
    • Hyzy S.L., Olivares-Navarrete R., Schwartz Z., Boyan B.D. BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner. J. Cell. Biochem. 2012, 113:3236-3245.
    • (2012) J. Cell. Biochem. , vol.113 , pp. 3236-3245
    • Hyzy, S.L.1    Olivares-Navarrete, R.2    Schwartz, Z.3    Boyan, B.D.4
  • 73
    • 5344234448 scopus 로고    scopus 로고
    • Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation
    • Sutherland M.K., Geoghegan J.C., Yu C., Turcott E., Skonier J.E., Winkler D.G., Latham J.A. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 2004, 35:828-835.
    • (2004) Bone , vol.35 , pp. 828-835
    • Sutherland, M.K.1    Geoghegan, J.C.2    Yu, C.3    Turcott, E.4    Skonier, J.E.5    Winkler, D.G.6    Latham, J.A.7
  • 78
  • 79
    • 0742319022 scopus 로고    scopus 로고
    • Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices
    • Schmoekel H., Schense J.C., Weber F.E., Gratz K.W., Gnagi D., Muller R., Hubbell J.A. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J. Orthop. Res. 2004, 22:376-381.
    • (2004) J. Orthop. Res. , vol.22 , pp. 376-381
    • Schmoekel, H.1    Schense, J.C.2    Weber, F.E.3    Gratz, K.W.4    Gnagi, D.5    Muller, R.6    Hubbell, J.A.7
  • 81
    • 84884992545 scopus 로고    scopus 로고
    • Fibroblast growth factor-2 and bone morphogenetic protein-2 have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone
    • Kuhn L.T., Ou G., Charles L., Hurley M.M., Rodner C.M., Gronowicz G. Fibroblast growth factor-2 and bone morphogenetic protein-2 have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68:1170-1180.
    • (2013) J. Gerontol. A Biol. Sci. Med. Sci. , vol.68 , pp. 1170-1180
    • Kuhn, L.T.1    Ou, G.2    Charles, L.3    Hurley, M.M.4    Rodner, C.M.5    Gronowicz, G.6
  • 84
    • 0042156978 scopus 로고    scopus 로고
    • In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels
    • Holland T.A., Tabata Y., Mikos A.G. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release 2003, 91:299-313.
    • (2003) J. Control. Release , vol.91 , pp. 299-313
    • Holland, T.A.1    Tabata, Y.2    Mikos, A.G.3
  • 91
    • 47749117234 scopus 로고    scopus 로고
    • Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs
    • Du Y., Lo E., Ali S., Khademhosseini A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:9522-9527.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 9522-9527
    • Du, Y.1    Lo, E.2    Ali, S.3    Khademhosseini, A.4
  • 92
    • 85015106657 scopus 로고    scopus 로고
    • DNA in a material world
    • Seeman N.C. DNA in a material world. Nature 2003, 421:427-431.
    • (2003) Nature , vol.421 , pp. 427-431
    • Seeman, N.C.1
  • 94
    • 45849140536 scopus 로고    scopus 로고
    • Guided and fluidic self-assembly of microstructures using railed microfluidic channels
    • Chung S.E., Park W., Shin S., Lee S.A., Kwon S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 2008, 7:581-587.
    • (2008) Nat. Mater. , vol.7 , pp. 581-587
    • Chung, S.E.1    Park, W.2    Shin, S.3    Lee, S.A.4    Kwon, S.5
  • 95
    • 79953055267 scopus 로고    scopus 로고
    • Molding cell beads for rapid construction of macroscopic 3D tissue architecture
    • Matsunaga Y.T., Morimoto Y., Takeuchi S. Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv. Mater. 2011, 23:H90-H94.
    • (2011) Adv. Mater. , vol.23 , pp. H90-H94
    • Matsunaga, Y.T.1    Morimoto, Y.2    Takeuchi, S.3
  • 97
    • 3242695273 scopus 로고    scopus 로고
    • Microvascular invasion during endochondral ossification in experimental fractures in rats
    • Mark H., Penington A., Nannmark U., Morrison W., Messina A. Microvascular invasion during endochondral ossification in experimental fractures in rats. Bone 2004, 35:535-542.
    • (2004) Bone , vol.35 , pp. 535-542
    • Mark, H.1    Penington, A.2    Nannmark, U.3    Morrison, W.4    Messina, A.5
  • 98
    • 0033027858 scopus 로고    scopus 로고
    • VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
    • Gerber H.P., Vu T.H., Ryan A.M., Kowalski J., Werb Z., Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5:623-628.
    • (1999) Nat. Med. , vol.5 , pp. 623-628
    • Gerber, H.P.1    Vu, T.H.2    Ryan, A.M.3    Kowalski, J.4    Werb, Z.5    Ferrara, N.6
  • 100
    • 48749086529 scopus 로고    scopus 로고
    • Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha
    • Kanichai M., Ferguson D., Prendergast P.J., Campbell V.A. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J. Cell. Physiol. 2008, 216:708-715.
    • (2008) J. Cell. Physiol. , vol.216 , pp. 708-715
    • Kanichai, M.1    Ferguson, D.2    Prendergast, P.J.3    Campbell, V.A.4
  • 102
  • 103
    • 34648839855 scopus 로고    scopus 로고
    • Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke
    • Zacharek A., Chen J., Cui X., Li A., Li Y., Roberts C., Feng Y., Gao Q., Chopp M. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow. Metab. 2007, 27:1684-1691.
    • (2007) J. Cereb. Blood Flow. Metab. , vol.27 , pp. 1684-1691
    • Zacharek, A.1    Chen, J.2    Cui, X.3    Li, A.4    Li, Y.5    Roberts, C.6    Feng, Y.7    Gao, Q.8    Chopp, M.9
  • 104
    • 84894113932 scopus 로고    scopus 로고
    • Boosting angiogenesis and functional vascularization in injectable dextran-hyaluronic acid hydrogels by endothelial-like mesenchymal stromal cells
    • Portalska K.J., Teixeira L.M., Leijten J.C., Jin R., van Blitterswijk C., de Boer J., Karperien M. Boosting angiogenesis and functional vascularization in injectable dextran-hyaluronic acid hydrogels by endothelial-like mesenchymal stromal cells. Tissue Eng. A 2014, 20:819-829.
    • (2014) Tissue Eng. A , vol.20 , pp. 819-829
    • Portalska, K.J.1    Teixeira, L.M.2    Leijten, J.C.3    Jin, R.4    van Blitterswijk, C.5    de Boer, J.6    Karperien, M.7
  • 106
    • 35348883223 scopus 로고    scopus 로고
    • Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells
    • Fuchs S., Hofmann A., Kirkpatrick C. Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 2007, 13:2577-2588.
    • (2007) Tissue Eng. , vol.13 , pp. 2577-2588
    • Fuchs, S.1    Hofmann, A.2    Kirkpatrick, C.3
  • 107
    • 66249124257 scopus 로고    scopus 로고
    • Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature
    • Chen X., Aledia A.S., Ghajar C.M., Griffith C.K., Putnam A.J., Hughes C.C., George S.C. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. A 2009, 15:1363-1371.
    • (2009) Tissue Eng. A , vol.15 , pp. 1363-1371
    • Chen, X.1    Aledia, A.S.2    Ghajar, C.M.3    Griffith, C.K.4    Putnam, A.J.5    Hughes, C.C.6    George, S.C.7
  • 109
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C., Marga F.S., Niklason L.E., Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30:5910-5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 113
    • 78651095492 scopus 로고    scopus 로고
    • Top down and bottom up engineering of bone
    • Knothe Tate M.L. Top down and bottom up engineering of bone. J. Biomech. 2011, 44:304-312.
    • (2011) J. Biomech. , vol.44 , pp. 304-312
    • Knothe Tate, M.L.1
  • 115
    • 78349310680 scopus 로고    scopus 로고
    • Mathematical modeling in wound healing, bone regeneration and tissue engineering
    • Geris L., Gerisch A., Schugart R.C. Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor. 2010, 58:355-367.
    • (2010) Acta Biotheor. , vol.58 , pp. 355-367
    • Geris, L.1    Gerisch, A.2    Schugart, R.C.3
  • 116
    • 80052267007 scopus 로고    scopus 로고
    • Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach
    • Carlier A., Chai Y.C., Moesen M., Theys T., Schrooten J., Van Oosterwyck H., Geris L. Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach. Acta Biomater. 2011, 7:3573-3585.
    • (2011) Acta Biomater. , vol.7 , pp. 3573-3585
    • Carlier, A.1    Chai, Y.C.2    Moesen, M.3    Theys, T.4    Schrooten, J.5    Van Oosterwyck, H.6    Geris, L.7
  • 117
    • 84864269916 scopus 로고    scopus 로고
    • Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model
    • Burke D.P., Kelly D.J. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS ONE 2012, 7:e40737.
    • (2012) PLoS ONE , vol.7 , pp. e40737
    • Burke, D.P.1    Kelly, D.J.2
  • 120
    • 72849108533 scopus 로고    scopus 로고
    • Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: tissue-specific stem cells
    • Platt M.O., Wilder C.L., Wells A., Griffith L.G., Lauffenburger D.A. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: tissue-specific stem cells. Stem Cells 2009, 27:2804-2814.
    • (2009) Stem Cells , vol.27 , pp. 2804-2814
    • Platt, M.O.1    Wilder, C.L.2    Wells, A.3    Griffith, L.G.4    Lauffenburger, D.A.5
  • 122
    • 84880772249 scopus 로고    scopus 로고
    • Computational modelling of Smad-mediated negative feedback and crosstalk in the TGF-beta superfamily network
    • Nicklas D., Saiz L. Computational modelling of Smad-mediated negative feedback and crosstalk in the TGF-beta superfamily network. J. R. Soc. Interface 2013, 10:20130363.
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20130363
    • Nicklas, D.1    Saiz, L.2
  • 123
    • 84877824382 scopus 로고    scopus 로고
    • Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds
    • Song M.J., Dean D., Knothe Tate M.L. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds. Biomaterials 2013, 34:5766-5775.
    • (2013) Biomaterials , vol.34 , pp. 5766-5775
    • Song, M.J.1    Dean, D.2    Knothe Tate, M.L.3
  • 125
    • 84873396742 scopus 로고    scopus 로고
    • Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features
    • Neal R.A., Jean A., Park H., Wu P.B., Hsiao J., Engelmayr G.C., Langer R., Freed L.E. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng. A 2013, 19:793-807.
    • (2013) Tissue Eng. A , vol.19 , pp. 793-807
    • Neal, R.A.1    Jean, A.2    Park, H.3    Wu, P.B.4    Hsiao, J.5    Engelmayr, G.C.6    Langer, R.7    Freed, L.E.8
  • 127
    • 78349307871 scopus 로고    scopus 로고
    • Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels
    • Demol J., Lambrechts D., Geris L., Schrooten J., Van Oosterwyck H. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels. Biomaterials 2011, 32:107-118.
    • (2011) Biomaterials , vol.32 , pp. 107-118
    • Demol, J.1    Lambrechts, D.2    Geris, L.3    Schrooten, J.4    Van Oosterwyck, H.5
  • 128
    • 70350501260 scopus 로고    scopus 로고
    • Transmural flow bioreactor for vascular tissue engineering
    • Bjork J.W., Tranquillo R.T. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 2009, 104:1197-1206.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 1197-1206
    • Bjork, J.W.1    Tranquillo, R.T.2
  • 129
    • 84896982836 scopus 로고    scopus 로고
    • Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering
    • Khademi R., Mohebbi-Kalhori D., Hadjizadeh A. Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering. J. Artif Organs: Offic. J. Jpn. Soc. Artif. Organs 2014, 17:69-80.
    • (2014) J. Artif Organs: Offic. J. Jpn. Soc. Artif. Organs , vol.17 , pp. 69-80
    • Khademi, R.1    Mohebbi-Kalhori, D.2    Hadjizadeh, A.3
  • 130
    • 84924400769 scopus 로고    scopus 로고
    • Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor
    • Pearson N.C., Shipley R.J., Waters S.L., Oliver J.M. Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor 2013, Math. Med. Biol. J, IMA.
    • (2013) Math. Med. Biol. J, IMA
    • Pearson, N.C.1    Shipley, R.J.2    Waters, S.L.3    Oliver, J.M.4
  • 131
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4:518-524.
    • (2005) Nat. Mater. , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 132
    • 35348975035 scopus 로고    scopus 로고
    • Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering
    • Byrne D.P., Lacroix D., Planell J.A., Kelly D.J., Prendergast P.J. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 2007, 28:5544-5554.
    • (2007) Biomaterials , vol.28 , pp. 5544-5554
    • Byrne, D.P.1    Lacroix, D.2    Planell, J.A.3    Kelly, D.J.4    Prendergast, P.J.5
  • 133
    • 1542411513 scopus 로고    scopus 로고
    • Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes
    • Bohner M., Baumgart F. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 2004, 25:3569-3582.
    • (2004) Biomaterials , vol.25 , pp. 3569-3582
    • Bohner, M.1    Baumgart, F.2
  • 134
    • 84861625759 scopus 로고    scopus 로고
    • Strut size and surface area effects on long-term in vivo degradation in computer designed poly(l-lactic acid) three-dimensional porous scaffolds
    • Saito E., Liu Y., Migneco F., Hollister S.J. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(l-lactic acid) three-dimensional porous scaffolds. Acta Biomater. 2012, 8:2568-2577.
    • (2012) Acta Biomater. , vol.8 , pp. 2568-2577
    • Saito, E.1    Liu, Y.2    Migneco, F.3    Hollister, S.J.4
  • 135
    • 80053118095 scopus 로고    scopus 로고
    • The use of computational fluid dynamic models for the optimization of cell seeding processes
    • Adebiyi A.A., Taslim M.E., Crawford K.D. The use of computational fluid dynamic models for the optimization of cell seeding processes. Biomaterials 2011, 32:8753-8770.
    • (2011) Biomaterials , vol.32 , pp. 8753-8770
    • Adebiyi, A.A.1    Taslim, M.E.2    Crawford, K.D.3
  • 136
    • 77549086659 scopus 로고    scopus 로고
    • Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity
    • Checa S., Prendergast P.J. Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J. Biomech. 2010, 43:961-968.
    • (2010) J. Biomech. , vol.43 , pp. 961-968
    • Checa, S.1    Prendergast, P.J.2
  • 138
    • 84896727503 scopus 로고    scopus 로고
    • A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor
    • Nava M.M., Raimondi M.T., Pietrabissa R. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor. Biomech. Model. Mechanobiol. 2013, 12:1169-1179.
    • (2013) Biomech. Model. Mechanobiol. , vol.12 , pp. 1169-1179
    • Nava, M.M.1    Raimondi, M.T.2    Pietrabissa, R.3
  • 139
    • 84867307199 scopus 로고    scopus 로고
    • Modeling of bioreactor hydrodynamic environment and its effects on tissue growth
    • Bilgen B., Barabino G.A. Modeling of bioreactor hydrodynamic environment and its effects on tissue growth. Methods Mol. Biol. 2012, 868:237-255.
    • (2012) Methods Mol. Biol. , vol.868 , pp. 237-255
    • Bilgen, B.1    Barabino, G.A.2
  • 140
    • 74449093597 scopus 로고    scopus 로고
    • Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach
    • Sandino C., Checa S., Prendergast P.J., Lacroix D. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 2010, 31:2446-2452.
    • (2010) Biomaterials , vol.31 , pp. 2446-2452
    • Sandino, C.1    Checa, S.2    Prendergast, P.J.3    Lacroix, D.4
  • 141
    • 78049425273 scopus 로고    scopus 로고
    • Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach
    • Geris L., Reed A.A., Vander Sloten J., Simpson A.H., Van Oosterwyck H. Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput. Biol. 2010, 6:e1000915.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000915
    • Geris, L.1    Reed, A.A.2    Vander Sloten, J.3    Simpson, A.H.4    Van Oosterwyck, H.5
  • 142
    • 84868143949 scopus 로고    scopus 로고
    • MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells
    • Carlier A., Geris L., Bentley K., Carmeliet G., Carmeliet P., Van Oosterwyck H. MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol. 2012, 8:e1002724.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002724
    • Carlier, A.1    Geris, L.2    Bentley, K.3    Carmeliet, G.4    Carmeliet, P.5    Van Oosterwyck, H.6
  • 143
    • 69949146908 scopus 로고    scopus 로고
    • In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes
    • Kovatchev B.P., Breton M., Man C.D., Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009, 3:44-55.
    • (2009) J. Diabetes Sci. Technol. , vol.3 , pp. 44-55
    • Kovatchev, B.P.1    Breton, M.2    Man, C.D.3    Cobelli, C.4
  • 144
    • 84878836586 scopus 로고    scopus 로고
    • Cell therapy companies make strong progress from October 2012 to March 2013 amid mixed stock market sentiment
    • Mason C., Mason J., Culme-Seymour E.J., Bonfiglio G.A., Reeve B.C. Cell therapy companies make strong progress from October 2012 to March 2013 amid mixed stock market sentiment. Cell Stem Cell 2013, 12:644-647.
    • (2013) Cell Stem Cell , vol.12 , pp. 644-647
    • Mason, C.1    Mason, J.2    Culme-Seymour, E.J.3    Bonfiglio, G.A.4    Reeve, B.C.5
  • 147
    • 83255189657 scopus 로고    scopus 로고
    • Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine
    • Ratcliffe E., Thomas R.J., Williams D.J. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br. Med. Bull. 2011, 100:137-155.
    • (2011) Br. Med. Bull. , vol.100 , pp. 137-155
    • Ratcliffe, E.1    Thomas, R.J.2    Williams, D.J.3
  • 148
    • 33847037970 scopus 로고    scopus 로고
    • Regenerative medicine bioprocessing: building a conceptual framework based on early studies
    • Mason C., Hoare M. Regenerative medicine bioprocessing: building a conceptual framework based on early studies. Tissue Eng. 2007, 13:301-311.
    • (2007) Tissue Eng. , vol.13 , pp. 301-311
    • Mason, C.1    Hoare, M.2
  • 149
    • 84913597429 scopus 로고    scopus 로고
    • Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors
    • Costa P.F., Martins A., Neves N.M., Gomes M.E., Reis R.L. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng. Part B Rev. 2014.
    • (2014) Tissue Eng. Part B Rev.
    • Costa, P.F.1    Martins, A.2    Neves, N.M.3    Gomes, M.E.4    Reis, R.L.5
  • 150
    • 78650976757 scopus 로고    scopus 로고
    • Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress
    • Yeatts A.B., Fisher J.P. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 2011, 48:171-181.
    • (2011) Bone , vol.48 , pp. 171-181
    • Yeatts, A.B.1    Fisher, J.P.2
  • 151
    • 79955541641 scopus 로고    scopus 로고
    • Scalable expansion of human pluripotent stem cells in suspension culture
    • Zweigerdt R., Olmer R., Singh H., Haverich A., Martin U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 2011, 6:689-700.
    • (2011) Nat. Protoc. , vol.6 , pp. 689-700
    • Zweigerdt, R.1    Olmer, R.2    Singh, H.3    Haverich, A.4    Martin, U.5
  • 152
    • 84882993448 scopus 로고    scopus 로고
    • Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions
    • Wang Y., Chou B.K., Dowey S., He C.X., Gerecht S., Cheng L.Z. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013, 11:1103-1116.
    • (2013) Stem Cell Res. , vol.11 , pp. 1103-1116
    • Wang, Y.1    Chou, B.K.2    Dowey, S.3    He, C.X.4    Gerecht, S.5    Cheng, L.Z.6
  • 154
    • 84886786622 scopus 로고    scopus 로고
    • Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction
    • Chen A.K.L., Reuveny S., Oh S.K.W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: Achievements and future direction. Biotechnol. Adv. 2013, 31:1032-1046.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 1032-1046
    • Chen, A.K.L.1    Reuveny, S.2    Oh, S.K.W.3
  • 156
    • 77955000681 scopus 로고    scopus 로고
    • Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential
    • Frith J.E., Thomson B., Genever P.G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. Part C Methods 2010, 16:735-749.
    • (2010) Tissue Eng. Part C Methods , vol.16 , pp. 735-749
    • Frith, J.E.1    Thomson, B.2    Genever, P.G.3
  • 157
    • 84872405664 scopus 로고    scopus 로고
    • Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor
    • Nold P., Brendel C., Neubauer A., Bein G., Hackstein H. Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem. Biophys. Res. Commun. 2013, 430:325-330.
    • (2013) Biochem. Biophys. Res. Commun. , vol.430 , pp. 325-330
    • Nold, P.1    Brendel, C.2    Neubauer, A.3    Bein, G.4    Hackstein, H.5
  • 158
    • 84868016949 scopus 로고    scopus 로고
    • Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor
    • Abbasalizadeh S., Larijani M.R., Samadian A., Baharvand H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng. Part C Methods 2012, 18:831-851.
    • (2012) Tissue Eng. Part C Methods , vol.18 , pp. 831-851
    • Abbasalizadeh, S.1    Larijani, M.R.2    Samadian, A.3    Baharvand, H.4
  • 159
    • 84904200925 scopus 로고    scopus 로고
    • Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013
    • Wang Y., Cheng L., Gerecht S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann. Biomed. Eng. 2014, 42:1357-1372.
    • (2014) Ann. Biomed. Eng. , vol.42 , pp. 1357-1372
    • Wang, Y.1    Cheng, L.2    Gerecht, S.3
  • 160
    • 84890957899 scopus 로고    scopus 로고
    • Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters
    • Hunt M.M., Meng G.L., Rancourt D.E., Gates I.D., Kallos M.S. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters. Tissue Eng. Part C Methods 2014, 20:76-89.
    • (2014) Tissue Eng. Part C Methods , vol.20 , pp. 76-89
    • Hunt, M.M.1    Meng, G.L.2    Rancourt, D.E.3    Gates, I.D.4    Kallos, M.S.5
  • 162
    • 62849119087 scopus 로고    scopus 로고
    • Bioreactors in tissue engineering: scientific challenges and clinical perspectives
    • Wendt D., Riboldi S.A., Cioffi M., Martin I. Bioreactors in tissue engineering: scientific challenges and clinical perspectives. Adv. Biochem. Eng. Biotechnol. 2009, 112:1-27.
    • (2009) Adv. Biochem. Eng. Biotechnol. , vol.112 , pp. 1-27
    • Wendt, D.1    Riboldi, S.A.2    Cioffi, M.3    Martin, I.4
  • 167
    • 84879372803 scopus 로고    scopus 로고
    • Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration
    • Papantoniou Ir I., Chai Y.C., Luyten F.P., Schrooten Ir J. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng. Part C Methods 2013, 19:596-609.
    • (2013) Tissue Eng. Part C Methods , vol.19 , pp. 596-609
    • Papantoniou Ir, I.1    Chai, Y.C.2    Luyten, F.P.3    Schrooten Ir, J.4
  • 168
    • 81455154337 scopus 로고    scopus 로고
    • Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold
    • Kim J., Ma T. Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold. Biotechnol. Bioeng. 2012, 109:252-261.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 252-261
    • Kim, J.1    Ma, T.2
  • 169
    • 84891523081 scopus 로고    scopus 로고
    • In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds
    • Yeatts A.B., Both S.K., Yang W., Alghamdi H.S., Yang F., Fisher J.P., Jansen J.A. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds. Tissue Eng. A 2014, 20:139-146.
    • (2014) Tissue Eng. A , vol.20 , pp. 139-146
    • Yeatts, A.B.1    Both, S.K.2    Yang, W.3    Alghamdi, H.S.4    Yang, F.5    Fisher, J.P.6    Jansen, J.A.7
  • 172
    • 33847644129 scopus 로고    scopus 로고
    • Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor
    • Porter B.D., Lin A.S.P., Peister A., Hutmacher D., Guldberg R.E. Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor. Biomaterials 2007, 28:2525-2533.
    • (2007) Biomaterials , vol.28 , pp. 2525-2533
    • Porter, B.D.1    Lin, A.S.P.2    Peister, A.3    Hutmacher, D.4    Guldberg, R.E.5
  • 173
    • 84896852394 scopus 로고    scopus 로고
    • Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography
    • Papantoniou I., Sonnaert M., Geris L., Luyten F.P., Schrooten J., Kerckhofs G. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng. Part C Methods 2014, 20:177-187.
    • (2014) Tissue Eng. Part C Methods , vol.20 , pp. 177-187
    • Papantoniou, I.1    Sonnaert, M.2    Geris, L.3    Luyten, F.P.4    Schrooten, J.5    Kerckhofs, G.6
  • 174
    • 0344306513 scopus 로고    scopus 로고
    • Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds
    • Gomes M.E., Sikavitsas V.I., Behravesh E., Reis R.L., Mikos A.G. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. A 2003, 67A:87-95.
    • (2003) J. Biomed. Mater. Res. A , vol.67 A , pp. 87-95
    • Gomes, M.E.1    Sikavitsas, V.I.2    Behravesh, E.3    Reis, R.L.4    Mikos, A.G.5
  • 175
    • 0036773416 scopus 로고    scopus 로고
    • Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures
    • Davisson T., Sah R.L., Ratcliffe A. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 2002, 8:807-816.
    • (2002) Tissue Eng. , vol.8 , pp. 807-816
    • Davisson, T.1    Sah, R.L.2    Ratcliffe, A.3
  • 176
    • 17044418448 scopus 로고    scopus 로고
    • Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds
    • Sikavitsas V.I., Bancroft G.N., Lemoine J.J., Liebschner M.A.K., Dauner M., Mikos A.G. Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann. Biomed. Eng. 2005, 33:63-70.
    • (2005) Ann. Biomed. Eng. , vol.33 , pp. 63-70
    • Sikavitsas, V.I.1    Bancroft, G.N.2    Lemoine, J.J.3    Liebschner, M.A.K.4    Dauner, M.5    Mikos, A.G.6
  • 179
    • 65349120621 scopus 로고    scopus 로고
    • 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering
    • Du D.J., Furukawa K.S., Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol. Bioeng. 2009, 102:1670-1678.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 1670-1678
    • Du, D.J.1    Furukawa, K.S.2    Ushida, T.3
  • 180
    • 68749118341 scopus 로고    scopus 로고
    • Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products
    • Martin I., Smith T., Wendt D. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 2009, 27:495-502.
    • (2009) Trends Biotechnol. , vol.27 , pp. 495-502
    • Martin, I.1    Smith, T.2    Wendt, D.3
  • 182
    • 84880579526 scopus 로고    scopus 로고
    • Noninvasive real-time monitoring by AlamarBlue (R) during in vitro culture of three-dimensional tissue-engineered bone constructs
    • Zhou X.H., Holsbeeks I., Impens S., Sonnaert M., Bloemen V., Luyten F., Schrooten J. Noninvasive real-time monitoring by AlamarBlue (R) during in vitro culture of three-dimensional tissue-engineered bone constructs. Tissue Eng. Part C Methods 2013, 19:720-729.
    • (2013) Tissue Eng. Part C Methods , vol.19 , pp. 720-729
    • Zhou, X.H.1    Holsbeeks, I.2    Impens, S.3    Sonnaert, M.4    Bloemen, V.5    Luyten, F.6    Schrooten, J.7
  • 183
    • 84867098666 scopus 로고    scopus 로고
    • On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs
    • Santoro R., Krause C., Martin I., Wendt D. On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. J. Tissue Eng. Regen. Med. 2012, 6:696-701.
    • (2012) J. Tissue Eng. Regen. Med. , vol.6 , pp. 696-701
    • Santoro, R.1    Krause, C.2    Martin, I.3    Wendt, D.4
  • 189
    • 33847303506 scopus 로고    scopus 로고
    • Health economics: a cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7
    • Dahabreh Z., Dimitriou R., Giannoudis P.V. Health economics: a cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7. Injury 2007, 38:371-377.
    • (2007) Injury , vol.38 , pp. 371-377
    • Dahabreh, Z.1    Dimitriou, R.2    Giannoudis, P.V.3
  • 191
    • 77952256796 scopus 로고    scopus 로고
    • Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010
    • Mason C., Manzotti E. Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010. Regen. Med. 2010, 5:307-313.
    • (2010) Regen. Med. , vol.5 , pp. 307-313
    • Mason, C.1    Manzotti, E.2
  • 196
    • 60149111910 scopus 로고    scopus 로고
    • PEG hydrogels for the controlled release of biomolecules in regenerative medicine
    • Lin C.C., Anseth K.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 2009, 26:631-643.
    • (2009) Pharm. Res. , vol.26 , pp. 631-643
    • Lin, C.C.1    Anseth, K.S.2
  • 199
    • 84860466450 scopus 로고    scopus 로고
    • Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype
    • Kerkhofs J., Roberts S.J., Luyten F.P., Van Oosterwyck H., Geris L. Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS ONE 2012, 7:e34729.
    • (2012) PLoS ONE , vol.7 , pp. e34729
    • Kerkhofs, J.1    Roberts, S.J.2    Luyten, F.P.3    Van Oosterwyck, H.4    Geris, L.5
  • 200
    • 84886379963 scopus 로고    scopus 로고
    • Quantifying the mechanical micro-environment during three-dimensional cell expansion on microbeads by means of individual cell-based modelling
    • Smeets B., Odenthal T., Tijskens E., Ramon H., Van Oosterwyck H. Quantifying the mechanical micro-environment during three-dimensional cell expansion on microbeads by means of individual cell-based modelling. Comput. Methods Biomech. Biomed. Engin. 2013, 16:1071-1084.
    • (2013) Comput. Methods Biomech. Biomed. Engin. , vol.16 , pp. 1071-1084
    • Smeets, B.1    Odenthal, T.2    Tijskens, E.3    Ramon, H.4    Van Oosterwyck, H.5
  • 201
    • 84919441983 scopus 로고    scopus 로고
    • A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study
    • Guyot Y., Papantoniou I., Chai Y.C., Van Bael S., Schrooten J., Geris L. A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech. Model. Mechanobiol. 2014, 13:1361-1371.
    • (2014) Biomech. Model. Mechanobiol. , vol.13 , pp. 1361-1371
    • Guyot, Y.1    Papantoniou, I.2    Chai, Y.C.3    Van Bael, S.4    Schrooten, J.5    Geris, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.