메뉴 건너뛰기




Volumn 51, Issue 6, 2014, Pages 305-320

Relevance of microRNA in metabolic diseases

Author keywords

Atherosclerosis; Metabolic syndrome; MicroRNAs

Indexed keywords

MICRORNA; MICRORNA 122; MICRORNA 144; MICRORNA 33; UNCLASSIFIED DRUG;

EID: 84912137167     PISSN: 10408363     EISSN: 1549781X     Source Type: Journal    
DOI: 10.3109/10408363.2014.937522     Document Type: Review
Times cited : (44)

References (187)
  • 1
    • 84865472821 scopus 로고    scopus 로고
    • Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease
    • Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012;32:2052-9.
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 2052-2059
    • Rask-Madsen, C.1    Kahn, C.R.2
  • 2
    • 78651081793 scopus 로고    scopus 로고
    • The metabolic syndrome: Time to get off the merry-go-round?
    • Reaven GM. The metabolic syndrome: time to get off the merry-go-round? J Intern Med 2011;269:127-36.
    • (2011) J Intern Med , vol.269 , pp. 127-136
    • Reaven, G.M.1
  • 3
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature 2004; 431:350-5.
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 4
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 5
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500.
    • (2005) Nat Genet , vol.37 , pp. 495-500
    • Krek, A.1    Grun, D.2    Poy, M.N.3
  • 6
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
    • Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007;27:91-105.
    • (2007) Mol Cell , vol.27 , pp. 91-105
    • Grimson, A.1    Farh, K.K.2    Johnston, W.K.3
  • 8
    • 36248978699 scopus 로고    scopus 로고
    • MicroRNA expression is required for pancreatic islet cell genesis in the mouse
    • Lynn FC, Skewes-Cox P, Kosaka Y, et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007;56:2938-45.
    • (2007) Diabetes , vol.56 , pp. 2938-2945
    • Lynn, F.C.1    Skewes-Cox, P.2    Kosaka, Y.3
  • 9
    • 84455161954 scopus 로고    scopus 로고
    • Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus
    • Kalis M, Bolmeson C, Esguerra JL, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 2011;6:e29166.
    • (2011) PLoS One , vol.6
    • Kalis, M.1    Bolmeson, C.2    Esguerra, J.L.3
  • 10
    • 35848945091 scopus 로고    scopus 로고
    • MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3
    • Joglekar MV, Parekh VS, Mehta S, et al. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 2007;311:603-12.
    • (2007) Dev Biol , vol.311 , pp. 603-612
    • Joglekar, M.V.1    Parekh, V.S.2    Mehta, S.3
  • 11
    • 65249093130 scopus 로고    scopus 로고
    • MiR-375 maintains normal pancreatic alpha- and beta-cell mass
    • Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 2009;106:5813-18.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 5813-5818
    • Poy, M.N.1    Hausser, J.2    Trajkovski, M.3
  • 12
    • 77955231794 scopus 로고    scopus 로고
    • Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition
    • Zhao H, Guan J, Lee HM, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 2010;39: 843-6.
    • (2010) Pancreas , vol.39 , pp. 843-846
    • Zhao, H.1    Guan, J.2    Lee, H.M.3
  • 13
    • 34547126004 scopus 로고    scopus 로고
    • MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines
    • Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 2007;282:19575-88.
    • (2007) J Biol Chem , vol.282 , pp. 19575-19588
    • Baroukh, N.1    Ravier, M.A.2    Loder, M.K.3
  • 14
    • 84868132259 scopus 로고    scopus 로고
    • Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
    • Nieto M, Hevia P, Garcia E, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 2012;21:1761-74.
    • (2012) Cell Transplant , vol.21 , pp. 1761-1774
    • Nieto, M.1    Hevia, P.2    Garcia, E.3
  • 15
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226-30.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1    Eliasson, L.2    Krutzfeldt, J.3
  • 16
    • 58149350343 scopus 로고    scopus 로고
    • MiR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells
    • El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008;57:2708-17.
    • (2008) Diabetes , vol.57 , pp. 2708-2717
    • El Ouaamari, A.1    Baroukh, N.2    Martens, G.A.3
  • 17
    • 33748749597 scopus 로고    scopus 로고
    • MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells
    • Plaisance V, Abderrahmani A, Perret-Menoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932-42.
    • (2006) J Biol Chem , vol.281 , pp. 26932-26942
    • Plaisance, V.1    Abderrahmani, A.2    Perret-Menoud, V.3
  • 18
    • 40149083894 scopus 로고    scopus 로고
    • Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
    • Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008;389:305-12.
    • (2008) Biol Chem , vol.389 , pp. 305-312
    • Lovis, P.1    Gattesco, S.2    Regazzi, R.3
  • 19
    • 84890124194 scopus 로고    scopus 로고
    • Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes
    • Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013;56:2203-12.
    • (2013) Diabetologia , vol.56 , pp. 2203-2212
    • Nesca, V.1    Guay, C.2    Jacovetti, C.3
  • 20
    • 84867146719 scopus 로고    scopus 로고
    • MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity
    • Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 2012;122:3541-51.
    • (2012) J Clin Invest , vol.122 , pp. 3541-3551
    • Jacovetti, C.1    Abderrahmani, A.2    Parnaud, G.3
  • 21
    • 58149350340 scopus 로고    scopus 로고
    • Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction
    • Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008;57:2728-36.
    • (2008) Diabetes , vol.57 , pp. 2728-2736
    • Lovis, P.1    Roggli, E.2    Laybutt, D.R.3
  • 22
    • 77951158889 scopus 로고    scopus 로고
    • Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
    • Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010;59:978-86.
    • (2010) Diabetes , vol.59 , pp. 978-986
    • Roggli, E.1    Britan, A.2    Gattesco, S.3
  • 23
    • 79952259862 scopus 로고    scopus 로고
    • MiRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors
    • Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 2011;30:835-45.
    • (2011) EMBO J , vol.30 , pp. 835-845
    • Melkman-Zehavi, T.1    Oren, R.2    Kredo-Russo, S.3
  • 24
    • 84891043328 scopus 로고    scopus 로고
    • Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion
    • Locke JM, da Silva Xavier G, Dawe HR, et al. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 2014;57:122-8.
    • (2014) Diabetologia , vol.57 , pp. 122-128
    • Locke, J.M.1    Da Silva Xavier, G.2    Dawe, H.R.3
  • 25
    • 84887363120 scopus 로고    scopus 로고
    • MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction
    • Zhu Y, You W, Wang H, et al. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction. Diabetes 2013;62:3194-206.
    • (2013) Diabetes , vol.62 , pp. 3194-3206
    • Zhu, Y.1    You, W.2    Wang, H.3
  • 26
    • 84883793279 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
    • Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013;19:1141-6.
    • (2013) Nat Med , vol.19 , pp. 1141-1146
    • Xu, G.1    Chen, J.2    Jing, G.3    Shalev, A.4
  • 27
    • 79954555856 scopus 로고    scopus 로고
    • Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat
    • Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 2011;6: e18613.
    • (2011) PLoS One , vol.6
    • Esguerra, J.L.1    Bolmeson, C.2    Cilio, C.M.3    Eliasson, L.4
  • 28
    • 58249107416 scopus 로고    scopus 로고
    • Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription
    • Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 2009;15:287-93.
    • (2009) RNA , vol.15 , pp. 287-293
    • Tang, X.1    Muniappan, L.2    Tang, G.3    Ozcan, S.4
  • 29
    • 78650554763 scopus 로고    scopus 로고
    • MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression
    • Sun LL, Jiang BG, Li WT, et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011;91:94-100.
    • (2011) Diabetes Res Clin Pract , vol.91 , pp. 94-100
    • Sun, L.L.1    Jiang, B.G.2    Li, W.T.3
  • 30
    • 77956276832 scopus 로고    scopus 로고
    • High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression
    • Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 2010;5:e10843.
    • (2010) PLoS One , vol.5
    • Fred, R.G.1    Bang-Berthelsen, C.H.2    Mandrup-Poulsen, T.3
  • 31
    • 84863150557 scopus 로고    scopus 로고
    • MiR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets
    • Wijesekara N, Zhang LH, Kang MH, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012;61:653-8.
    • (2012) Diabetes , vol.61 , pp. 653-658
    • Wijesekara, N.1    Zhang, L.H.2    Kang, M.H.3
  • 32
    • 0026520193 scopus 로고
    • Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis
    • Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 1992;54:885-909.
    • (1992) Annu Rev Physiol , vol.54 , pp. 885-909
    • Pilkis, S.J.1    Granner, D.K.2
  • 33
    • 38549182470 scopus 로고    scopus 로고
    • Protein kinase B: Signalling roles and therapeutic targeting
    • Sale EM, Sale GJ. Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 2008;65:113-27.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 113-127
    • Sale, E.M.1    Sale, G.J.2
  • 34
    • 66149102890 scopus 로고    scopus 로고
    • The role of FOXO in the regulation of metabolism
    • Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diabetes Rep 2009;9:208-14.
    • (2009) Curr Diabetes Rep , vol.9 , pp. 208-214
    • Gross, D.N.1    Wan, M.2    Birnbaum, M.J.3
  • 35
    • 0033582929 scopus 로고    scopus 로고
    • Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor
    • Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68.
    • (1999) Cell , vol.96 , pp. 857-868
    • Brunet, A.1    Bonni, A.2    Zigmond, M.J.3
  • 37
    • 79959845414 scopus 로고    scopus 로고
    • MicroRNAs 103 and 107 regulate insulin sensitivity
    • Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-53.
    • (2011) Nature , vol.474 , pp. 649-653
    • Trajkovski, M.1    Hausser, J.2    Soutschek, J.3
  • 38
    • 80053481600 scopus 로고    scopus 로고
    • The Lin28/let-7 axis regulates glucose metabolism
    • Zhu H, Shyh-Chang N, Segre AV, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011;147:81-94.
    • (2011) Cell , vol.147 , pp. 81-94
    • Zhu, H.1    Shyh-Chang, N.2    Segre, A.V.3
  • 39
    • 35649011441 scopus 로고    scopus 로고
    • Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes
    • He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007;21: 2785-94.
    • (2007) Mol Endocrinol , vol.21 , pp. 2785-2794
    • He, A.1    Zhu, L.2    Gupta, N.3
  • 40
    • 79953317808 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
    • Jordan SD, Kruger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011;13: 434-46.
    • (2011) Nat Cell Biol , vol.13 , pp. 434-446
    • Jordan, S.D.1    Kruger, M.2    Willmes, D.M.3
  • 41
    • 84874715061 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b
    • Kornfeld JW, Baitzel C, Konner AC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013;494:111-15.
    • (2013) Nature , vol.494 , pp. 111-115
    • Kornfeld, J.W.1    Baitzel, C.2    Konner, A.C.3
  • 42
    • 84866362817 scopus 로고    scopus 로고
    • Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity
    • Zhou B, Li C, Qi W, et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 2012;55:2032-43.
    • (2012) Diabetologia , vol.55 , pp. 2032-2043
    • Zhou, B.1    Li, C.2    Qi, W.3
  • 43
    • 84855518254 scopus 로고    scopus 로고
    • Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs
    • Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA 2011;108:21075-80.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 21075-21080
    • Frost, R.J.1    Olson, E.N.2
  • 44
    • 79960932477 scopus 로고    scopus 로고
    • MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus
    • Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011;6: e22839.
    • (2011) PLoS One , vol.6
    • Karolina, D.S.1    Armugam, A.2    Tavintharan, S.3
  • 45
    • 11144354399 scopus 로고    scopus 로고
    • SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes
    • Yamamoto T, Shimano H, Nakagawa Y, et al. SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J Biol Chem 2004;279:12027-35.
    • (2004) J Biol Chem , vol.279 , pp. 12027-12035
    • Yamamoto, T.1    Shimano, H.2    Nakagawa, Y.3
  • 46
    • 84880656915 scopus 로고    scopus 로고
    • MicroRNA 33 regulates glucose metabolism
    • Ramirez CM, Goedeke L, Rotllan N, et al. MicroRNA 33 regulates glucose metabolism. Mol Cell Biol 2013;33:2891-902.
    • (2013) Mol Cell Biol , vol.33 , pp. 2891-2902
    • Ramirez, C.M.1    Goedeke, L.2    Rotllan, N.3
  • 47
    • 78751660177 scopus 로고    scopus 로고
    • Pervasive roles of microRNAs in cardiovascular biology
    • Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011;469:336-42.
    • (2011) Nature , vol.469 , pp. 336-342
    • Small, E.M.1    Olson, E.N.2
  • 48
    • 0019135838 scopus 로고
    • Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth
    • Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 1980;21:505-17.
    • (1980) J Lipid Res , vol.21 , pp. 505-517
    • Brown, M.S.1    Goldstein, J.L.2
  • 49
    • 0020472786 scopus 로고
    • The LDL receptor defect in familial hypercholesterolemia. Implications for pathogenesis and therapy
    • Goldstein JL, Brown MS. The LDL receptor defect in familial hypercholesterolemia. Implications for pathogenesis and therapy. Med Clin North Am 1982;66:335-62.
    • (1982) Med Clin North Am , vol.66 , pp. 335-362
    • Goldstein, J.L.1    Brown, M.S.2
  • 50
    • 0021010872 scopus 로고
    • Absorption and metabolism of dietary cholesterol
    • Grundy SM. Absorption and metabolism of dietary cholesterol. Annu Rev Nutr 1983;3:71-96.
    • (1983) Annu Rev Nutr , vol.3 , pp. 71-96
    • Grundy, S.M.1
  • 51
    • 33745132444 scopus 로고    scopus 로고
    • Macrophage reverse cholesterol transport: Key to the regression of atherosclerosis?
    • Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006;113: 2548-55.
    • (2006) Circulation , vol.113 , pp. 2548-2555
    • Cuchel, M.1    Rader, D.J.2
  • 52
    • 23844523406 scopus 로고    scopus 로고
    • MiR-122, a mammalian liverspecific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1
    • Chang J, Nicolas E, Marks D, et al. miR-122, a mammalian liverspecific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004;1:106-13.
    • (2004) RNA Biol , vol.1 , pp. 106-113
    • Chang, J.1    Nicolas, E.2    Marks, D.3
  • 53
    • 74249112787 scopus 로고    scopus 로고
    • Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection
    • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198-201.
    • (2010) Science , vol.327 , pp. 198-201
    • Lanford, R.E.1    Hildebrandt-Eriksen, E.S.2    Petri, A.3
  • 54
    • 84864761391 scopus 로고    scopus 로고
    • Essential metabolic, antiinflammatory, and anti-tumorigenic functions of miR-122 in liver
    • Hsu SH, Wang B, Kota J, et al. Essential metabolic, antiinflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012;122:2871-83.
    • (2012) J Clin Invest , vol.122 , pp. 2871-2883
    • Hsu, S.H.1    Wang, B.2    Kota, J.3
  • 55
    • 84864773072 scopus 로고    scopus 로고
    • MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis
    • Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012;122:2884-97.
    • (2012) J Clin Invest , vol.122 , pp. 2884-2897
    • Tsai, W.C.1    Hsu, S.D.2    Hsu, C.S.3
  • 56
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87-98.
    • (2006) Cell Metab , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3
  • 57
    • 40249106014 scopus 로고    scopus 로고
    • Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
    • Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008;36: 1153-62.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1153-1162
    • Elmen, J.1    Lindow, M.2    Silahtaroglu, A.3
  • 58
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner KJ, Suarez Y, Davalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010;328:1570-3.
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1    Suarez, Y.2    Davalos, A.3
  • 59
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-9.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1    Kristo, F.2    Li, Y.3
  • 60
    • 77955456415 scopus 로고    scopus 로고
    • MiR-33 links SREBP- 2 induction to repression of sterol transporters
    • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP- 2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010;107:12228-32.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12228-12232
    • Marquart, T.J.1    Allen, R.M.2    Ory, D.S.3    Baldan, A.4
  • 61
    • 79960015327 scopus 로고    scopus 로고
    • Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
    • Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig 2011;121:2921-31.
    • (2011) J Clin Investig , vol.121 , pp. 2921-2931
    • Rayner, K.J.1    Sheedy, F.J.2    Esau, C.C.3
  • 62
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011;478:404-7.
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1    Esau, C.C.2    Hussain, F.N.3
  • 63
    • 77958553499 scopus 로고    scopus 로고
    • Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
    • Gerin I, Clerbaux LA, Haumont O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010;285:33652-61.
    • (2010) J Biol Chem , vol.285 , pp. 33652-33661
    • Gerin, I.1    Clerbaux, L.A.2    Haumont, O.3
  • 64
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011;108:9232-7.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 9232-9237
    • Davalos, A.1    Goedeke, L.2    Smibert, P.3
  • 65
    • 84890205234 scopus 로고    scopus 로고
    • MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
    • Horie T, Nishino T, Baba O, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2013;4:2883.
    • (2013) Nat Commun , vol.4 , pp. 2883
    • Horie, T.1    Nishino, T.2    Baba, O.3
  • 66
    • 84881029988 scopus 로고    scopus 로고
    • Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice -brief report
    • Rotllan N, Ramirez CM, Aryal B, et al. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice -brief report. Arterioscler Thromb Vasc Biol 2013; 33:1973-7.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 1973-1977
    • Rotllan, N.1    Ramirez, C.M.2    Aryal, B.3
  • 67
    • 84874361381 scopus 로고    scopus 로고
    • Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice
    • Marquart TJ,Wu J, Lusis AJ, Baldan A. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2013;33:455-8.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 455-458
    • Marquart, T.J.1    Wu, J.2    Lusis, A.J.3    Baldan, A.4
  • 68
    • 84874393347 scopus 로고    scopus 로고
    • MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice
    • Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012;1:e003376. doi:10.1038/ncomms3883.
    • (2012) J Am Heart Assoc , vol.1
    • Horie, T.1    Baba, O.2    Kuwabara, Y.3
  • 69
    • 84890387599 scopus 로고    scopus 로고
    • Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
    • Rottiers V, Obad S, Petri A, et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci Transl Med 2013;5:212ra162. doi:10.1126/ scitranslmed.3006840.
    • (2013) Sci Transl Med , vol.5 , pp. 212ra162
    • Rottiers, V.1    Obad, S.2    Petri, A.3
  • 70
    • 80054900644 scopus 로고    scopus 로고
    • MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
    • Ramirez CM, Davalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 2011;31:2707-14.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 2707-2714
    • Ramirez, C.M.1    Davalos, A.2    Goedeke, L.3
  • 71
    • 84861183215 scopus 로고    scopus 로고
    • MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7
    • Sun D, Zhang J, Xie J, et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 2012; 586:1472-9.
    • (2012) FEBS Lett , vol.586 , pp. 1472-1479
    • Sun, D.1    Zhang, J.2    Xie, J.3
  • 72
    • 84878958446 scopus 로고    scopus 로고
    • A regulatory role for microRNA 33 in controlling lipid metabolism gene expression
    • Goedeke L, Vales-Lara FM, Fenstermaker M, et al. A regulatory role for microRNA 33 in controlling lipid metabolism gene expression. Mol Cell Biol 2013;33:2339-52.
    • (2013) Mol Cell Biol , vol.33 , pp. 2339-2352
    • Goedeke, L.1    Vales-Lara, F.M.2    Fenstermaker, M.3
  • 73
    • 84880031381 scopus 로고    scopus 로고
    • Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144
    • Ramirez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res 2013;112:1592-601.
    • (2013) Circ Res , vol.112 , pp. 1592-1601
    • Ramirez, C.M.1    Rotllan, N.2    Vlassov, A.V.3
  • 74
    • 77954408884 scopus 로고    scopus 로고
    • The miR- 144/451 locus is required for erythroid homeostasis
    • Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR- 144/451 locus is required for erythroid homeostasis. J Exp Med 2010;207:1351-8.
    • (2010) J Exp Med , vol.207 , pp. 1351-1358
    • Rasmussen, K.D.1    Simmini, S.2    Abreu-Goodger, C.3
  • 75
    • 77953897182 scopus 로고    scopus 로고
    • A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity
    • Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010;328:1694-8.
    • (2010) Science , vol.328 , pp. 1694-1698
    • Cifuentes, D.1    Xue, H.2    Taylor, D.W.3
  • 76
    • 84880006810 scopus 로고    scopus 로고
    • MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor
    • de Aguiar Vallim TQ, Tarling EJ, Kim T, et al. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ Res 2013;112:1602-12.
    • (2013) Circ Res , vol.112 , pp. 1602-1612
    • De Aguiar Vallim, T.Q.1    Tarling, E.J.2    Kim, T.3
  • 77
    • 77952707662 scopus 로고    scopus 로고
    • MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism
    • Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010;51:1513-23.
    • (2010) J Lipid Res , vol.51 , pp. 1513-1523
    • Iliopoulos, D.1    Drosatos, K.2    Hiyama, Y.3
  • 78
    • 84871221881 scopus 로고    scopus 로고
    • MiR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease
    • Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 2013;58:119-25.
    • (2013) J Hepatol , vol.58 , pp. 119-125
    • Castro, R.E.1    Ferreira, D.M.2    Afonso, M.B.3
  • 79
    • 77954932826 scopus 로고    scopus 로고
    • Roles for miRNA-378/ 378∗ in adipocyte gene expression and lipogenesis
    • Gerin I, Bommer GT, McCoin CS, et al. Roles for miRNA-378/ 378∗ in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 2010;299:E198-206.
    • (2010) Am J Physiol Endocrinol Metab , vol.299 , pp. E198-206
    • Gerin, I.1    Bommer, G.T.2    McCoin, C.S.3
  • 80
    • 84871887481 scopus 로고    scopus 로고
    • MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type i in steroidogenic cells
    • Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012;32:5035-45.
    • (2012) Mol Cell Biol , vol.32 , pp. 5035-5045
    • Hu, Z.1    Shen, W.J.2    Kraemer, F.B.3    Azhar, S.4
  • 81
    • 79953737607 scopus 로고    scopus 로고
    • MicroRNA hsa-miR-613 targets the human LXRalpha gene and mediates a feedback loop of LXRalpha autoregulation
    • Ou Z, Wada T, Gramignoli R, et al. MicroRNA hsa-miR-613 targets the human LXRalpha gene and mediates a feedback loop of LXRalpha autoregulation. Mol Endocrinol 2011;25: 584-96.
    • (2011) Mol Endocrinol , vol.25 , pp. 584-596
    • Ou, Z.1    Wada, T.2    Gramignoli, R.3
  • 82
    • 84876329845 scopus 로고    scopus 로고
    • MicroRNA-1 and microRNA- 206 suppress LXRalpha-induced lipogenesis in hepatocytes
    • Zhong D, Huang G, Zhang Y, et al. MicroRNA-1 and microRNA- 206 suppress LXRalpha-induced lipogenesis in hepatocytes. Cell Signal 2013;25:1429-37.
    • (2013) Cell Signal , vol.25 , pp. 1429-1437
    • Zhong, D.1    Huang, G.2    Zhang, Y.3
  • 83
    • 84873294316 scopus 로고    scopus 로고
    • MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia
    • Vickers KC, Shoucri BM, Levin MG, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 2013;57:533-42.
    • (2013) Hepatology , vol.57 , pp. 533-542
    • Vickers, K.C.1    Shoucri, B.M.2    Levin, M.G.3
  • 84
    • 84878967914 scopus 로고    scopus 로고
    • MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition
    • Wang L, Jia XJ, Jiang HJ, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 2013;33: 1956-64.
    • (2013) Mol Cell Biol , vol.33 , pp. 1956-1964
    • Wang, L.1    Jia, X.J.2    Jiang, H.J.3
  • 85
    • 84867068010 scopus 로고    scopus 로고
    • Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho
    • Fu T, Choi SE, Kim DH, et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor beta-Klotho. Proc Natl Acad Sci USA 2012; 109:16137-42.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 16137-16142
    • Fu, T.1    Choi, S.E.2    Kim, D.H.3
  • 86
    • 84882573604 scopus 로고    scopus 로고
    • MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice
    • Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One 2013;8:e72324.
    • (2013) PLoS One , vol.8
    • Miller, A.M.1    Gilchrist, D.S.2    Nijjar, J.3
  • 87
    • 79953301730 scopus 로고    scopus 로고
    • MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins
    • Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins. Nat Cell Biol 2011;13:423-33.
    • (2011) Nat Cell Biol , vol.13 , pp. 423-433
    • Vickers, K.C.1    Palmisano, B.T.2    Shoucri, B.M.3
  • 88
    • 77951157723 scopus 로고    scopus 로고
    • MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle
    • Takagi S, Nakajima M, Kida K, et al. MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem 2010;285: 4415-22.
    • (2010) J Biol Chem , vol.285 , pp. 4415-4422
    • Takagi, S.1    Nakajima, M.2    Kida, K.3
  • 89
    • 84894613848 scopus 로고    scopus 로고
    • Pro-apoptotic miRNA- 128-2 modulates ABCA1, ABCG1 and RXRalpha expression and cholesterol homeostasis
    • Adlakha YK, Khanna S, Singh R, et al. Pro-apoptotic miRNA- 128-2 modulates ABCA1, ABCG1 and RXRalpha expression and cholesterol homeostasis. Cell Death Dis 2013;4:e780. doi: 10.1186/1476-4598-13-33.
    • (2013) Cell Death Dis , vol.4 , pp. e780
    • Adlakha, Y.K.1    Khanna, S.2    Singh, R.3
  • 90
    • 77951210885 scopus 로고    scopus 로고
    • A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
    • Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 2010;285:12604-11.
    • (2010) J Biol Chem , vol.285 , pp. 12604-12611
    • Lee, J.1    Padhye, A.2    Sharma, A.3
  • 91
    • 34147119799 scopus 로고    scopus 로고
    • The hormonal control of food intake
    • Coll AP, Farooqi IS, O'Rahilly S. The hormonal control of food intake. Cell 2007;129:251-62.
    • (2007) Cell , vol.129 , pp. 251-262
    • Coll, A.P.1    Farooqi, I.S.2    O'rahilly, S.3
  • 92
    • 84877277282 scopus 로고    scopus 로고
    • Adipose tissue dysfunction in nascent metabolic syndrome
    • Bremer AA, Jialal I. Adipose tissue dysfunction in nascent metabolic syndrome. J Obes 2013;2013:393192. doi: 10.1155/ 2013/393192.
    • (2013) J Obes , vol.2013 , pp. 393192
    • Bremer, A.A.1    Jialal, I.2
  • 93
    • 0024160877 scopus 로고
    • Banting lecture 1988. Role of insulin resistance in human disease
    • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595-607.
    • (1988) Diabetes , vol.37 , pp. 1595-1607
    • Reaven, G.M.1
  • 94
    • 34848872799 scopus 로고    scopus 로고
    • Obesity-associated improvements in metabolic profile through expansion of adipose tissue
    • Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007;117:2621-37.
    • (2007) J Clin Invest , vol.117 , pp. 2621-2637
    • Kim, J.Y.1    Van De Wall, E.2    Laplante, M.3
  • 95
    • 76049099665 scopus 로고    scopus 로고
    • Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome -an allostatic perspective
    • Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome -an allostatic perspective. Biochim Biophys Acta 2010;1801:338-49.
    • (2010) Biochim Biophys Acta , vol.1801 , pp. 338-349
    • Virtue, S.1    Vidal-Puig, A.2
  • 96
    • 0035936802 scopus 로고    scopus 로고
    • Atherosclerosis. The road ahead
    • Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104:503-16.
    • (2001) Cell , vol.104 , pp. 503-516
    • Glass, C.K.1    Witztum, J.L.2
  • 97
    • 0034648768 scopus 로고    scopus 로고
    • Atherosclerosis
    • Lusis AJ. Atherosclerosis. Nature 2000;407:233-41.
    • (2000) Nature , vol.407 , pp. 233-241
    • Lusis, A.J.1
  • 98
    • 10344243662 scopus 로고    scopus 로고
    • MicroRNA-143 regulates adipocyte differentiation
    • Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361-5.
    • (2004) J Biol Chem , vol.279 , pp. 52361-52365
    • Esau, C.1    Kang, X.2    Peralta, E.3
  • 99
    • 42949093218 scopus 로고    scopus 로고
    • MiR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumorsuppressor Rb2/p130
    • Wang Q, Li YC, Wang J, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumorsuppressor Rb2/p130. Proc Natl Acad Sci USA 2008;105:2889-94.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 2889-2894
    • Wang, Q.1    Li, Y.C.2    Wang, J.3
  • 100
    • 65549144017 scopus 로고    scopus 로고
    • MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
    • Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009;58:1050-7.
    • (2009) Diabetes , vol.58 , pp. 1050-1057
    • Xie, H.1    Lim, B.2    Lodish, H.F.3
  • 101
    • 77952448162 scopus 로고    scopus 로고
    • A deep investigation into the adipogenesis mechanism: Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway
    • Qin L, Chen Y, Niu Y, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010;11:320.
    • (2010) BMC Genomics , vol.11 , pp. 320
    • Qin, L.1    Chen, Y.2    Niu, Y.3
  • 102
    • 73349117464 scopus 로고    scopus 로고
    • MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue
    • Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009;27:3093-102.
    • (2009) Stem Cells , vol.27 , pp. 3093-3102
    • Kim, Y.J.1    Hwang, S.J.2    Bae, Y.C.3    Jung, J.S.4
  • 103
    • 79960565215 scopus 로고    scopus 로고
    • Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis
    • Zaragosi LE, Wdziekonski B, Brigand KL, et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011;12:R64. doi: 1186/gb-2011-12-7-r64.
    • (2011) Genome Biol , vol.12 , pp. R64
    • Zaragosi, L.E.1    Wdziekonski, B.2    Brigand, K.L.3
  • 104
    • 77149136767 scopus 로고    scopus 로고
    • MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation
    • Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010;28:357-64.
    • (2010) Stem Cells , vol.28 , pp. 357-364
    • Huang, J.1    Zhao, L.2    Xing, L.3    Chen, D.4
  • 105
    • 79953038248 scopus 로고    scopus 로고
    • MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling
    • Ling HY, Wen GB, Feng SD, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 2011;38:239-46.
    • (2011) Clin Exp Pharmacol Physiol , vol.38 , pp. 239-246
    • Ling, H.Y.1    Wen, G.B.2    Feng, S.D.3
  • 106
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix
    • Zhang JF, Fu WM, He ML, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 2011;22:3955-61.
    • (2011) Mol Biol Cell , vol.22 , pp. 3955-3961
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 107
    • 84885026773 scopus 로고    scopus 로고
    • MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-alpha (TNF-alpha) in the porcine model
    • Li H, Chen X, Guan L, et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-alpha (TNF-alpha) in the porcine model. PLoS One 2013;8:e71568.
    • (2013) PLoS One , vol.8
    • Li, H.1    Chen, X.2    Guan, L.3
  • 108
    • 79960984113 scopus 로고    scopus 로고
    • Mir193b-365 is essential for brown fat differentiation
    • Sun L, Xie H, Mori MA, et al. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 2011;13:958-65.
    • (2011) Nat Cell Biol , vol.13 , pp. 958-965
    • Sun, L.1    Xie, H.2    Mori, M.A.3
  • 109
    • 80054053675 scopus 로고    scopus 로고
    • MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin
    • Yi C, Xie WD, Li F, et al. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett 2011;585:3303-9.
    • (2011) FEBS Lett , vol.585 , pp. 3303-3309
    • Yi, C.1    Xie, W.D.2    Li, F.3
  • 110
    • 70350125874 scopus 로고    scopus 로고
    • MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma
    • Karbiener M, Fischer C, Nowitsch S, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009;390:247-51.
    • (2009) Biochem Biophys Res Commun , vol.390 , pp. 247-251
    • Karbiener, M.1    Fischer, C.2    Nowitsch, S.3
  • 111
    • 66449092619 scopus 로고    scopus 로고
    • MicroRNA let-7 regulates 3T3-L1 adipogenesis
    • Sun T, Fu M, Bookout AL, et al. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009;23:925-31.
    • (2009) Mol Endocrinol , vol.23 , pp. 925-931
    • Sun, T.1    Fu, M.2    Bookout, A.L.3
  • 112
    • 77950364510 scopus 로고    scopus 로고
    • Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: Implication in the retinoic acid-induced neuronal differentiation of P19 cells
    • Kang MR, Lee SW, Um E, et al. Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells. Nucleic Acids Res 2010;38:822-31.
    • (2010) Nucleic Acids Res , vol.38 , pp. 822-831
    • Kang, M.R.1    Lee, S.W.2    Um, E.3
  • 113
    • 77957364237 scopus 로고    scopus 로고
    • Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA- 448-mediated repression of KLF5
    • Kinoshita M, Ono K, Horie T, et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA- 448-mediated repression of KLF5. Mol Endocrinol 2010;24: 1978-87.
    • (2010) Mol Endocrinol , vol.24 , pp. 1978-1987
    • Kinoshita, M.1    Ono, K.2    Horie, T.3
  • 114
    • 77953285003 scopus 로고    scopus 로고
    • MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes
    • Andersen DC, Jensen CH, Schneider M, et al. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res 2010;316: 1681-91.
    • (2010) Exp Cell Res , vol.316 , pp. 1681-1691
    • Andersen, D.C.1    Jensen, C.H.2    Schneider, M.3
  • 115
    • 84859394657 scopus 로고    scopus 로고
    • Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222
    • Skarn M, Namlos HM, Noordhuis P, et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev 2012;21:873-83.
    • (2012) Stem Cells Dev , vol.21 , pp. 873-883
    • Skarn, M.1    Namlos, H.M.2    Noordhuis, P.3
  • 116
    • 80054918892 scopus 로고    scopus 로고
    • TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors
    • Liu S, Yang Y,Wu J. TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun 2011;414: 618-24.
    • (2011) Biochem Biophys Res Commun , vol.414 , pp. 618-624
    • Liu, S.1    Yang, Y.2    Wu, J.3
  • 117
    • 78951474461 scopus 로고    scopus 로고
    • MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1
    • Yang Z, Bian C, Zhou H, et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 2011;20:259-67.
    • (2011) Stem Cells Dev , vol.20 , pp. 259-267
    • Yang, Z.1    Bian, C.2    Zhou, H.3
  • 118
    • 79958741808 scopus 로고    scopus 로고
    • Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371
    • Bork S, Horn P, Castoldi M, et al. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol 2011;226:2226-34.
    • (2011) J Cell Physiol , vol.226 , pp. 2226-2234
    • Bork, S.1    Horn, P.2    Castoldi, M.3
  • 119
    • 84864281323 scopus 로고    scopus 로고
    • Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression
    • Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012;21: 2531-40.
    • (2012) Stem Cells Dev , vol.21 , pp. 2531-2540
    • Huang, S.1    Wang, S.2    Bian, C.3
  • 120
    • 79251544878 scopus 로고    scopus 로고
    • MiR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression
    • Lee EK, Lee MJ, Abdelmohsen K, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2011;31:626-38.
    • (2011) Mol Cell Biol , vol.31 , pp. 626-638
    • Lee, E.K.1    Lee, M.J.2    Abdelmohsen, K.3
  • 121
    • 84892803671 scopus 로고    scopus 로고
    • MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3beta of Wnt/beta-catenin signaling pathway
    • Chen H, Wang S, Chen L, et al. MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3beta of Wnt/beta-catenin signaling pathway. FEBS Lett 2014;588:429-35.
    • (2014) FEBS Lett , vol.588 , pp. 429-435
    • Chen, H.1    Wang, S.2    Chen, L.3
  • 122
    • 84887612129 scopus 로고    scopus 로고
    • The role of microRNA-26b in human adipocyte differentiation and proliferation
    • Song G, Xu G, Ji C, et al. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 2014;533: 481-7.
    • (2014) Gene , vol.533 , pp. 481-487
    • Song, G.1    Xu, G.2    Ji, C.3
  • 123
    • 84879042710 scopus 로고    scopus 로고
    • MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism
    • Peng Y, Xiang H, Chen C, et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 2013;45:1585-93.
    • (2013) Int J Biochem Cell Biol , vol.45 , pp. 1585-1593
    • Peng, Y.1    Xiang, H.2    Chen, C.3
  • 124
    • 76349089521 scopus 로고    scopus 로고
    • MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression
    • Kim SY, Kim AY, Lee HW, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010;392:323-8.
    • (2010) Biochem Biophys Res Commun , vol.392 , pp. 323-328
    • Kim, S.Y.1    Kim, A.Y.2    Lee, H.W.3
  • 125
    • 63049108381 scopus 로고    scopus 로고
    • A role of miR-27 in the regulation of adipogenesis
    • Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009;276:2348-58.
    • (2009) FEBS J , vol.276 , pp. 2348-2358
    • Lin, Q.1    Gao, Z.2    Alarcon, R.M.3
  • 126
    • 79955671859 scopus 로고    scopus 로고
    • Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers
    • Heneghan HM, Miller N, McAnena OJ, et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 2011;96:E846-50.
    • (2011) J Clin Endocrinol Metab , vol.96 , pp. E846-E850
    • Heneghan, H.M.1    Miller, N.2    McAnena, O.J.3
  • 127
    • 79953078936 scopus 로고    scopus 로고
    • Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
    • Keller P, Gburcik V, Petrovic N, et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord 2011;11:7.
    • (2011) BMC Endocr Disord , vol.11 , pp. 7
    • Keller, P.1    Gburcik, V.2    Petrovic, N.3
  • 128
    • 62249144948 scopus 로고    scopus 로고
    • MicroRNA expression in human omental and subcutaneous adipose tissue
    • Kloting N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4:e4699.
    • (2009) PLoS One , vol.4 , pp. e4699
    • Kloting, N.1    Berthold, S.2    Kovacs, P.3
  • 129
    • 84874500772 scopus 로고    scopus 로고
    • Long noncoding RNAs regulate adipogenesis
    • Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013;110: 3387-92.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 3387-3392
    • Sun, L.1    Goff, L.A.2    Trapnell, C.3
  • 130
    • 79954421446 scopus 로고    scopus 로고
    • Let-7 microRNA and HMGA2 levels of expression are not inversely linked in adipocytic tumors: Analysis of 56 lipomas and liposarcomas with molecular cytogenetic data
    • Bianchini L, Saada E, Gjernes E, et al. Let-7 microRNA and HMGA2 levels of expression are not inversely linked in adipocytic tumors: analysis of 56 lipomas and liposarcomas with molecular cytogenetic data. Genes Chromosomes Cancer 2011;50: 442-55.
    • (2011) Genes Chromosomes Cancer , vol.50 , pp. 442-455
    • Bianchini, L.1    Saada, E.2    Gjernes, E.3
  • 131
    • 84859230232 scopus 로고    scopus 로고
    • HMGA2 and MDM2 expression in lipomatous tumors with partial, low-level amplification of sequences from the long arm of chromosome 12
    • Mandahl N, Bartuma H, Magnusson L, et al. HMGA2 and MDM2 expression in lipomatous tumors with partial, low-level amplification of sequences from the long arm of chromosome 12. Cancer Genet 2011;204:550-6.
    • (2011) Cancer Genet , vol.204 , pp. 550-556
    • Mandahl, N.1    Bartuma, H.2    Magnusson, L.3
  • 132
    • 84892374204 scopus 로고    scopus 로고
    • HMGA2 functions as a competing endogenous RNA to promote lung cancer progression
    • Kumar MS, Armenteros-Monterroso E, East P, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 2014;505:212-17.
    • (2014) Nature , vol.505 , pp. 212-217
    • Kumar, M.S.1    Armenteros-Monterroso, E.2    East, P.3
  • 133
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Chung, N.3
  • 134
    • 84884941624 scopus 로고    scopus 로고
    • MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade
    • Ahn J, Lee H, Jung CH, et al. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 2013;5:1602-12.
    • (2013) EMBO Mol Med , vol.5 , pp. 1602-1612
    • Ahn, J.1    Lee, H.2    Jung, C.H.3
  • 135
    • 33746017379 scopus 로고    scopus 로고
    • FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes A novel paradigm to increase insulin sensitivity
    • Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 2006;281:19881-91.
    • (2006) J Biol Chem , vol.281 , pp. 19881-19891
    • Armoni, M.1    Harel, C.2    Karni, S.3
  • 136
    • 79955016827 scopus 로고    scopus 로고
    • MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
    • Eskildsen T, Taipaleenmaki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 2011;108: 6139-44.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 6139-6144
    • Eskildsen, T.1    Taipaleenmaki, H.2    Stenvang, J.3
  • 137
    • 84892775303 scopus 로고    scopus 로고
    • FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes
    • Zhu L, Shi C, Ji C, et al. FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes. Mol Biol Rep 2013;40:5669-75.
    • (2013) Mol Biol Rep , vol.40 , pp. 5669-5675
    • Zhu, L.1    Shi, C.2    Ji, C.3
  • 138
    • 84893929382 scopus 로고    scopus 로고
    • MiR-335, an adipogenesisrelated MicroRNA, is involved in adipose tissue inflammation
    • Zhu L, Chen L, Shi CM, et al. MiR-335, an adipogenesisrelated MicroRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys 2014;68:283-90.
    • (2014) Cell Biochem Biophys , vol.68 , pp. 283-290
    • Zhu, L.1    Chen, L.2    Shi, C.M.3
  • 139
    • 84878401701 scopus 로고    scopus 로고
    • Modulation of hsa-miR-26b levels following adipokine stimulation
    • Xu G, Ji C, Shi C, et al. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 2013;40: 3577-82.
    • (2013) Mol Biol Rep , vol.40 , pp. 3577-3582
    • Xu, G.1    Ji, C.2    Shi, C.3
  • 140
    • 69949099167 scopus 로고    scopus 로고
    • Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes
    • Ling HY, Ou HS, Feng SD, et al. Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 2009;36:e32-9.
    • (2009) Clin Exp Pharmacol Physiol , vol.36 , pp. e32-e39
    • Ling, H.Y.1    Ou, H.S.2    Feng, S.D.3
  • 141
    • 84864383359 scopus 로고    scopus 로고
    • Adipose tissue microRNAs as regulators of CCL2 production in human obesity
    • Arner E, Mejhert N, Kulyte A, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 2012; 61:1986-93.
    • (2012) Diabetes , vol.61 , pp. 1986-1993
    • Arner, E.1    Mejhert, N.2    Kulyte, A.3
  • 142
    • 77953809603 scopus 로고    scopus 로고
    • Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans)
    • Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 2010; 34:S7-16.
    • (2010) Int J Obes (Lond) , vol.34 , pp. S7-16
    • Cannon, B.1    Nedergaard, J.2
  • 143
    • 0028865142 scopus 로고
    • Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity
    • Kopecky J, Clarke G, Enerback S, et al. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 1995;96:2914-23.
    • (1995) J Clin Invest , vol.96 , pp. 2914-2923
    • Kopecky, J.1    Clarke, G.2    Enerback, S.3
  • 144
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 2011;121:96-105.
    • (2011) J Clin Invest , vol.121 , pp. 96-105
    • Seale, P.1    Conroe, H.M.2    Estall, J.3
  • 145
    • 58149217061 scopus 로고    scopus 로고
    • Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes
    • Walden TB, Timmons JA, Keller P, et al. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol 2009;218:444-9.
    • (2009) J Cell Physiol , vol.218 , pp. 444-449
    • Walden, T.B.1    Timmons, J.A.2    Keller, P.3
  • 147
    • 84870595878 scopus 로고    scopus 로고
    • MyomiR-133 regulates brown fat differentiation through Prdm16
    • Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 2012;14:1330-5.
    • (2012) Nat Cell Biol , vol.14 , pp. 1330-1335
    • Trajkovski, M.1    Ahmed, K.2    Esau, C.C.3    Stoffel, M.4
  • 148
    • 84873327762 scopus 로고    scopus 로고
    • MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16
    • Yin H, Pasut A, Soleimani VD, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013;17:210-24.
    • (2013) Cell Metab , vol.17 , pp. 210-224
    • Yin, H.1    Pasut, A.2    Soleimani, V.D.3
  • 149
    • 84860009214 scopus 로고    scopus 로고
    • Essential role for miR-196a in brown adipogenesis of white fat progenitor cells
    • Mori M, Nakagami H, Rodriguez-Araujo G, et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 2012;10:e1001314.
    • (2012) PLoS Biol , vol.10
    • Mori, M.1    Nakagami, H.2    Rodriguez-Araujo, G.3
  • 150
    • 84892678138 scopus 로고    scopus 로고
    • MiR-27 orchestrates the transcriptional regulation of brown adipogenesis
    • Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism 2014;63:272-82.
    • (2014) Metabolism , vol.63 , pp. 272-282
    • Sun, L.1    Trajkovski, M.2
  • 151
    • 84901423103 scopus 로고    scopus 로고
    • MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes
    • Karbiener M, Pisani DF, Frontini A, et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 2014;32:1578-90.
    • (2014) Stem Cells , vol.32 , pp. 1578-1590
    • Karbiener, M.1    Pisani, D.F.2    Frontini, A.3
  • 152
    • 84883265784 scopus 로고    scopus 로고
    • Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation
    • Wu Y, Zuo J, Zhang Y, et al. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun 2013;438:575-80.
    • (2013) Biochem Biophys Res Commun , vol.438 , pp. 575-580
    • Wu, Y.1    Zuo, J.2    Zhang, Y.3
  • 153
    • 34249302620 scopus 로고    scopus 로고
    • Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
    • Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9:654-9.
    • (2007) Nat Cell Biol , vol.9 , pp. 654-659
    • Valadi, H.1    Ekstrom, K.2    Bossios, A.3
  • 154
    • 77449127999 scopus 로고    scopus 로고
    • Delivery of microRNA- 126 by apoptotic bodies induces CXCL12-dependent vascular protection
    • Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA- 126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009;2:ra81. doi: 10.1126/scisignal. 2000610.
    • (2009) Sci Signal , vol.2 , pp. ra81
    • Zernecke, A.1    Bidzhekov, K.2    Noels, H.3
  • 155
    • 79953202200 scopus 로고    scopus 로고
    • Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
    • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011;108: 5003-8.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 5003-5008
    • Arroyo, J.D.1    Chevillet, J.R.2    Kroh, E.M.3
  • 156
    • 84892647657 scopus 로고    scopus 로고
    • Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression
    • Pan S, Yang X, Jia Y, et al. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression. J Cell Physiol 2014;229:631-9.
    • (2014) J Cell Physiol , vol.229 , pp. 631-639
    • Pan, S.1    Yang, X.2    Jia, Y.3
  • 157
    • 84890129748 scopus 로고    scopus 로고
    • Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity
    • Wang YC, Li Y, Wang XY, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013;56:2275-85.
    • (2013) Diabetologia , vol.56 , pp. 2275-2285
    • Wang, Y.C.1    Li, Y.2    Wang, X.Y.3
  • 158
    • 84868346560 scopus 로고    scopus 로고
    • Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases
    • Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012;303:H1085-95.
    • (2012) Am J Physiol Heart Circ Physiol , vol.303 , pp. H1085-H1095
    • Tijsen, A.J.1    Pinto, Y.M.2    Creemers, E.E.3
  • 159
    • 84876940768 scopus 로고    scopus 로고
    • Targeting the circulating microRNA signature of obesity
    • Ortega FJ, Mercader JM, Catalan V, et al. Targeting the circulating microRNA signature of obesity. Clin Chem 2013;59: 781-92.
    • (2013) Clin Chem , vol.59 , pp. 781-792
    • Ortega, F.J.1    Mercader, J.M.2    Catalan, V.3
  • 160
    • 84885235330 scopus 로고    scopus 로고
    • Changes in circulating microRNAs are associated with childhood obesity
    • Prats-Puig A, Ortega FJ, Mercader JM, et al. Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab 2013;98:E1655-60.
    • (2013) J Clin Endocrinol Metab , vol.98 , pp. E1655-E1660
    • Prats-Puig, A.1    Ortega, F.J.2    Mercader, J.M.3
  • 161
    • 84887501102 scopus 로고    scopus 로고
    • Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA- 155 expression
    • Murri M, Insenser M, Fernandez-Duran E, et al. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA- 155 expression. J Clin Endocrinol Metab 2013;98:E1835-44.
    • (2013) J Clin Endocrinol Metab , vol.98 , pp. E1835-E1844
    • Murri, M.1    Insenser, M.2    Fernandez-Duran, E.3
  • 162
    • 84885448790 scopus 로고    scopus 로고
    • Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers
    • Pescador N, Perez-Barba M, Ibarra JM, et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 2013;8:e77251.
    • (2013) PLoS One , vol.8
    • Pescador, N.1    Perez-Barba, M.2    Ibarra, J.M.3
  • 163
    • 84857930607 scopus 로고    scopus 로고
    • Profiling of circulating microRNAs: From single biomarkers to re-wired networks
    • Zampetaki A, Willeit P, Drozdov I, et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 2012;93:555-62.
    • (2012) Cardiovasc Res , vol.93 , pp. 555-562
    • Zampetaki, A.1    Willeit, P.2    Drozdov, I.3
  • 164
    • 80051977010 scopus 로고    scopus 로고
    • Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus
    • Zhao C, Dong J, Jiang T, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One 2011;6:e23925.
    • (2011) PLoS One , vol.6
    • Zhao, C.1    Dong, J.2    Jiang, T.3
  • 165
    • 84884950704 scopus 로고    scopus 로고
    • Circulating microRNAs have a sex-specific association with metabolic syndrome
    • Wang YT, Tsai PC, Liao YC, et al. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci 2013;20:72. doi: 10.1186/1423-0127-20-72.
    • (2013) J Biomed Sci , vol.20 , pp. 72
    • Wang, Y.T.1    Tsai, P.C.2    Liao, Y.C.3
  • 166
    • 84893056866 scopus 로고    scopus 로고
    • RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling
    • Lustig Y, Barhod E, Ashwal-Fluss R, et al. RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling. Diabetes 2014;63:433-45.
    • (2014) Diabetes , vol.63 , pp. 433-445
    • Lustig, Y.1    Barhod, E.2    Ashwal-Fluss, R.3
  • 167
    • 79953726990 scopus 로고    scopus 로고
    • Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes
    • Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011; 351:197-205.
    • (2011) Mol Cell Biochem , vol.351 , pp. 197-205
    • Balasubramanyam, M.1    Aravind, S.2    Gokulakrishnan, K.3
  • 168
    • 79953327099 scopus 로고    scopus 로고
    • Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study
    • Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011;48:61-9.
    • (2011) Acta Diabetol , vol.48 , pp. 61-69
    • Kong, L.1    Zhu, J.2    Han, W.3
  • 169
    • 84893757023 scopus 로고    scopus 로고
    • Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus
    • Rong Y, Bao W, Shan Z, et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2013;8:e73272.
    • (2013) PLoS One , vol.8
    • Rong, Y.1    Bao, W.2    Shan, Z.3
  • 170
    • 84879448114 scopus 로고    scopus 로고
    • Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver
    • Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 2013;424:99-103.
    • (2013) Clin Chim Acta , vol.424 , pp. 99-103
    • Yamada, H.1    Suzuki, K.2    Ichino, N.3
  • 171
    • 84870741421 scopus 로고    scopus 로고
    • Age-related differences in the expression of circulating microRNAs: MiR-21 as a new circulating marker of inflammaging
    • Olivieri F, Spazzafumo L, Santini G, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012;133: 675-85.
    • (2012) Mech Ageing Dev , vol.133 , pp. 675-685
    • Olivieri, F.1    Spazzafumo, L.2    Santini, G.3
  • 172
    • 78650512343 scopus 로고    scopus 로고
    • Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans
    • Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 2011;412:66-70.
    • (2011) Clin Chim Acta , vol.412 , pp. 66-70
    • Li, T.1    Cao, H.2    Zhuang, J.3
  • 173
    • 84857975438 scopus 로고    scopus 로고
    • Microparticles: Major transport vehicles for distinct microRNAs in circulation
    • Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012;93:633-44.
    • (2012) Cardiovasc Res , vol.93 , pp. 633-644
    • Diehl, P.1    Fricke, A.2    Sander, L.3
  • 174
    • 80052008851 scopus 로고    scopus 로고
    • Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease
    • Cermelli S, Ruggieri A, Marrero JA, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 2011;6:e23937.
    • (2011) PLoS One , vol.6
    • Cermelli, S.1    Ruggieri, A.2    Marrero, J.A.3
  • 175
    • 84860906951 scopus 로고    scopus 로고
    • Plasma levels of lipometabolism- related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease
    • Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism- related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 2012;11:55. doi: 10.1186/1476-511X-11-55.
    • (2012) Lipids Health Dis , vol.11 , pp. 55
    • Gao, W.1    He, H.W.2    Wang, Z.M.3
  • 176
    • 77956378275 scopus 로고    scopus 로고
    • Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels
    • Takahashi Y, Satoh M, Minami Y, et al. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 2010;119:395-405.
    • (2010) Clin Sci (Lond) , vol.119 , pp. 395-405
    • Takahashi, Y.1    Satoh, M.2    Minami, Y.3
  • 177
    • 77957028990 scopus 로고    scopus 로고
    • Circulating microRNAs in patients with coronary artery disease
    • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010;107: 677-84.
    • (2010) Circ Res , vol.107 , pp. 677-684
    • Fichtlscherer, S.1    De Rosa, S.2    Fox, H.3
  • 178
    • 80052678985 scopus 로고    scopus 로고
    • MicroRNA expression profile in CAD patients and the impact of ACEI/ARB
    • Weber M, Baker MB, Patel RS, et al. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract 2011;2011:532915. doi: 10.4061/2011/532915.
    • (2011) Cardiol Res Pract , vol.2011 , pp. 532915
    • Weber, M.1    Baker, M.B.2    Patel, R.S.3
  • 179
    • 63849261167 scopus 로고    scopus 로고
    • Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease
    • Minami Y, Satoh M, Maesawa C, et al. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 2009;39:359-67.
    • (2009) Eur J Clin Invest , vol.39 , pp. 359-367
    • Minami, Y.1    Satoh, M.2    Maesawa, C.3
  • 180
    • 79551474502 scopus 로고    scopus 로고
    • Dysregulation of angiogenesisrelated microRNAs in endothelial progenitor cells from patients with coronary artery disease
    • Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesisrelated microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun 2011;405:42-6.
    • (2011) Biochem Biophys Res Commun , vol.405 , pp. 42-46
    • Zhang, Q.1    Kandic, I.2    Kutryk, M.J.3
  • 181
    • 84861567114 scopus 로고    scopus 로고
    • MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: Effect of statins on SIRT1 and microRNA-34a expression
    • Tabuchi T, Satoh M, Itoh T, Nakamura M. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci (Lond) 2012;123:161-71.
    • (2012) Clin Sci (Lond) , vol.123 , pp. 161-171
    • Tabuchi, T.1    Satoh, M.2    Itoh, T.3    Nakamura, M.4
  • 182
    • 84861852370 scopus 로고    scopus 로고
    • Are sirtuins viable targets for improving healthspan and lifespan?
    • Baur JA, Ungvari Z, Minor RK, et al. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012;11:443-61.
    • (2012) Nat Rev Drug Discov , vol.11 , pp. 443-461
    • Baur, J.A.1    Ungvari, Z.2    Minor, R.K.3
  • 183
    • 84888131014 scopus 로고    scopus 로고
    • Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT
    • Choi SE, Fu T, Seok S, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 2013;12:1062-72.
    • (2013) Aging Cell , vol.12 , pp. 1062-1072
    • Choi, S.E.1    Fu, T.2    Seok, S.3
  • 184
    • 84874700585 scopus 로고    scopus 로고
    • MicroRNA-34a regulates cardiac ageing and function
    • Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013;495: 107-10.
    • (2013) Nature , vol.495 , pp. 107-110
    • Boon, R.A.1    Iekushi, K.2    Lechner, S.3
  • 185
    • 84865310423 scopus 로고    scopus 로고
    • Circulating microRNA-126 in patients with coronary artery disease: Correlation with LDL cholesterol
    • Sun X, Zhang M, Sanagawa A, et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J 2012;10:16. doi: 10.1186/1477-9560-10-16.
    • (2012) Thromb J , vol.10 , pp. 16
    • Sun, X.1    Zhang, M.2    Sanagawa, A.3
  • 186
    • 48749122914 scopus 로고    scopus 로고
    • Circulating microRNAs as stable blood-based markers for cancer detection
    • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105:10513-18.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 10513-10518
    • Mitchell, P.S.1    Parkin, R.K.2    Kroh, E.M.3
  • 187
    • 84873080255 scopus 로고    scopus 로고
    • Circulating microRNAs in plasma as early detection markers for breast cancer
    • Cuk K, Zucknick M, Heil J, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 2013;132:1602-12.
    • (2013) Int J Cancer , vol.132 , pp. 1602-1612
    • Cuk, K.1    Zucknick, M.2    Heil, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.