-
1
-
-
17544382289
-
AdipoQ is a novel adipose-specific gene dysregulated in obesity
-
Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996;271:10697-10703
-
(1996)
J Biol Chem
, vol.271
, pp. 10697-10703
-
-
Hu, E.1
Liang, P.2
Spiegelman, B.M.3
-
2
-
-
0029980285
-
CDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1)
-
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221:286-289
-
(1996)
Biochem Biophys Res Commun
, vol.221
, pp. 286-289
-
-
Maeda, K.1
Okubo, K.2
Shimomura, I.3
Funahashi, T.4
Matsuzawa, Y.5
Matsubara, K.6
-
3
-
-
0029836585
-
Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma
-
Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 1996;120:803-812
-
(1996)
J Biochem
, vol.120
, pp. 803-812
-
-
Nakano, Y.1
Tobe, T.2
Choi-Miura, N.H.3
Mazda, T.4
Tomita, M.5
-
4
-
-
0028787490
-
A novel serum protein similar to C1q, produced exclusively in adipocytes
-
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270:26746-26749
-
(1995)
J Biol Chem
, vol.270
, pp. 26746-26749
-
-
Scherer, P.E.1
Williams, S.2
Fogliano, M.3
Baldini, G.4
Lodish, H.F.5
-
5
-
-
33745834319
-
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
-
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006;116:1784-1792
-
(2006)
J Clin Invest
, vol.116
, pp. 1784-1792
-
-
Kadowaki, T.1
Yamauchi, T.2
Kubota, N.3
Hara, K.4
Ueki, K.5
Tobe, K.6
-
6
-
-
15044356709
-
The role of the adipocyte hormone adiponectin in cardiovascular disease
-
Hug C, Lodish HF. The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol 2005;5:129-134
-
(2005)
Curr Opin Pharmacol
, vol.5
, pp. 129-134
-
-
Hug, C.1
Lodish, H.F.2
-
7
-
-
33744949934
-
Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: Associations with metabolic parameters and insulin resistance and regulation by physical training
-
Blüher M, Bullen JW Jr, Lee JH, et al. Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance and regulation by physical training. J Clin Endocrinol Metab 2006;91:2310-2316
-
(2006)
J Clin Endocrinol Metab
, vol.91
, pp. 2310-2316
-
-
Blüher, M.1
Bullen Jr., J.W.2
Lee, J.H.3
-
8
-
-
27744492082
-
Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat
-
Stefan N, Machicao F, Staiger H, et al. Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat. Diabetologia 2005;48:2282-2291
-
(2005)
Diabetologia
, vol.48
, pp. 2282-2291
-
-
Stefan, N.1
Machicao, F.2
Staiger, H.3
-
9
-
-
36749011973
-
Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise
-
Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: effects of exercise. Diabetes Metab Res Rev 2007;23:600-611
-
(2007)
Diabetes Metab Res Rev
, vol.23
, pp. 600-611
-
-
Vu, V.1
Riddell, M.C.2
Sweeney, G.3
-
10
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:762-769
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
-
11
-
-
33847733103
-
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
-
Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007;13:332-339
-
(2007)
Nat Med
, vol.13
, pp. 332-339
-
-
Yamauchi, T.1
Nio, Y.2
Maki, T.3
-
12
-
-
84866627407
-
Regulation and function of adiponectin receptors in skeletal muscle
-
Lustig Y, Hemi R, Kanety H. Regulation and function of adiponectin receptors in skeletal muscle. Vitam Horm 2012;90:95-123
-
(2012)
Vitam Horm
, vol.90
, pp. 95-123
-
-
Lustig, Y.1
Hemi, R.2
Kanety, H.3
-
13
-
-
0037059013
-
Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation
-
Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 2002;99:16309-16313
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 16309-16313
-
-
Tomas, E.1
Tsao, T.S.2
Saha, A.K.3
-
14
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-1295
-
(2002)
Nat Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
-
15
-
-
33750578279
-
Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha
-
Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 2006;55:2562-2570
-
(2006)
Diabetes
, vol.55
, pp. 2562-2570
-
-
Yoon, M.J.1
Lee, G.Y.2
Chung, J.J.3
Ahn, Y.H.4
Hong, S.H.5
Kim, J.B.6
-
16
-
-
84867792111
-
Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity
-
Patel SA, Hoehn KL, Lawrence RT, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology 2012;153:5231-5246
-
(2012)
Endocrinology
, vol.153
, pp. 5231-5246
-
-
Patel, S.A.1
Hoehn, K.L.2
Lawrence, R.T.3
-
17
-
-
77951872309
-
Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1
-
Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 2010;464:1313-1319
-
(2010)
Nature
, vol.464
, pp. 1313-1319
-
-
Iwabu, M.1
Yamauchi, T.2
Okada-Iwabu, M.3
-
18
-
-
78651260799
-
Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
-
Holland WL, Miller RA, Wang ZV, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 2011;17:55-63
-
(2011)
Nat Med
, vol.17
, pp. 55-63
-
-
Holland, W.L.1
Miller, R.A.2
Wang, Z.V.3
-
19
-
-
79952411766
-
Differential expression of novel adiponectin receptor-1 transcripts in skeletal muscle of subjects with normal glucose tolerance and type 2 diabetes
-
Ashwal R, Hemi R, Tirosh A, et al. Differential expression of novel adiponectin receptor-1 transcripts in skeletal muscle of subjects with normal glucose tolerance and type 2 diabetes. Diabetes 2011;60:936-946
-
(2011)
Diabetes
, vol.60
, pp. 936-946
-
-
Ashwal, R.1
Hemi, R.2
Tirosh, A.3
-
20
-
-
82355163689
-
Translational control mechanisms in metabolic regulation: Critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules
-
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011;301:E1051-E1064
-
(2011)
Am J Physiol Endocrinol Metab
, vol.301
-
-
Adeli, K.1
-
21
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-233
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
22
-
-
84858779743
-
Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs
-
Gorospe M, Tominaga K, Wu X, Fähling M, Ivan M. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. Front Mol Neurosci 2011;4:7
-
(2011)
Front Mol Neurosci
, vol.4
, pp. 7
-
-
Gorospe, M.1
Tominaga, K.2
Wu, X.3
Fähling, M.4
Ivan, M.5
-
23
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-653
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
Hausser, J.2
Soutschek, J.3
-
24
-
-
79953317808
-
Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
-
Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011;13:434-446
-
(2011)
Nat Cell Biol
, vol.13
, pp. 434-446
-
-
Jordan, S.D.1
Krüger, M.2
Willmes, D.M.3
-
25
-
-
84874715061
-
Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b
-
Kornfeld JW, Baitzel C, Könner AC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013;494:111-115
-
(2013)
Nature
, vol.494
, pp. 111-115
-
-
Kornfeld, J.W.1
Baitzel, C.2
Könner, A.C.3
-
26
-
-
33744972277
-
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
-
Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 2006;8: 516-523
-
(2006)
Nat Cell Biol
, vol.8
, pp. 516-523
-
-
Mao, X.1
Kikani, C.K.2
Riojas, R.A.3
-
27
-
-
0036351379
-
Ribonomics: Identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays
-
Tenenbaum SA, Lager PJ, Carson CC, Keene JD. Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 2002;26:191-198
-
(2002)
Methods
, vol.26
, pp. 191-198
-
-
Tenenbaum, S.A.1
Lager, P.J.2
Carson, C.C.3
Keene, J.D.4
-
28
-
-
79953172583
-
P38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: A novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance
-
Hemi R, Yochananov Y, Barhod E, et al. p38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: a novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance. Diabetes 2011;60:1134-1145
-
(2011)
Diabetes
, vol.60
, pp. 1134-1145
-
-
Hemi, R.1
Yochananov, Y.2
Barhod, E.3
-
29
-
-
84872775027
-
Translational control by 39-UTR-binding proteins
-
Szostak E, Gebauer F. Translational control by 39-UTR-binding proteins. Brief Funct Genomics 2013;12:58-65
-
(2013)
Brief Funct Genomics
, vol.12
, pp. 58-65
-
-
Szostak, E.1
Gebauer, F.2
-
30
-
-
84857926424
-
Polypyrimidine tract binding protein (hnRNP I) is possibly a conserved modulator of miRNA-mediated gene regulation
-
Engels B, Jannot G, Remenyi J, Simard MJ, Hutvagner G. Polypyrimidine tract binding protein (hnRNP I) is possibly a conserved modulator of miRNA-mediated gene regulation. PLoS ONE 2012;7:e33144
-
(2012)
PLoS ONE
, vol.7
-
-
Engels, B.1
Jannot, G.2
Remenyi, J.3
Simard, M.J.4
Hutvagner, G.5
-
31
-
-
84872601985
-
Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits
-
Xue Y, Ouyang K, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 2013;152:82-96
-
(2013)
Cell
, vol.152
, pp. 82-96
-
-
Xue, Y.1
Ouyang, K.2
Huang, J.3
-
32
-
-
70449558856
-
Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells
-
Cardinali B, Castellani L, Fasanaro P, et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS ONE 2009;4:e7607
-
(2009)
PLoS ONE
, vol.4
-
-
Cardinali, B.1
Castellani, L.2
Fasanaro, P.3
-
33
-
-
2942594755
-
Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes
-
Civitarese AE, Jenkinson CP, Richardson D, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia 2004;47: 816-820
-
(2004)
Diabetologia
, vol.47
, pp. 816-820
-
-
Civitarese, A.E.1
Jenkinson, C.P.2
Richardson, D.3
-
34
-
-
79960912411
-
Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: Evidence for altered adiponectin signalling
-
Holmes RM, Yi Z, De Filippis E, et al. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signalling. Diabetologia 2011; 54:2122-2131
-
(2011)
Diabetologia
, vol.54
, pp. 2122-2131
-
-
Holmes, R.M.1
Yi, Z.2
De Filippis, E.3
-
36
-
-
44949112526
-
Adiponectin receptors: Expression in Zucker diabetic rats and effects of fenofibrate and metformin
-
Metais C, Forcheron F, Abdallah P, et al. Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism 2008;57:946-953
-
(2008)
Metabolism
, vol.57
, pp. 946-953
-
-
Metais, C.1
Forcheron, F.2
Abdallah, P.3
-
37
-
-
3142701401
-
Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity
-
Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004;279:30817-30822
-
(2004)
J Biol Chem
, vol.279
, pp. 30817-30822
-
-
Tsuchida, A.1
Yamauchi, T.2
Ito, Y.3
-
38
-
-
84862679962
-
Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2
-
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012;47:360-378
-
(2012)
Crit Rev Biochem Mol Biol
, vol.47
, pp. 360-378
-
-
Keppetipola, N.1
Sharma, S.2
Li, Q.3
Black, D.L.4
-
39
-
-
49349112872
-
Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein
-
Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 2008; 36:641-647
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 641-647
-
-
Sawicka, K.1
Bushell, M.2
Spriggs, K.A.3
Willis, A.E.4
-
40
-
-
79956217935
-
RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing
-
Lin JC, Tarn WY. RBM4 down-regulates PTB and antagonizes its activity in muscle cell-specific alternative splicing. J Cell Biol 2011;193:509-520
-
(2011)
J Cell Biol
, vol.193
, pp. 509-520
-
-
Lin, J.C.1
Tarn, W.Y.2
-
41
-
-
33846135109
-
MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development
-
Boutz PL, Chawla G, Stoilov P, Black DL. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007;21:71-84
-
(2007)
Genes Dev
, vol.21
, pp. 71-84
-
-
Boutz, P.L.1
Chawla, G.2
Stoilov, P.3
Black, D.L.4
-
42
-
-
80052041185
-
MicroRNA regulation by RNAbinding proteins and its implications for cancer
-
van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNAbinding proteins and its implications for cancer. Nat Rev Cancer 2011;11: 644-656
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 644-656
-
-
Van Kouwenhove, M.1
Kedde, M.2
Agami, R.3
-
43
-
-
68149165414
-
HuR recruits let-7/RISC to repress c-Myc expression
-
Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009;23: 1743-1748
-
(2009)
Genes Dev
, vol.23
, pp. 1743-1748
-
-
Kim, H.H.1
Kuwano, Y.2
Srikantan, S.3
Lee, E.K.4
Martindale, J.L.5
Gorospe, M.6
-
44
-
-
84873324067
-
Adiponectin receptors form homomers and heteromers exhibiting distinct ligand binding and intracellular signaling properties
-
Almabouada F, Diaz-Ruiz A, Rabanal-Ruiz Y, Peinado JR, Vazquez-Martinez R, Malagon MM. Adiponectin receptors form homomers and heteromers exhibiting distinct ligand binding and intracellular signaling properties. J Biol Chem 2013;288:3112-3125
-
(2013)
J Biol Chem
, vol.288
, pp. 3112-3125
-
-
Almabouada, F.1
Diaz-Ruiz, A.2
Rabanal-Ruiz, Y.3
Peinado, J.R.4
Vazquez-Martinez, R.5
Malagon, M.M.6
-
45
-
-
70450265225
-
Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells
-
Wang C, Xin X, Xiang R, et al. Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J Biol Chem 2009;284:31608-31615
-
(2009)
J Biol Chem
, vol.284
, pp. 31608-31615
-
-
Wang, C.1
Xin, X.2
Xiang, R.3
-
47
-
-
70349393847
-
Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
-
Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009;50:1756-1765
-
(2009)
J Lipid Res
, vol.50
, pp. 1756-1765
-
-
Li, S.1
Chen, X.2
Zhang, H.3
-
48
-
-
84881614241
-
Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF - A
-
Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-a. Diabetologia 2013;56:1971-1979
-
(2013)
Diabetologia
, vol.56
, pp. 1971-1979
-
-
Meerson, A.1
Traurig, M.2
Ossowski, V.3
Fleming, J.M.4
Mullins, M.5
Baier, L.J.6
-
49
-
-
84878881786
-
MiR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer
-
Hwang MS, Yu N, Stinson SY, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS ONE 2013;8:e66502
-
(2013)
PLoS ONE
, vol.8
-
-
Hwang, M.S.1
Yu, N.2
Stinson, S.Y.3
|