메뉴 건너뛰기




Volumn 6, Issue 2, 2012, Pages 238-245

Determination of the principal factors of river water quality through cluster analysis method and its prediction

Author keywords

artificial neural network; cluster analysis method; principal factor; water quality forecast

Indexed keywords


EID: 84857896629     PISSN: 16737415     EISSN: 16737520     Source Type: Journal    
DOI: 10.1007/s11783-011-0382-7     Document Type: Article
Times cited : (6)

References (35)
  • 3
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-a case study
    • Singh K P, Basant A, Malik A, Jain G. Artificial neural network modeling of the river water quality-a case study. Ecological Modelling, 2009, 220(6): 888-895.
    • (2009) Ecological Modelling , vol.220 , Issue.6 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 4
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H R, Jain A, Dandy G C, Sudheer K PKPS. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling & Software, 2010, 25(8): 891-909.
    • (2010) Environmental Modelling & Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.K.P.S.4
  • 5
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural network (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner MW, Dorling S R. Artificial neural network (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric Environment, 1998, 32(14-15): 2627-2636.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 6
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers L L, Dowla F U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research, 1994, 30(2): 457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 8
    • 0031908080 scopus 로고    scopus 로고
    • A neural network approach to multiobjective optimization for water quality management in a river basin
    • Wen C W, Lee C S. A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resources Research, 1998, 34(3): 427-436.
    • (1998) Water Resources Research , vol.34 , Issue.3 , pp. 427-436
    • Wen, C.W.1    Lee, C.S.2
  • 9
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S, Guegan J F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling, 1999, 120(2-3): 65-73.
    • (1999) Ecological Modelling , vol.120 , Issue.2-3 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 10
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo YM, Liu CW, Lin K H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Research, 2004, 38(1): 148-158.
    • (2004) Water Research , vol.38 , Issue.1 , pp. 148-158
    • Kuo, Y.M.1    Liu, C.W.2    Lin, K.H.3
  • 11
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E, Sengorur B, Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management, 2009, 90(2): 1229-1235.
    • (2009) Journal of Environmental Management , vol.90 , Issue.2 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 13
    • 64049085359 scopus 로고    scopus 로고
    • A proximate dynamics model for data mining
    • Yin Y F. A proximate dynamics model for data mining. Expert Systems with Applications, 2009, 36(6): 9819-9833.
    • (2009) Expert Systems with Applications , vol.36 , Issue.6 , pp. 9819-9833
    • Yin, Y.F.1
  • 15
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • Holger R M, Nicolas M, Maier H, Christopher W K C. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling & Software, 2004, 19(5): 485-494.
    • (2004) Environmental Modelling & Software , vol.19 , Issue.5 , pp. 485-494
    • Holger, R.M.1    Nicolas, M.2    Maier, H.3    Christopher, W.K.C.4
  • 16
    • 0037441163 scopus 로고    scopus 로고
    • Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks
    • Grishma R S, Heidar M, Shankararaman C. Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. Journal of Membrane Science, 2003, 212(1-2): 99-112.
    • (2003) Journal of Membrane Science , vol.212 , Issue.1-2 , pp. 99-112
    • Grishma, R.S.1    Heidar, M.2    Shankararaman, C.3
  • 18
    • 0037389847 scopus 로고    scopus 로고
    • Integration of data mining techniques and heuristic knowledge in fuzzy logic modeling of eutrophication in Taihu Lake
    • Chen Q W, Chen Q, Mynett A E, Arthur E M. Integration of data mining techniques and heuristic knowledge in fuzzy logic modeling of eutrophication in Taihu Lake. Ecological Modelling, 2003, 162(1-2): 55-67.
    • (2003) Ecological Modelling , vol.162 , Issue.1-2 , pp. 55-67
    • Chen, Q.W.1    Chen, Q.2    Mynett, A.E.3    Arthur, E.M.4
  • 19
    • 33750532572 scopus 로고    scopus 로고
    • A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis
    • Yang Y B, Lin H, Guo Z Y, Jiang J X. A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis. Computers & Geosciences, 2007, 33(1): 20-30.
    • (2007) Computers & Geosciences , vol.33 , Issue.1 , pp. 20-30
    • Yang, Y.B.1    Lin, H.2    Guo, Z.Y.3    Jiang, J.X.4
  • 20
    • 36048961066 scopus 로고    scopus 로고
    • Toward a hybrid data mining model for customer retention
    • Chu B H, Tsai M S, Ho C S. Toward a hybrid data mining model for customer retention. Knowledge-Based Systems, 2007, 20(8): 703-718.
    • (2007) Knowledge-Based Systems , vol.20 , Issue.8 , pp. 703-718
    • Chu, B.H.1    Tsai, M.S.2    Ho, C.S.3
  • 23
    • 77949315432 scopus 로고    scopus 로고
    • Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran)
    • Razmkhah H, Abrishamchi A, Torkian A. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). Journal of Environmental Management, 2010, 91(4): 852-860.
    • (2010) Journal of Environmental Management , vol.91 , Issue.4 , pp. 852-860
    • Razmkhah, H.1    Abrishamchi, A.2    Torkian, A.3
  • 24
    • 58649098773 scopus 로고    scopus 로고
    • Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material
    • Chang Q L, Zhou H Q, Hou C J. Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material. Journal of China University of Mining and Technology, 2008, 18(4): 551-555.
    • (2008) Journal of China University of Mining and Technology , vol.18 , Issue.4 , pp. 551-555
    • Chang, Q.L.1    Zhou, H.Q.2    Hou, C.J.3
  • 25
    • 71349088571 scopus 로고    scopus 로고
    • The practical research on flood forecasting based on artificial neural networks
    • Feng L H, Lu J. The practical research on flood forecasting based on artificial neural networks. Expert Systems with Applications, 2010, 37(4): 2974-2977.
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 2974-2977
    • Feng, L.H.1    Lu, J.2
  • 26
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani S, Liong S Y, Tkalich P. An ANN application for water quality forecasting. Marine Pollution Bulletin, 2008, 56(9): 1586-1597.
    • (2008) Marine Pollution Bulletin , vol.56 , Issue.9 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 27
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the Greater Area of Athens, Greece
    • 10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 2006, 40(7): 1216-1229.
    • (2006) Atmospheric Environment , vol.40 , Issue.7 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 28
    • 0037128648 scopus 로고    scopus 로고
    • Application of artificial neural networks in tideforecasting
    • Lee T L, Jeng D S. Application of artificial neural networks in tideforecasting. Ocean Engineering, 2002, 29(9): 1003-1022.
    • (2002) Ocean Engineering , vol.29 , Issue.9 , pp. 1003-1022
    • Lee, T.L.1    Jeng, D.S.2
  • 29
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C E, Durucan S, Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology (Amsterdam), 2000, 233(1-4): 138-153.
    • (2000) Journal of Hydrology (Amsterdam) , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 30
    • 38949173082 scopus 로고    scopus 로고
    • Source tracking of microbial intrusion in water systems using artificial neural networks
    • Kim M, Choi C Y, Gerba C P. Source tracking of microbial intrusion in water systems using artificial neural networks. Water Research, 2008, 42(4-5): 1308-1314.
    • (2008) Water Research , vol.42 , Issue.4-5 , pp. 1308-1314
    • Kim, M.1    Choi, C.Y.2    Gerba, C.P.3
  • 31
    • 8144223855 scopus 로고    scopus 로고
    • Neural network model for the prediction of wave-induced liquefaction potential
    • Jeng D S, Daeho C, Michael B. Neural network model for the prediction of wave-induced liquefaction potential. Ocean Engineering, 2004, 31(17-18): 2073-2086.
    • (2004) Ocean Engineering , vol.31 , Issue.17-18 , pp. 2073-2086
    • Jeng, D.S.1    Daeho, C.2    Michael, B.3
  • 33
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 1993, 6(4): 525-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 34
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology (Amsterdam), 2010, 390(1-2): 85-91.
    • (2010) Journal of Hydrology (Amsterdam) , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 35
    • 52949094240 scopus 로고    scopus 로고
    • Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm
    • Tsai M J, Li C H, Chen C C. Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. Journal of Materials Processing Technology, 2008, 208(1-3): 270-283.
    • (2008) Journal of Materials Processing Technology , vol.208 , Issue.1-3 , pp. 270-283
    • Tsai, M.J.1    Li, C.H.2    Chen, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.