메뉴 건너뛰기




Volumn 40, Issue 7, 2006, Pages 1367-1376

A hybrid neural-genetic algorithm for reservoir water quality management

Author keywords

Artificial neural networks; Feitsui Reservoir; Genetic algorithms; Nutrient model; Total phosphorus; Water quality management

Indexed keywords

COMPUTER SIMULATION; CONCENTRATION (PROCESS); MATHEMATICAL MODELS; NEURAL NETWORKS; PHOSPHORUS; RESERVOIRS (WATER); WATER QUALITY;

EID: 33645130069     PISSN: 00431354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.watres.2006.01.046     Document Type: Article
Times cited : (100)

References (20)
  • 1
    • 0034804080 scopus 로고    scopus 로고
    • Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality
    • P.A. Aguilera, A.G. Frenich, J.A. Torres, H. Castro, J.L.M. Vidal, and M. Canton Application of the Kohonen neural network in coastal water management: methodological development for the assessment and prediction of water quality Water Res. 35 17 2001 4053 4062
    • (2001) Water Res. , vol.35 , Issue.17 , pp. 4053-4062
    • Aguilera, P.A.1    Frenich, A.G.2    Torres, J.A.3    Castro, H.4    Vidal, J.L.M.5    Canton, M.6
  • 3
    • 0034847598 scopus 로고    scopus 로고
    • A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • D.J. Choi, and H. Park A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process Water Res. 35 16 2001 3959 3967
    • (2001) Water Res. , vol.35 , Issue.16 , pp. 3959-3967
    • Choi, D.J.1    Park, H.2
  • 6
    • 0036027497 scopus 로고    scopus 로고
    • Neural network modeling of salinity variation in Apalachicola River
    • W.R. Huang, and S. Foo Neural network modeling of salinity variation in Apalachicola River Water Res. 36 1 2002 356 362
    • (2002) Water Res. , vol.36 , Issue.1 , pp. 356-362
    • Huang, W.R.1    Foo, S.2
  • 8
    • 0034735692 scopus 로고    scopus 로고
    • Case-studies on the use of neural networks in eutrophication modeling
    • C. Karul, S. Soyupak, A.F. Cilesiz, N. Akbay, and E. Germen Case-studies on the use of neural networks in eutrophication modeling Ecol. Model. 134 2000 145 152
    • (2000) Ecol. Model. , vol.134 , pp. 145-152
    • Karul, C.1    Soyupak, S.2    Cilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 9
    • 0025918920 scopus 로고
    • A nutrient model for a lake with time-variable volumes
    • J.T. Kuo, and J.H. Wu A nutrient model for a lake with time-variable volumes Water Sci. Technol. 24 6 1991 133 139
    • (1991) Water Sci. Technol. , vol.24 , Issue.6 , pp. 133-139
    • Kuo, J.T.1    Wu, J.H.2
  • 11
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environ. Model. Software 15 1 2000 101 124
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 12
    • 0023509623 scopus 로고
    • Hypolimnetic withdrawal as lake restoration technique
    • G.K. Nurnberg Hypolimnetic withdrawal as lake restoration technique J. Environ. Eng.-ASCE 113 5 1987 1006 1017
    • (1987) J. Environ. Eng.-ASCE , vol.113 , Issue.5 , pp. 1006-1017
    • Nurnberg, G.K.1
  • 13
    • 0036518974 scopus 로고    scopus 로고
    • Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm
    • P. Srivastava, J.M. Hamlett, P.D. Robillard, and R.L. Day Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm Water Resour. Res. 38 3 2002
    • (2002) Water Resour. Res. , vol.38 , Issue.3
    • Srivastava, P.1    Hamlett, J.M.2    Robillard, P.D.3    Day, R.L.4
  • 15
    • 0042360550 scopus 로고    scopus 로고
    • Application of the genetic algorithm for optimizing operation rules of the LiYuTan Reservoir in Taiwan
    • C.P. Tung, S.Y. Hsu, C.M. Liu, and J.S. Li Application of the genetic algorithm for optimizing operation rules of the LiYuTan Reservoir in Taiwan J. Am. Water Resour. Assoc. 39 3 2003 649 657
    • (2003) J. Am. Water Resour. Assoc. , vol.39 , Issue.3 , pp. 649-657
    • Tung, C.P.1    Hsu, S.Y.2    Liu, C.M.3    Li, J.S.4
  • 16
    • 1642564505 scopus 로고    scopus 로고
    • Optimization procedure for cost effective BMP placement at a watershed scale
    • T.L. Veith, M.L. Wolfe, and C.D. Heatwole Optimization procedure for cost effective BMP placement at a watershed scale J. Am. Water Resour. Assoc. 39 6 2003 1331 1343
    • (2003) J. Am. Water Resour. Assoc. , vol.39 , Issue.6 , pp. 1331-1343
    • Veith, T.L.1    Wolfe, M.L.2    Heatwole, C.D.3
  • 17
    • 51649171477 scopus 로고
    • Input-output models with special reference to the phosphorous loading concept in limnology
    • R.A. Vollenweider Input-output models with special reference to the phosphorous loading concept in limnology Schweiz. Z. Hydrol. 37 1975 53 83
    • (1975) Schweiz. Z. Hydrol. , vol.37 , pp. 53-83
    • Vollenweider, R.A.1
  • 18
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialization of connections
    • L.F.A. Wessels, and E. Barnard Avoiding false local minima by proper initialization of connections IEEE Trans. Neural Netw. 3 6 1992 899 905
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.6 , pp. 899-905
    • Wessels, L.F.A.1    Barnard, E.2
  • 19
    • 0035672573 scopus 로고    scopus 로고
    • Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes
    • H. Wilson, and F. Recknagel Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes Ecol. Model. 146 1-3 2001 69 84
    • (2001) Ecol. Model. , vol.146 , Issue.1-3 , pp. 69-84
    • Wilson, H.1    Recknagel, F.2
  • 20
    • 16444377510 scopus 로고    scopus 로고
    • Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty
    • R. Zou, W.S. Lung, and H.C. Guo Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty J. Comput. Civ. Eng. 16 2 2002 135 142
    • (2002) J. Comput. Civ. Eng. , vol.16 , Issue.2 , pp. 135-142
    • Zou, R.1    Lung, W.S.2    Guo, H.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.