메뉴 건너뛰기




Volumn 26, Issue 8, 2012, Pages 2365-2382

Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes

Author keywords

Bayesian model averaging; Bayesian neural networks; Evolutionary Monte Carlo; Hydrologic modeling; Streamflow; Uncertainty

Indexed keywords

BAYESIAN MODEL AVERAGING; BAYESIAN NEURAL NETWORKS; HYDROLOGIC MODELING; MONTE CARLO; UNCERTAINTY;

EID: 84862789349     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-012-0021-5     Document Type: Article
Times cited : (25)

References (46)
  • 1
    • 33748942107 scopus 로고    scopus 로고
    • Multi-model combination techniques for hydrological forecasting: application to distributed model intercomparison project results
    • Ajami K, Duan Q, Gao X, Sorooshian S (2006) Multi-model combination techniques for hydrological forecasting: application to distributed model intercomparison project results. J Hydrometeor 8: 755-768.
    • (2006) J Hydrometeor , vol.8 , pp. 755-768
    • Ajami, K.1    Duan, Q.2    Gao, X.3    Sorooshian, S.4
  • 2
    • 84755161811 scopus 로고    scopus 로고
    • Feasibility assessment of data driven models in predicting pollution trends of Omerli Lake, Turkey
    • Akkoyunlu A, Akiner ME (2010) Feasibility assessment of data driven models in predicting pollution trends of Omerli Lake, Turkey. Water Resour Manag 24(13): 3419-3436.
    • (2010) Water Resour Manag , vol.24 , Issue.13 , pp. 3419-3436
    • Akkoyunlu, A.1    Akiner, M.E.2
  • 3
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • Aqil M, Kita I, Yano A, Nishiyama S (2007) Neural networks for real time catchment flow modeling and prediction. Water Resour Manag 21(10): 1781-1796.
    • (2007) Water Resour Manag , vol.21 , Issue.10 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J Hydrol Eng 5(2): 124-137.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 77957714558 scopus 로고    scopus 로고
    • Spatial information-based back-propagation neural network modeling for outflow estimation of ungauged catchment
    • Chen C, Chou FN, Chen BP (2010) Spatial information-based back-propagation neural network modeling for outflow estimation of ungauged catchment. Water Resour Manage 24(14): 4175-4197.
    • (2010) Water Resour Manage , vol.24 , Issue.14 , pp. 4175-4197
    • Chen, C.1    Chou, F.N.2    Chen, B.P.3
  • 8
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30(5): 1371-1386.
    • (2007) Adv Water Resour , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 11
    • 78751576467 scopus 로고    scopus 로고
    • Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eǧirdir Lake Level Forecasting
    • Güldal V, Tongal H (2010) Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eǧirdir Lake Level Forecasting. Water Resour Manage 24(1): 105-128.
    • (2010) Water Resour Manage , vol.24 , Issue.1 , pp. 105-128
    • Güldal, V.1    Tongal, H.2
  • 12
    • 0034292468 scopus 로고    scopus 로고
    • Decomposition of the continuous ranked probability score for Ensembler Prediction Systems
    • Hersbach H (2000) Decomposition of the continuous ranked probability score for Ensembler Prediction Systems. Weather Forecast 15(5): 559-570.
    • (2000) Weather Forecast , vol.15 , Issue.5 , pp. 559-570
    • Hersbach, H.1
  • 14
    • 0032382838 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in practice: a roundtable discussion
    • Kass RE, Carlin BP, Gelman A, Neal RM (1998) Markov chain Monte Carlo in practice: a roundtable discussion. Am Stat 52(2): 93-100.
    • (1998) Am Stat , vol.52 , Issue.2 , pp. 93-100
    • Kass, R.E.1    Carlin, B.P.2    Gelman, A.3    Neal, R.M.4
  • 15
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski D, Kuczera G, Franks SW (2006) Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res 42: W03407. doi: 10. 1029/2005WR004368.
    • (2006) Water Resour Res , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 16
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • doi:10.1029/2005WR003971
    • Khan MS, Coulibaly P (2006) Bayesian neural network for rainfall-runoff modeling. Water Resour Res 42: W07409. doi: 10. 1029/2005WR003971.
    • (2006) Water Resour Res , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 17
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • doi:10.1029/2005WR004152
    • Kingston GB, Lambert MF, Maier HR (2005) Bayesian training of artificial neural networks used for water resources modeling. Water Resour Res 41: W12409. doi: 10. 1029/2005WR004152.
    • (2005) Water Resour Res , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 18
    • 34248166114 scopus 로고    scopus 로고
    • Verification tools for probabilistic forecasts of continuous hydrological variables
    • Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11: 1267-1277.
    • (2007) Hydrol Earth Syst Sci , vol.11 , pp. 1267-1277
    • Laio, F.1    Tamea, S.2
  • 19
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks-reviews and case studies
    • Lampinen J, Vehtari A (2001) Bayesian approach for neural networks-reviews and case studies. Neural Netw 14(3): 7-24.
    • (2001) Neural Netw , vol.14 , Issue.3 , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 20
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation
    • Legates DR, McCabe GJ (1999) Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1): 233-241.
    • (1999) Water Resour Res , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 21
    • 15244355385 scopus 로고    scopus 로고
    • Bayesian neural networks for non-linear time series forecasting
    • Liang F (2005) Bayesian neural networks for non-linear time series forecasting. Stat Comput 15: 13-29.
    • (2005) Stat Comput , vol.15 , pp. 13-29
    • Liang, F.1
  • 22
    • 1542573405 scopus 로고    scopus 로고
    • Real-parameter evolutionary sampling with applications in Bayesian Mixture Models
    • Liang F, Wong WH (2001) Real-parameter evolutionary sampling with applications in Bayesian Mixture Models. J Am Stat Assoc 96: 653-666.
    • (2001) J Am Stat Assoc , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Software 15: 101-123.
    • (2000) Environ Model Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0016961866 scopus 로고
    • Scoring rules for continuous probability distributions
    • Matheson JE, Winkler RL (1976) Scoring rules for continuous probability distributions. Manage Sci 22: 1087-1095.
    • (1976) Manage Sci , vol.22 , pp. 1087-1095
    • Matheson, J.E.1    Winkler, R.L.2
  • 25
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India
    • Mohanty S, Jha MK, Kumar A, Sudheer KP (2010) Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India. Water Resour Manage 24(9): 1845-1865.
    • (2010) Water Resour Manage , vol.24 , Issue.9 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 26
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian analysis of neural network models
    • Müller P, Insua DR (1998) Issues in Bayesian analysis of neural network models. Neural Comput 10: 749-770.
    • (1998) Neural Comput , vol.10 , pp. 749-770
    • Müller, P.1    Insua, D.R.2
  • 29
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Rezaeian Zadeh M, Amin S, Khalili D, Singh VP (2010) Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour Manage 24(11): 2673-2688.
    • (2010) Water Resour Manage , vol.24 , Issue.11 , pp. 2673-2688
    • Rezaeian Zadeh, M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 30
    • 77955056109 scopus 로고    scopus 로고
    • Simulation-optimization modeling of conjunctive use of surface water and groundwater
    • Safavi HR, Darzi F, Marino MA (2010) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manage 24(10): 1965-1988.
    • (2010) Water Resour Manage , vol.24 , Issue.10 , pp. 1965-1988
    • Safavi, H.R.1    Darzi, F.2    Marino, M.A.3
  • 32
    • 0031146669 scopus 로고    scopus 로고
    • Rainfall-streamflow relations for coastal plain watersheds
    • Sheridan JM (1997) Rainfall-streamflow relations for coastal plain watersheds. Trans ASAE 13(3): 333-344.
    • (1997) Trans ASAE , vol.13 , Issue.3 , pp. 333-344
    • Sheridan, J.M.1
  • 33
    • 77952290338 scopus 로고    scopus 로고
    • A comparative study of daily pan evaporation estimation using ANN, regression and climate based models
    • Shirsath PB, Singh AK (2010) A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour Manage 24(8): 1571-1581.
    • (2010) Water Resour Manage , vol.24 , Issue.8 , pp. 1571-1581
    • Shirsath, P.B.1    Singh, A.K.2
  • 34
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P, Deo MC (2007) Suitability of different neural networks in daily flow forecasting. Appl Soft Comput 7: 968-978.
    • (2007) Appl Soft Comput , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 35
    • 77955055812 scopus 로고    scopus 로고
    • Estimation of mean annual flood in indian catchments using backpropagation neural network and M5 model tree
    • Singh KK, Pal M, Singh VP (2010) Estimation of mean annual flood in indian catchments using backpropagation neural network and M5 model tree. Water Resour Manage 24(10): 2007-2019.
    • (2010) Water Resour Manage , vol.24 , Issue.10 , pp. 2007-2019
    • Singh, K.K.1    Pal, M.2    Singh, V.P.3
  • 36
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis
    • doi:10.1029/2008WR006825
    • Thyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45: W00B14. doi: 10. 1029/2008WR006825.
    • (2009) Water Resour Res , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 37
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging
    • doi:10.1029/2005WR004838
    • Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43: W01411. doi: 10. 1029/2005WR004838.
    • (2007) Water Resour Res , vol.43
    • Vrugt, J.A.1    Robinson, B.A.2
  • 38
    • 77955771138 scopus 로고    scopus 로고
    • Simulation with RBF neural network model for reservoir operation rules
    • Wang Y, Change J, Huang Q (2010) Simulation with RBF neural network model for reservoir operation rules. Water Resour Manage 24(11): 2597-2610.
    • (2010) Water Resour Manage , vol.24 , Issue.11 , pp. 2597-2610
    • Wang, Y.1    Change, J.2    Huang, Q.3
  • 39
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3): 753-762.
    • (2000) Water Resour Res , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 40
    • 68749088818 scopus 로고    scopus 로고
    • GIS-based spatial precipitation estimation: a comparison of geostatistical approaches
    • Zhang X, Srinivasan R (2009) GIS-based spatial precipitation estimation: a comparison of geostatistical approaches. J Am Water Resour Assoc 45(4): 894-906.
    • (2009) J Am Water Resour Assoc , vol.45 , Issue.4 , pp. 894-906
    • Zhang, X.1    Srinivasan, R.2
  • 41
    • 80054697441 scopus 로고    scopus 로고
    • GIS-based spatial precipitation estimation using next generation radar and raingauge data
    • Zhang X, Srinivasan R (2010) GIS-based spatial precipitation estimation using next generation radar and raingauge data. Environ Model Softw 25(12): 81-1788.
    • (2010) Environ Model Softw , vol.25 , Issue.12 , pp. 81-1788
    • Zhang, X.1    Srinivasan, R.2
  • 42
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • doi: 10. 1029/2008WR007030
    • Zhang X, Liang F, Srinivasan R, van Liew M (2009a) Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour Res. doi: 10. 1029/2008WR007030.
    • (2009) Water Resour Res
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    van Liew, M.4
  • 43
    • 68349108137 scopus 로고    scopus 로고
    • Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging
    • doi: 10. 1016/j. jhydrol. 2009. 06. 023
    • Zhang X, Srinivasan R, Bosch D (2009b) Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. J Hydrol. doi: 10. 1016/j. jhydrol. 2009. 06. 023.
    • (2009) J Hydrol.
    • Zhang, X.1    Srinivasan, R.2    Bosch, D.3
  • 44
    • 61749101619 scopus 로고    scopus 로고
    • Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
    • Zhang X, Srinivasan R, Zhao K, van Liew M (2009c) Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Process 23(3): 430-441.
    • (2009) Hydrol Process , vol.23 , Issue.3 , pp. 430-441
    • Zhang, X.1    Srinivasan, R.2    Zhao, K.3    van Liew, M.4
  • 45
    • 80054678981 scopus 로고    scopus 로고
    • Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting
    • Zhang X, Liang F, Yu B, Zong Z (2011) Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J Hydrol 409(3-4): 696-709.
    • (2011) J Hydrol , vol.409 , Issue.3-4 , pp. 696-709
    • Zhang, X.1    Liang, F.2    Yu, B.3    Zong, Z.4
  • 46
    • 55349107801 scopus 로고    scopus 로고
    • Bayesian learning with Gaussian processes for supervised classification of hyperspectral data
    • Zhao K, Popescu S, Zhang X (2008) Bayesian learning with Gaussian processes for supervised classification of hyperspectral data. Photogramm Eng Remote Sens 74: 1223-1234.
    • (2008) Photogramm Eng Remote Sens , vol.74 , pp. 1223-1234
    • Zhao, K.1    Popescu, S.2    Zhang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.