메뉴 건너뛰기




Volumn 499, Issue , 2013, Pages 275-288

Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations

Author keywords

Ensemble; Optimization; Prediction interval; Rainfall runoff models

Indexed keywords

ENSEMBLE; ENSEMBLE OF MODELS; ENSEMBLE PREDICTION; ENSEMBLE SIMULATION; PREDICTION INTERVAL; RAINFALL-RUNOFF MODELS; RESIDUAL VARIANCE; TWO STAGE OPTIMIZATIONS;

EID: 84881236620     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.06.043     Document Type: Article
Times cited : (81)

References (61)
  • 3
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami N.K., Duan Q., Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43:W01403. 10.1029/2005WR004745.
    • (2007) Water Resour. Res. , vol.43
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 4
    • 78650584376 scopus 로고    scopus 로고
    • Fuzzy neural networks for water level and discharge forecasting with uncertainty
    • Alvisi S., Franchini M. Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Modell. Softw. 2011, 26(4):523-537.
    • (2011) Environ. Modell. Softw. , vol.26 , Issue.4 , pp. 523-537
    • Alvisi, S.1    Franchini, M.2
  • 5
    • 80052021232 scopus 로고    scopus 로고
    • Application of artificial neural network ensembles in probabilistic hydrological forecasting
    • Araghinejad S., Azmi M., Kholghi M. Application of artificial neural network ensembles in probabilistic hydrological forecasting. J. Hydrol. 2011, 407:94-104.
    • (2011) J. Hydrol. , vol.407 , pp. 94-104
    • Araghinejad, S.1    Azmi, M.2    Kholghi, M.3
  • 6
    • 0035863544 scopus 로고    scopus 로고
    • Using genetic algorithms to select architecture of a feedforward artificial neural network
    • Arifovic J., Gencay R. Using genetic algorithms to select architecture of a feedforward artificial neural network. Phys. A 2001, 289:574-594.
    • (2001) Phys. A , vol.289 , pp. 574-594
    • Arifovic, J.1    Gencay, R.2
  • 8
    • 77950360747 scopus 로고    scopus 로고
    • An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
    • Boucher M.A., Lalibert́e J.P., Anctil F. An experiment on the evolution of an ensemble of neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2010, 14:603-612.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 603-612
    • Boucher, M.A.1    Lalibert́e, J.P.2    Anctil, F.3
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1 - background and methodology. J. Hydrol. 2004, 301(1-4):75-92.
    • (2004) J. Hydrol. , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J. Hydrol. 2004, 301(1-4):93-107.
    • (2004) J. Hydrol. , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 11
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low flow periods using neural networks
    • Campolo M., Soldati A., Andreussi P. Forecasting river flow rate during low flow periods using neural networks. Water Resour. Res. 1999, 35(11):3547-3552.
    • (1999) Water Resour. Res. , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 12
    • 0036601958 scopus 로고    scopus 로고
    • Interpolation of wind induced pressure time series with an artificial neural network
    • Chen Y., Kopp G.A., Surry D. Interpolation of wind induced pressure time series with an artificial neural network. J. Wind Eng. Ind. Aerod. 2003, 90:589-615.
    • (2003) J. Wind Eng. Ind. Aerod. , vol.90 , pp. 589-615
    • Chen, Y.1    Kopp, G.A.2    Surry, D.3
  • 13
    • 33744824379 scopus 로고    scopus 로고
    • A hybrid linear-neural model for river flow forecasting
    • Chetan M., Sudheer K.P. A hybrid linear-neural model for river flow forecasting. Water Resour. Res. 2006, 42:W04402. 10.1029/2005WR004072.
    • (2006) Water Resour. Res. , vol.42
    • Chetan, M.1    Sudheer, K.P.2
  • 14
    • 0029756425 scopus 로고    scopus 로고
    • Confidence interval prediction for neural network models
    • Chryssolouris G., Lee M., Ramsey A. Confidence interval prediction for neural network models. IEEE Trans. Neural Networks 1996, 7(1):229-232.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 229-232
    • Chryssolouris, G.1    Lee, M.2    Ramsey, A.3
  • 15
    • 0034136344 scopus 로고    scopus 로고
    • Inductive learning approaches to rainfall-runoff modelling
    • Dawson C.W., Brown M., Wilby R. Inductive learning approaches to rainfall-runoff modelling. Int. J. Neural Syst. 2000, 0129-0657(10):43-57.
    • (2000) Int. J. Neural Syst. , Issue.10 , pp. 43-57
    • Dawson, C.W.1    Brown, M.2    Wilby, R.3
  • 16
    • 84881239722 scopus 로고    scopus 로고
    • An Investigation to Explore the Feasibility of Artificial Neural Networks in Ungauged Basin Predictions. M. Tech Thesis.
    • Dhanesh, Y., 2011. An Investigation to Explore the Feasibility of Artificial Neural Networks in Ungauged Basin Predictions. M. Tech Thesis.
    • (2011)
    • Dhanesh, Y.1
  • 17
    • 84881250833 scopus 로고    scopus 로고
    • 2011 Predictions in ungauged basins: can we use artificial neural networks? American Geophysical Union Joint Assembly, Foz doIguassu, Brazil, August
    • Dhanesh, Y., Sudheer, K.P., 2011. Predictions in ungauged basins: can we use artificial neural networks? American Geophysical Union Joint Assembly, Foz doIguassu, Brazil, August 8-13, 2010.
    • (2010) , pp. 8-13
    • Dhanesh, Y.1    Sudheer, K.P.2
  • 18
    • 0037360099 scopus 로고    scopus 로고
    • Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise
    • Ding A., He X. Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise. IEEE Trans. Neural Networks 2003, 14(2):253-262.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.2 , pp. 253-262
    • Ding, A.1    He, X.2
  • 19
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14:1931-1941.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 20
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application. Hydrol. Earth Syst. Sci. 2010, 14:1943-1961.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 21
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Morgan Kaufmann, San Mateo, CA, D.S. Turetsky (Ed.)
    • Fahlman S.E., Lebiere C. The cascade-correlation learning architecture. Advances in Neural Information Processing Systems, vol. 2 1990, 524-532. Morgan Kaufmann, San Mateo, CA. D.S. Turetsky (Ed.).
    • (1990) Advances in Neural Information Processing Systems, vol. 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 23
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han D.T., Kwong Li.S. Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process. 2007, 21(2):223-228. 10.1002/hyp.6184.
    • (2007) Hydrol. Process. , vol.21 , Issue.2 , pp. 223-228
    • Han, D.T.1    Kwong, L.2
  • 24
    • 1842856149 scopus 로고    scopus 로고
    • A combined neural network and decision tree model for prognosis of breast cancer relapse
    • Jerez, et al. A combined neural network and decision tree model for prognosis of breast cancer relapse. Artif. Intell. Med. 2003, 27:45-63.
    • (2003) Artif. Intell. Med. , vol.27 , pp. 45-63
    • Jerez1
  • 25
    • 84871440798 scopus 로고    scopus 로고
    • Quantification of the predictive uncertainty of artificial neural network based river flow forecast models
    • Kasiviswanathan K.S., Sudheer K.P. Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stochastic Environ. Res. Risk Assess. 2012, 10.1007/s00477-012-0600-2.
    • (2012) Stochastic Environ. Res. Risk Assess.
    • Kasiviswanathan, K.S.1    Sudheer, K.P.2
  • 26
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42:W07409. 10.1029/ 2005WR003971.
    • (2006) Water Resour. Res. , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 27
    • 80052409097 scopus 로고    scopus 로고
    • A comprehensive review of neural network-based prediction intervals and new advances
    • Khosravi A., Nahavandi S., Creighton D., Atiya A.F. A comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Networks 2011, 22(9):1341-1356.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.9 , pp. 1341-1356
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 28
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural network used for water resources modeling
    • Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural network used for water resources modeling. Water Resour. Res. 2005, 41:W12409. 10.1029/2005WR004152.
    • (2005) Water Resour. Res. , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 29
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model. 2. Application and results
    • Kitanidis P., Bras R. Real-time forecasting with a conceptual hydrologic model. 2. Application and results. Water Resour. Res. 1980, 16(6):1034-1044.
    • (1980) Water Resour. Res. , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.1    Bras, R.2
  • 30
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: toward an integrated data assimilation framework
    • Liu Y., Gupta H.V. Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour. Res. 2007, 43:W07401. 10.1029/2006WR005756.
    • (2007) Water Resour. Res. , vol.43
    • Liu, Y.1    Gupta, H.V.2
  • 31
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 2000, 227:56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay K.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4:448-472.
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • MacKay, K.J.C.1
  • 33
    • 84859515843 scopus 로고    scopus 로고
    • Optimal selection of ANN training and architecture parameters using Taguchi method: a case study
    • Madic M.J., Radovanovic M.R. Optimal selection of ANN training and architecture parameters using Taguchi method: a case study. FME Trans. 2011, 39:79-86.
    • (2011) FME Trans. , vol.39 , pp. 79-86
    • Madic, M.J.1    Radovanovic, M.R.2
  • 34
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Ashu J., Graeme C.D., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25(8):891-909.
    • (2010) Environ. Modell. Softw. , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Ashu, J.2    Graeme, C.D.3    Sudheer, K.P.4
  • 35
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: 1. A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 39
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: a practical comparison
    • Papadopoulos G., Edwards P., Murray A. Confidence estimation methods for neural networks: a practical comparison. IEEE Trans. Neural Networks 2001, 12(6):1278-1287.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.2    Murray, A.3
  • 40
    • 0000926506 scopus 로고
    • When networks disagree: ensemble methods for hybrid neural networks
    • Chapman and Hall, New York, R.J. Mammone (Ed.)
    • Perrone M.P., Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. Artificial Neural Networks for Speech and Vision 1993, 126-142. Chapman and Hall, New York. R.J. Mammone (Ed.).
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 41
    • 84861079736 scopus 로고    scopus 로고
    • Artificial neural network ensemble approach for creating a negotiation model with ethical artificial agents.
    • Rutkowski, L. et al. (Eds.), ICAISC 2012, Part II, LNCS 7268.
    • Rekabdar, B., Joorabian, M., Shadgar, B., 2012. Artificial neural network ensemble approach for creating a negotiation model with ethical artificial agents. In: Rutkowski, L. et al. (Eds.), ICAISC 2012, Part II, LNCS 7268. pp. 493-501.
    • (2012) , pp. 493-501
    • Rekabdar, B.1    Joorabian, M.2    Shadgar, B.3
  • 42
  • 43
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 1999, 216:32-35.
    • (1999) J. Hydrol. , vol.216 , pp. 32-35
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 46
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma S.K., Tiwari K.N. Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 2009, 374:209-222.
    • (2009) J. Hydrol. , vol.374 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 47
    • 65849306265 scopus 로고    scopus 로고
    • Data-driven approaches for estimating uncertainty in rainfall runoff modeling
    • Shrestha D.L., Solomatine D.P. Data-driven approaches for estimating uncertainty in rainfall runoff modeling. J. River Basin Manage. 2008, 6(2):109-122.
    • (2008) J. River Basin Manage. , vol.6 , Issue.2 , pp. 109-122
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 48
    • 70549095134 scopus 로고    scopus 로고
    • Physically based and data driven models and propagation of input uncertainties in river flood prediction
    • Shrestha R., Nestmann F. Physically based and data driven models and propagation of input uncertainties in river flood prediction. J. Hydrol. Eng. 2009, 1412:1309-1319.
    • (2009) J. Hydrol. Eng. , vol.1412 , pp. 1309-1319
    • Shrestha, R.1    Nestmann, F.2
  • 49
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C., Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40:9. 10.1029/2003WR002816.
    • (2004) Water Resour. Res. , vol.40 , pp. 9
    • Shu, C.1    Burn, D.H.2
  • 50
    • 85058247583 scopus 로고    scopus 로고
    • Arching fault detection using artificial neural networks
    • Sidhu T.S., Singh G., Sahdev M. Arching fault detection using artificial neural networks. Neurocomputing 1998, 23:1683-1695.
    • (1998) Neurocomputing , vol.23 , pp. 1683-1695
    • Sidhu, T.S.1    Singh, G.2    Sahdev, M.3
  • 51
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation in California
    • Silverman D., Dracup J.A. Artificial neural networks and long-range precipitation in California. J. Appl. Meteorol. 2000, 31(1):57-66.
    • (2000) J. Appl. Meteorol. , vol.31 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 52
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav R.K., Sudheer K.P., Chaubey I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 2007, 43:W10407. 10.1029/2006WR005352.
    • (2007) Water Resour. Res. , vol.43
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 53
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer K.P. Knowledge extraction from trained neural network river flow models. J. Hydrol. Eng. 2005, 10(4):264-269.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 54
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 55
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K., Deo M.C. Hydrological forecasting using neural networks. J. Hydrol. Eng. 2000, 5(2):180-189.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 56
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari M.K., Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382(1-4):20-33.
    • (2010) J. Hydrol. , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 57
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. ASCE 1999, 4(3):232-239.
    • (1999) J. Hydrol. Eng. ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 58
    • 29144451373 scopus 로고    scopus 로고
    • Model identification for hydrological forecasting under uncertainty
    • Wagener T., Gupta H.V. Model identification for hydrological forecasting under uncertainty. Stochastic Environ. Res. Risk Assess. 2005, 19. 10.1007/s00477-005-0006-5.
    • (2005) Stochastic Environ. Res. Risk Assess. , vol.19
    • Wagener, T.1    Gupta, H.V.2
  • 59
    • 70349545766 scopus 로고    scopus 로고
    • Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation
    • Xiong L., Wan M., Wei X., O'Connor K. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol. Sci. J. 2009, 54(5):852-871.
    • (2009) Hydrol. Sci. J. , vol.54 , Issue.5 , pp. 852-871
    • Xiong, L.1    Wan, M.2    Wei, X.3    O'Connor, K.4
  • 60
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45:W02403. 10.1029/2008WR007030.
    • (2009) Water Resour. Res. , vol.45
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    Van Liew, M.4
  • 61
    • 80054678981 scopus 로고    scopus 로고
    • Explicitly integrating parameter, input, and structure uncertainties into Bayesian neural networks for probabilistic hydrologic forecasting
    • Zhang X., Liang F., Yu B., Zong Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian neural networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409:696-709.
    • (2011) J. Hydrol. , vol.409 , pp. 696-709
    • Zhang, X.1    Liang, F.2    Yu, B.3    Zong, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.