-
1
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network modeling of surface hydrology
-
Abrahart R.J., Anctil F., Coulibaly P., Dawson C.W., Mount N.J., See L.M., Shamseldin Y., Solomatine D.P., Toth E., Wilby R.L. Two decades of anarchy? Emerging themes and outstanding challenges for neural network modeling of surface hydrology. Prog. Phys. Geogr. 2012, 36:480-513.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
2
-
-
84969745139
-
Nearly two decades of neural network hydrologic modeling
-
World Scientific Publishing, Hackensack, NJ, B. Sivakumar, R. Berndtsson (Eds.)
-
Abrahart R.J., See L.M., Dawson C.W., Shamseldin A.Y., Wilby R.L. Nearly two decades of neural network hydrologic modeling. Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting 2010, 267-346. World Scientific Publishing, Hackensack, NJ. B. Sivakumar, R. Berndtsson (Eds.).
-
(2010)
Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting
, pp. 267-346
-
-
Abrahart, R.J.1
See, L.M.2
Dawson, C.W.3
Shamseldin, A.Y.4
Wilby, R.L.5
-
3
-
-
33847624519
-
An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction
-
Ajami N.K., Duan Q., Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43:W01403. 10.1029/2005WR004745.
-
(2007)
Water Resour. Res.
, vol.43
-
-
Ajami, N.K.1
Duan, Q.2
Sorooshian, S.3
-
4
-
-
78650584376
-
Fuzzy neural networks for water level and discharge forecasting with uncertainty
-
Alvisi S., Franchini M. Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ. Modell. Softw. 2011, 26(4):523-537.
-
(2011)
Environ. Modell. Softw.
, vol.26
, Issue.4
, pp. 523-537
-
-
Alvisi, S.1
Franchini, M.2
-
5
-
-
80052021232
-
Application of artificial neural network ensembles in probabilistic hydrological forecasting
-
Araghinejad S., Azmi M., Kholghi M. Application of artificial neural network ensembles in probabilistic hydrological forecasting. J. Hydrol. 2011, 407:94-104.
-
(2011)
J. Hydrol.
, vol.407
, pp. 94-104
-
-
Araghinejad, S.1
Azmi, M.2
Kholghi, M.3
-
6
-
-
0035863544
-
Using genetic algorithms to select architecture of a feedforward artificial neural network
-
Arifovic J., Gencay R. Using genetic algorithms to select architecture of a feedforward artificial neural network. Phys. A 2001, 289:574-594.
-
(2001)
Phys. A
, vol.289
, pp. 574-594
-
-
Arifovic, J.1
Gencay, R.2
-
8
-
-
77950360747
-
An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
-
Boucher M.A., Lalibert́e J.P., Anctil F. An experiment on the evolution of an ensemble of neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2010, 14:603-612.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 603-612
-
-
Boucher, M.A.1
Lalibert́e, J.P.2
Anctil, F.3
-
9
-
-
10644295753
-
Input determination for neural network models in water resources applications. Part 1 - background and methodology
-
Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1 - background and methodology. J. Hydrol. 2004, 301(1-4):75-92.
-
(2004)
J. Hydrol.
, vol.301
, Issue.1-4
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
10
-
-
10644225424
-
Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
-
Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J. Hydrol. 2004, 301(1-4):93-107.
-
(2004)
J. Hydrol.
, vol.301
, Issue.1-4
, pp. 93-107
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
11
-
-
0032722662
-
Forecasting river flow rate during low flow periods using neural networks
-
Campolo M., Soldati A., Andreussi P. Forecasting river flow rate during low flow periods using neural networks. Water Resour. Res. 1999, 35(11):3547-3552.
-
(1999)
Water Resour. Res.
, vol.35
, Issue.11
, pp. 3547-3552
-
-
Campolo, M.1
Soldati, A.2
Andreussi, P.3
-
12
-
-
0036601958
-
Interpolation of wind induced pressure time series with an artificial neural network
-
Chen Y., Kopp G.A., Surry D. Interpolation of wind induced pressure time series with an artificial neural network. J. Wind Eng. Ind. Aerod. 2003, 90:589-615.
-
(2003)
J. Wind Eng. Ind. Aerod.
, vol.90
, pp. 589-615
-
-
Chen, Y.1
Kopp, G.A.2
Surry, D.3
-
13
-
-
33744824379
-
A hybrid linear-neural model for river flow forecasting
-
Chetan M., Sudheer K.P. A hybrid linear-neural model for river flow forecasting. Water Resour. Res. 2006, 42:W04402. 10.1029/2005WR004072.
-
(2006)
Water Resour. Res.
, vol.42
-
-
Chetan, M.1
Sudheer, K.P.2
-
15
-
-
0034136344
-
Inductive learning approaches to rainfall-runoff modelling
-
Dawson C.W., Brown M., Wilby R. Inductive learning approaches to rainfall-runoff modelling. Int. J. Neural Syst. 2000, 0129-0657(10):43-57.
-
(2000)
Int. J. Neural Syst.
, Issue.10
, pp. 43-57
-
-
Dawson, C.W.1
Brown, M.2
Wilby, R.3
-
16
-
-
84881239722
-
-
An Investigation to Explore the Feasibility of Artificial Neural Networks in Ungauged Basin Predictions. M. Tech Thesis.
-
Dhanesh, Y., 2011. An Investigation to Explore the Feasibility of Artificial Neural Networks in Ungauged Basin Predictions. M. Tech Thesis.
-
(2011)
-
-
Dhanesh, Y.1
-
17
-
-
84881250833
-
-
2011 Predictions in ungauged basins: can we use artificial neural networks? American Geophysical Union Joint Assembly, Foz doIguassu, Brazil, August
-
Dhanesh, Y., Sudheer, K.P., 2011. Predictions in ungauged basins: can we use artificial neural networks? American Geophysical Union Joint Assembly, Foz doIguassu, Brazil, August 8-13, 2010.
-
(2010)
, pp. 8-13
-
-
Dhanesh, Y.1
Sudheer, K.P.2
-
18
-
-
0037360099
-
Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise
-
Ding A., He X. Back propagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise. IEEE Trans. Neural Networks 2003, 14(2):253-262.
-
(2003)
IEEE Trans. Neural Networks
, vol.14
, Issue.2
, pp. 253-262
-
-
Ding, A.1
He, X.2
-
19
-
-
77958183722
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology
-
Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14:1931-1941.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1931-1941
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
20
-
-
77958199170
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application
-
Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application. Hydrol. Earth Syst. Sci. 2010, 14:1943-1961.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1943-1961
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
21
-
-
0000155950
-
The cascade-correlation learning architecture
-
Morgan Kaufmann, San Mateo, CA, D.S. Turetsky (Ed.)
-
Fahlman S.E., Lebiere C. The cascade-correlation learning architecture. Advances in Neural Information Processing Systems, vol. 2 1990, 524-532. Morgan Kaufmann, San Mateo, CA. D.S. Turetsky (Ed.).
-
(1990)
Advances in Neural Information Processing Systems, vol. 2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
23
-
-
33846419128
-
Uncertainties in real-time flood forecasting with neural networks
-
Han D.T., Kwong Li.S. Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process. 2007, 21(2):223-228. 10.1002/hyp.6184.
-
(2007)
Hydrol. Process.
, vol.21
, Issue.2
, pp. 223-228
-
-
Han, D.T.1
Kwong, L.2
-
24
-
-
1842856149
-
A combined neural network and decision tree model for prognosis of breast cancer relapse
-
Jerez, et al. A combined neural network and decision tree model for prognosis of breast cancer relapse. Artif. Intell. Med. 2003, 27:45-63.
-
(2003)
Artif. Intell. Med.
, vol.27
, pp. 45-63
-
-
Jerez1
-
25
-
-
84871440798
-
Quantification of the predictive uncertainty of artificial neural network based river flow forecast models
-
Kasiviswanathan K.S., Sudheer K.P. Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stochastic Environ. Res. Risk Assess. 2012, 10.1007/s00477-012-0600-2.
-
(2012)
Stochastic Environ. Res. Risk Assess.
-
-
Kasiviswanathan, K.S.1
Sudheer, K.P.2
-
26
-
-
33748029144
-
Bayesian neural network for rainfall-runoff modeling
-
Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42:W07409. 10.1029/ 2005WR003971.
-
(2006)
Water Resour. Res.
, vol.42
-
-
Khan, M.S.1
Coulibaly, P.2
-
27
-
-
80052409097
-
A comprehensive review of neural network-based prediction intervals and new advances
-
Khosravi A., Nahavandi S., Creighton D., Atiya A.F. A comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Networks 2011, 22(9):1341-1356.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.9
, pp. 1341-1356
-
-
Khosravi, A.1
Nahavandi, S.2
Creighton, D.3
Atiya, A.F.4
-
28
-
-
31444455186
-
Bayesian training of artificial neural network used for water resources modeling
-
Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural network used for water resources modeling. Water Resour. Res. 2005, 41:W12409. 10.1029/2005WR004152.
-
(2005)
Water Resour. Res.
, vol.41
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
29
-
-
0019227948
-
Real-time forecasting with a conceptual hydrologic model. 2. Application and results
-
Kitanidis P., Bras R. Real-time forecasting with a conceptual hydrologic model. 2. Application and results. Water Resour. Res. 1980, 16(6):1034-1044.
-
(1980)
Water Resour. Res.
, vol.16
, Issue.6
, pp. 1034-1044
-
-
Kitanidis, P.1
Bras, R.2
-
30
-
-
36648998731
-
Uncertainty in hydrologic modeling: toward an integrated data assimilation framework
-
Liu Y., Gupta H.V. Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour. Res. 2007, 43:W07401. 10.1029/2006WR005756.
-
(2007)
Water Resour. Res.
, vol.43
-
-
Liu, Y.1
Gupta, H.V.2
-
31
-
-
0034737033
-
A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
-
Luk K.C., Ball J.E., Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 2000, 227:56-65.
-
(2000)
J. Hydrol.
, vol.227
, pp. 56-65
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
32
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay K.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4:448-472.
-
(1992)
Neural Comput.
, vol.4
, pp. 448-472
-
-
MacKay, K.J.C.1
-
33
-
-
84859515843
-
Optimal selection of ANN training and architecture parameters using Taguchi method: a case study
-
Madic M.J., Radovanovic M.R. Optimal selection of ANN training and architecture parameters using Taguchi method: a case study. FME Trans. 2011, 39:79-86.
-
(2011)
FME Trans.
, vol.39
, pp. 79-86
-
-
Madic, M.J.1
Radovanovic, M.R.2
-
34
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Ashu J., Graeme C.D., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25(8):891-909.
-
(2010)
Environ. Modell. Softw.
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Ashu, J.2
Graeme, C.D.3
Sudheer, K.P.4
-
35
-
-
0014776873
-
River flow forecasting through conceptual models: 1. A discussion of principles
-
Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 1970, 10:282-290.
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
38
-
-
84871455319
-
Ensemble dressing for hydrological applications
-
Pagano T.C., Shrestha D.L., Wang Q.J., Robertson D., Hapuarachchi P. Ensemble dressing for hydrological applications. Hydrol. Process. 2013, 27:106-116.
-
(2013)
Hydrol. Process.
, vol.27
, pp. 106-116
-
-
Pagano, T.C.1
Shrestha, D.L.2
Wang, Q.J.3
Robertson, D.4
Hapuarachchi, P.5
-
39
-
-
0035505634
-
Confidence estimation methods for neural networks: a practical comparison
-
Papadopoulos G., Edwards P., Murray A. Confidence estimation methods for neural networks: a practical comparison. IEEE Trans. Neural Networks 2001, 12(6):1278-1287.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.6
, pp. 1278-1287
-
-
Papadopoulos, G.1
Edwards, P.2
Murray, A.3
-
40
-
-
0000926506
-
When networks disagree: ensemble methods for hybrid neural networks
-
Chapman and Hall, New York, R.J. Mammone (Ed.)
-
Perrone M.P., Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. Artificial Neural Networks for Speech and Vision 1993, 126-142. Chapman and Hall, New York. R.J. Mammone (Ed.).
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
41
-
-
84861079736
-
Artificial neural network ensemble approach for creating a negotiation model with ethical artificial agents.
-
Rutkowski, L. et al. (Eds.), ICAISC 2012, Part II, LNCS 7268.
-
Rekabdar, B., Joorabian, M., Shadgar, B., 2012. Artificial neural network ensemble approach for creating a negotiation model with ethical artificial agents. In: Rutkowski, L. et al. (Eds.), ICAISC 2012, Part II, LNCS 7268. pp. 493-501.
-
(2012)
, pp. 493-501
-
-
Rekabdar, B.1
Joorabian, M.2
Shadgar, B.3
-
42
-
-
0027662338
-
Pruning algorithms. A survey
-
Russell R. Pruning algorithms. A survey. IEEE Trans. Neural Networks 1993, 4:740-747.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 740-747
-
-
Russell, R.1
-
43
-
-
0033535432
-
A non-linear rainfall-runoff model using an artificial neural network
-
Sajikumar N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 1999, 216:32-35.
-
(1999)
J. Hydrol.
, vol.216
, pp. 32-35
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
46
-
-
68349123741
-
Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
-
Sharma S.K., Tiwari K.N. Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 2009, 374:209-222.
-
(2009)
J. Hydrol.
, vol.374
, pp. 209-222
-
-
Sharma, S.K.1
Tiwari, K.N.2
-
47
-
-
65849306265
-
Data-driven approaches for estimating uncertainty in rainfall runoff modeling
-
Shrestha D.L., Solomatine D.P. Data-driven approaches for estimating uncertainty in rainfall runoff modeling. J. River Basin Manage. 2008, 6(2):109-122.
-
(2008)
J. River Basin Manage.
, vol.6
, Issue.2
, pp. 109-122
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
48
-
-
70549095134
-
Physically based and data driven models and propagation of input uncertainties in river flood prediction
-
Shrestha R., Nestmann F. Physically based and data driven models and propagation of input uncertainties in river flood prediction. J. Hydrol. Eng. 2009, 1412:1309-1319.
-
(2009)
J. Hydrol. Eng.
, vol.1412
, pp. 1309-1319
-
-
Shrestha, R.1
Nestmann, F.2
-
49
-
-
6344243351
-
Artificial neural network ensembles and their application in pooled flood frequency analysis
-
Shu C., Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40:9. 10.1029/2003WR002816.
-
(2004)
Water Resour. Res.
, vol.40
, pp. 9
-
-
Shu, C.1
Burn, D.H.2
-
50
-
-
85058247583
-
Arching fault detection using artificial neural networks
-
Sidhu T.S., Singh G., Sahdev M. Arching fault detection using artificial neural networks. Neurocomputing 1998, 23:1683-1695.
-
(1998)
Neurocomputing
, vol.23
, pp. 1683-1695
-
-
Sidhu, T.S.1
Singh, G.2
Sahdev, M.3
-
51
-
-
0034127203
-
Artificial neural networks and long-range precipitation in California
-
Silverman D., Dracup J.A. Artificial neural networks and long-range precipitation in California. J. Appl. Meteorol. 2000, 31(1):57-66.
-
(2000)
J. Appl. Meteorol.
, vol.31
, Issue.1
, pp. 57-66
-
-
Silverman, D.1
Dracup, J.A.2
-
52
-
-
36749007877
-
A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
-
Srivastav R.K., Sudheer K.P., Chaubey I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 2007, 43:W10407. 10.1029/2006WR005352.
-
(2007)
Water Resour. Res.
, vol.43
-
-
Srivastav, R.K.1
Sudheer, K.P.2
Chaubey, I.3
-
53
-
-
23044433719
-
Knowledge extraction from trained neural network river flow models
-
Sudheer K.P. Knowledge extraction from trained neural network river flow models. J. Hydrol. Eng. 2005, 10(4):264-269.
-
(2005)
J. Hydrol. Eng.
, vol.10
, Issue.4
, pp. 264-269
-
-
Sudheer, K.P.1
-
54
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
-
(2002)
Hydrol. Process.
, vol.16
, Issue.6
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
55
-
-
0034174356
-
Hydrological forecasting using neural networks
-
Thirumalaiah K., Deo M.C. Hydrological forecasting using neural networks. J. Hydrol. Eng. 2000, 5(2):180-189.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 180-189
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
56
-
-
75149131606
-
Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
-
Tiwari M.K., Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382(1-4):20-33.
-
(2010)
J. Hydrol.
, vol.382
, Issue.1-4
, pp. 20-33
-
-
Tiwari, M.K.1
Chatterjee, C.2
-
57
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. ASCE 1999, 4(3):232-239.
-
(1999)
J. Hydrol. Eng. ASCE
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
58
-
-
29144451373
-
Model identification for hydrological forecasting under uncertainty
-
Wagener T., Gupta H.V. Model identification for hydrological forecasting under uncertainty. Stochastic Environ. Res. Risk Assess. 2005, 19. 10.1007/s00477-005-0006-5.
-
(2005)
Stochastic Environ. Res. Risk Assess.
, vol.19
-
-
Wagener, T.1
Gupta, H.V.2
-
59
-
-
70349545766
-
Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation
-
Xiong L., Wan M., Wei X., O'Connor K. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol. Sci. J. 2009, 54(5):852-871.
-
(2009)
Hydrol. Sci. J.
, vol.54
, Issue.5
, pp. 852-871
-
-
Xiong, L.1
Wan, M.2
Wei, X.3
O'Connor, K.4
-
60
-
-
62949213977
-
Estimating uncertainty of streamflow simulation using Bayesian neural networks
-
Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45:W02403. 10.1029/2008WR007030.
-
(2009)
Water Resour. Res.
, vol.45
-
-
Zhang, X.1
Liang, F.2
Srinivasan, R.3
Van Liew, M.4
-
61
-
-
80054678981
-
Explicitly integrating parameter, input, and structure uncertainties into Bayesian neural networks for probabilistic hydrologic forecasting
-
Zhang X., Liang F., Yu B., Zong Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian neural networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409:696-709.
-
(2011)
J. Hydrol.
, vol.409
, pp. 696-709
-
-
Zhang, X.1
Liang, F.2
Yu, B.3
Zong, Z.4
|