메뉴 건너뛰기




Volumn 137, Issue 10, 2011, Pages 961-967

Depth-integrated estimation of dissolved oxygen in a lake

Author keywords

Artificial neural networks; Depth dependent estimation; Dissolved oxygen; Estimation; Lakes; Neural networks; Water resources

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DISSOLVED SOLIDS; ESTIMATION PERFORMANCE; FEED FORWARD; INPUT LAYERS; LAKE DEPTH; MULTILINEAR REGRESSION; PERFORMANCE EVALUATION CRITERIA; RADIAL BASIS FUNCTIONS; SPATIAL VARIATIONS; TEMPORAL VARIATION;

EID: 81755176465     PISSN: 07339372     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)EE.1943-7870.0000376     Document Type: Article
Times cited : (37)

References (15)
  • 1
    • 0012164109 scopus 로고    scopus 로고
    • Chemometrics characterisation of the quality of river water
    • DOI 10.1016/S0003-2670(02)00298-2, PII S0003267002002982
    • Brodnjak-Vonina, D., Dobnik, D., Novi, M., and Zupan, J. (2002). Chemometrics characterisation of the quality of river water. Anal. Chim. Acta, 462 (1), 87-100 0003-2670 10.1016/S0003-2670(02)00298-2 (Pubitemid 37337958)
    • (2002) Analytica Chimica Acta , vol.462 , Issue.1 , pp. 87-100
    • Brodnjak-Voncina, D.1    Dobcnik, D.2    Novic, M.3    Zupan, J.4
  • 2
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • 0891-2513
    • Broomhead, D., and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Syst., 2, 321-355 0891-2513
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 3
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • DOI 10.1623/hysj.48.3.349.45288
    • Cigizoglu, H. K. (2003). Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J., 48 (3), 349-361 0262-6667 10.1623/hysj.48.3.349.45288 (Pubitemid 36695913)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-362
    • Cigizoglu, H.K.1
  • 4
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • DOI 10.1002/env.596
    • Cigizoglu, H. K. (2003). Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics, 14 (4), 417-427 1099-095X 10.1002/env.596 (Pubitemid 36695747)
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 5
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • DOI 10.1016/j.advwatres.2003.10.003
    • Cigizoglu, H. K. (2004). Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv. Water Resour., 27, 185-195 0309-1708 10.1016/j.advwatres.2003.10.003 (Pubitemid 38256721)
    • (2004) Advances in Water Resources , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 6
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • DOI 10.1061/(ASCE)1084-0699(2005)10:4(336)
    • Cigizoglu, H. K. (2005). Application of the generalized regression neural networks to intermittent flow forecasting and estimation. J. Hydrol. Eng., 10 (4), 336-341 1084-0699 10.1061/(ASCE)1084-0699(2005)10:4(336) (Pubitemid 41070695)
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 7
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H. K., and Kii, O. (2006). Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord. Hydrol., 36, 49-64 0029-1277 (Pubitemid 40620979)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 8
    • 34047201685 scopus 로고    scopus 로고
    • Application of neural network based on PSO algorithm in prediction model for dissolved oxygen in fishpond
    • Dalian Fisheries Univ. Dalian, China
    • Deng, C., Wei, X., and Guo, L. (2006). Application of neural network based on PSO algorithm in prediction model for dissolved oxygen in fishpond. Proc., 6th World Congress on Intelligent Control and Automation, Dalian Fisheries Univ. Dalian, China
    • (2006) Proc., 6th World Congress on Intelligent Control and Automation
    • Deng, C.1    Wei, X.2    Guo, L.3
  • 10
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • 1045-9227 10.1109/72.329697
    • Hagan, M. T., and Menhaj, M. B. (1994). Training feed forward techniques with the Marquardt algorithm. IEEE Trans. Neural Networks, 5 (6), 989-993 1045-9227 10.1109/72.329697
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 11
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • 0262-6667 10.1623/hysj.54.2.234
    • Partal, T., and Cigizoglu, H. K. (2009). Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sci. J., 54 (2), 234-246 0262-6667 10.1623/hysj.54.2.234
    • (2009) Hydrol. Sci. J. , vol.54 , Issue.2 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 12
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • 0036-8075 10.1126/science.247.4945.978
    • Poggio, T., and Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982 0036-8075 10.1126/science.247.4945.978
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 13
    • 33144479513 scopus 로고    scopus 로고
    • Artificial neural network modeling of dissolved oxygen in a wetland pond: The case of Hovi, Finland
    • 1084-0699 10.1061/(ASCE)1084-0699(2006)11:2(188)
    • Schmid, B. H., and Koskiaho, J. (2006). Artificial neural network modeling of dissolved oxygen in a wetland pond: The case of Hovi, Finland. J. Hydrol. Eng., 11 (2), 188-192 1084-0699 10.1061/(ASCE)1084-0699(2006)11:2(188)
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.2 , pp. 188-192
    • Schmid, B.H.1    Koskiaho, J.2
  • 14
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • engrr, B., Doan, E., Koklu, R., and Ve Samandar, A. (2006). Dissolved oxygen estimation using artificial neural network for the water quality control. Fresen. Environ. Bull., 15 (9a), 1064-1067 1018-4619 (Pubitemid 44555334)
    • (2006) Fresenius Environmental Bulletin , vol.15 , Issue.9 , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 15
    • 61849175296 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams by artificial neural networks
    • 0885-6087 10.1002/hy7012
    • Toprak, F., and Cigizoglu, H. K. (2008). Predicting longitudinal dispersion coefficient in natural streams by artificial neural networks. Hydrol. Processes, 22 (20), 4106-4129 0885-6087 10.1002/hyp.7012
    • (2008) Hydrol. Processes , vol.22 , Issue.20 , pp. 4106-4129
    • Toprak, F.1    Cigizoglu, H.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.