메뉴 건너뛰기




Volumn 400, Issue 1-2, 2011, Pages 10-23

Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection

Author keywords

ANN; Input selection; Partial mutual information; Storm event; Water quality; Water quantity

Indexed keywords

ANN; INPUT SELECTION; PARTIAL MUTUAL INFORMATION; STORM EVENT; WATER QUANTITY;

EID: 79952488657     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.01.024     Document Type: Article
Times cited : (70)

References (51)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 2000, 14(11-12):2157-2172.
    • (2000) Hydrol. Process. , vol.14 , Issue.11-12 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 4
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2: Case study: forecasting salinity in a river
    • Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2: Case study: forecasting salinity in a river. J. Hydrol. 2005, 301(1-4):93-107.
    • (2005) J. Hydrol. , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 5
    • 33750095418 scopus 로고    scopus 로고
    • Combined hydraulic and black-box models for flood forecasting in urban drainage systems
    • Bruen M., Yang J. Combined hydraulic and black-box models for flood forecasting in urban drainage systems. J. Hydrol. Eng. 2006, 11(6):589-596.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.6 , pp. 589-596
    • Bruen, M.1    Yang, J.2
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 1999, 35(4):1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 7
    • 0031142667 scopus 로고    scopus 로고
    • An iterative pruning algorithm for feedforward neural networks
    • Castellano G., Fanelli A.M., Pelillo M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural Networks 1997, 8(3):519-531.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 519-531
    • Castellano, G.1    Fanelli, A.M.2    Pelillo, M.3
  • 8
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin
    • Chibanga R., Berlamont J., Vandewalle J. Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 2003, 48(3):363-379.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 9
    • 0031011329 scopus 로고    scopus 로고
    • Nonpoint source runoff modeling: a comparison of forested watershed and an urban watershed on the South Carolina coast
    • Corbett C.W., Wahl M., Porter D.E., Edwards D., Moise C. Nonpoint source runoff modeling: a comparison of forested watershed and an urban watershed on the South Carolina coast. J. Exp. Mar. Biol. Ecol. 1997, 213(1):133-149.
    • (1997) J. Exp. Mar. Biol. Ecol. , vol.213 , Issue.1 , pp. 133-149
    • Corbett, C.W.1    Wahl, M.2    Porter, D.E.3    Edwards, D.4    Moise, C.5
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., Wilby R.L. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 1998, 43(1):47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modeling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 12
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: a comparative study using the airline data
    • Faraway J., Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. J. Roy. Stat. Soc. Ser. C Appl. Stat. 1998, 47(2):231-250.
    • (1998) J. Roy. Stat. Soc. Ser. C Appl. Stat. , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 13
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networkworks with OLS algorithm
    • Fernando D.A.K., Jayawardena A.W. Runoff forecasting using RBF networkworks with OLS algorithm. J. Hydrol. Eng. 1998, 3(3):203-209.
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 14
    • 0030035463 scopus 로고    scopus 로고
    • Neural networks for solid transport modeling in sewer systems during storm events
    • Gong N., Denoeux T., Bertrand-Krajewski J.-L. Neural networks for solid transport modeling in sewer systems during storm events. Water Sci. Technol. 1996, 33(9):85-92.
    • (1996) Water Sci. Technol. , vol.33 , Issue.9 , pp. 85-92
    • Gong, N.1    Denoeux, T.2    Bertrand-Krajewski, J.-L.3
  • 15
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • Govindaraju R.S. Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 16
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 17
    • 0035538784 scopus 로고    scopus 로고
    • Selection of a kernel bandwidth for measuring dependence of hydrologic time series using the mutual information criterion
    • Harrold T.I., Sharma A., Sheather S. Selection of a kernel bandwidth for measuring dependence of hydrologic time series using the mutual information criterion. Stoch. Environ. Res. Risk Assess 2001, 15(4):310-324.
    • (2001) Stoch. Environ. Res. Risk Assess , vol.15 , Issue.4 , pp. 310-324
    • Harrold, T.I.1    Sharma, A.2    Sheather, S.3
  • 19
    • 79952266625 scopus 로고    scopus 로고
    • Characteristics of suspended solids, microorganisms, and chemical water quality in event-based stormwater runoff from an urban residential area
    • He J., Valeo C., Chu A., Neumann N.F. Characteristics of suspended solids, microorganisms, and chemical water quality in event-based stormwater runoff from an urban residential area. Water Environ. Res. 2010, 82(12):2333-2345.
    • (2010) Water Environ. Res. , vol.82 , Issue.12 , pp. 2333-2345
    • He, J.1    Valeo, C.2    Chu, A.3    Neumann, N.F.4
  • 20
    • 79952488722 scopus 로고    scopus 로고
    • Characterizing physicochemical quality of storm-water runoff from an urban area in Calgary, Alberta
    • He J., Valeo C., Chu A., Neumann N.F. Characterizing physicochemical quality of storm-water runoff from an urban area in Calgary, Alberta. J. Environ. Eng. 2010, 136(11):1206-1217.
    • (2010) J. Environ. Eng. , vol.136 , Issue.11 , pp. 1206-1217
    • He, J.1    Valeo, C.2    Chu, A.3    Neumann, N.F.4
  • 21
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4(2):251-257.
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 24
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural network: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural network: generalisation beyond the calibration range. J. Hydrol. 2000, 233(1-4):138-153.
    • (2000) J. Hydrol. , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 25
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain A., Prasad Indurthy S.K.V. Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. J. Hydrol. Eng. 2003, 8(2):93-98.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Prasad Indurthy, S.K.V.2
  • 26
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T.-W., Valdes J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 2003, 8(6):319-328.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.-W.1    Valdes, J.B.2
  • 27
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Monthly Weather Rev. 1998, 126(2):470-482.
    • (1998) Monthly Weather Rev. , vol.126 , Issue.2 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 28
    • 0032842742 scopus 로고    scopus 로고
    • Predicting stream nitrogen concentration from watershed features using neural networks
    • Lek S., Guiresse M., Giraudel J.-L. Predicting stream nitrogen concentration from watershed features using neural networks. Water Res. 1999, 33(16):3469-3478.
    • (1999) Water Res. , vol.33 , Issue.16 , pp. 3469-3478
    • Lek, S.1    Guiresse, M.2    Giraudel, J.-L.3
  • 29
    • 0346458961 scopus 로고    scopus 로고
    • Predicting near-shore coliform bacteria concentrations using ANNs
    • Lin B., Kashefipour S.M., Falconer R.A. Predicting near-shore coliform bacteria concentrations using ANNs. Water Sci. Technol. 2003, 48(10):225-232.
    • (2003) Water Sci. Technol. , vol.48 , Issue.10 , pp. 225-232
    • Lin, B.1    Kashefipour, S.M.2    Falconer, R.A.3
  • 30
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw. 2000, 15(1):101-124.
    • (2000) Environ. Modell. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 31
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 1996, 32(4):1013-1022.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 32
    • 0035108726 scopus 로고    scopus 로고
    • Neural network based modeling of environmental variables: a systematic approach
    • Maier H.R., Dandy G.C. Neural network based modeling of environmental variables: a systematic approach. Math. Comput. Modell. 2001, 33(6-7):669-682.
    • (2001) Math. Comput. Modell. , vol.33 , Issue.6-7 , pp. 669-682
    • Maier, H.R.1    Dandy, G.C.2
  • 33
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • May R.J., Dandy G.C., Maier H.R., Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Modell. Softw. 2008, 23(10-11):1289-1299.
    • (2008) Environ. Modell. Softw. , vol.23 , Issue.10-11 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 34
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Gayani Fernando T.M.K. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Modell. Softw. 2008, 23(10-11):1312-1326.
    • (2008) Environ. Modell. Softw. , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Gayani Fernando, T.M.K.4
  • 35
    • 60949113926 scopus 로고    scopus 로고
    • Performance of the rainfall-runoff models applied to an arid catchment in Oman
    • McIntyre N., Al-Qurashi A. Performance of the rainfall-runoff models applied to an arid catchment in Oman. Environ. Modell. Softw. 2009, 24(6):726-738.
    • (2009) Environ. Modell. Softw. , vol.24 , Issue.6 , pp. 726-738
    • McIntyre, N.1    Al-Qurashi, A.2
  • 36
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41(3):399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 37
    • 36649020916 scopus 로고    scopus 로고
    • Review of urban stormwater quality models: Deterministic, stochastic, and hybrid approaches
    • Obropta C.C., Kardos J.S. Review of urban stormwater quality models: Deterministic, stochastic, and hybrid approaches. J. Am. Water Resour. Assoc. 2007, 43(6):1508-1523.
    • (2007) J. Am. Water Resour. Assoc. , vol.43 , Issue.6 , pp. 1508-1523
    • Obropta, C.C.1    Kardos, J.S.2
  • 39
    • 40549084354 scopus 로고    scopus 로고
    • Event-based sediment yield modeling using artificial neural network
    • Rai R.K., Mathur B.S. Event-based sediment yield modeling using artificial neural network. Water Resour. Manage. 2008, 22(4):423-441.
    • (2008) Water Resour. Manage. , vol.22 , Issue.4 , pp. 423-441
    • Rai, R.K.1    Mathur, B.S.2
  • 40
    • 0027464578 scopus 로고
    • Neural network based screening for groundwater reclamation under uncertainty
    • Ranjithan S., Eheart J.W., Garrett J.H. Neural network based screening for groundwater reclamation under uncertainty. Water Resour. Res. 1993, 29(3):563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Garrett, J.H.3
  • 41
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 1994, 30(2):457-481.
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 42
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(9):533-536.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 43
    • 33746217873 scopus 로고    scopus 로고
    • Use of neural network to predict flash flood and attendant water qualities of mountainous stream on Oahu, Hawaii
    • Sahoo G.B., Ray C., De Carlo E.H. Use of neural network to predict flash flood and attendant water qualities of mountainous stream on Oahu, Hawaii. J. Hydrol. 2006, 327(3-4):525-538.
    • (2006) J. Hydrol. , vol.327 , Issue.3-4 , pp. 525-538
    • Sahoo, G.B.1    Ray, C.2    De Carlo, E.H.3
  • 44
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification. J. Hydrol. 2000, 239(1-4):232-239.
    • (2000) J. Hydrol. , vol.239 , Issue.1-4 , pp. 232-239
    • Sharma, A.1
  • 45
    • 0034694864 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3-A nonparametric probabilistic forecast model
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3-A nonparametric probabilistic forecast model. J. Hydrol. 2000, 239(1-4):249-258.
    • (2000) J. Hydrol. , vol.239 , Issue.1-4 , pp. 249-258
    • Sharma, A.1
  • 46
    • 0034694808 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 2-Predictor identification of quarterly rainfall using ocean-atmosphere information
    • Sharma A., Luk K.C., Cordery I., Lall U. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 2-Predictor identification of quarterly rainfall using ocean-atmosphere information. J. Hydrol. 2000, 239(1-4):240-248.
    • (2000) J. Hydrol. , vol.239 , Issue.1-4 , pp. 240-248
    • Sharma, A.1    Luk, K.C.2    Cordery, I.3    Lall, U.4
  • 47
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 48
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: Four layers versus three
    • Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural Networks 1997, 8(2):251-255.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 49
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraul. Eng. 2006, 132(12):1321-1330.
    • (2006) J. Hydraul. Eng. , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 50
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4(3):232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.