메뉴 건너뛰기




Volumn 92, Issue 1, 2011, Pages 172-177

Estimating monthly total nitrogen concentration in streams by using artificial neural network

Author keywords

Artificial neural network; Land use; Nitrogen concentration; Stream water

Indexed keywords

FORECASTING; FORESTRY; LAND USE; NITROGEN FERTILIZERS; RIVERS; SENSITIVITY ANALYSIS;

EID: 77957769268     PISSN: 03014797     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jenvman.2010.09.014     Document Type: Article
Times cited : (64)

References (43)
  • 1
    • 0034804080 scopus 로고    scopus 로고
    • Application of the Kohonen neural network in coastal water management: methodological development for the assessment and prediction of water quality
    • Aguilera P.A., Frenich A.G., Torres J.A., Castro H., Vidal J.L.M., Canton M. Application of the Kohonen neural network in coastal water management: methodological development for the assessment and prediction of water quality. Water Research 2001, 35(17):4053-4062.
    • (2001) Water Research , vol.35 , Issue.17 , pp. 4053-4062
    • Aguilera, P.A.1    Frenich, A.G.2    Torres, J.A.3    Castro, H.4    Vidal, J.L.M.5    Canton, M.6
  • 2
    • 60949114528 scopus 로고    scopus 로고
    • A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment
    • Anctil F., Filion M., Tournebize J. A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment. Ecological Modelling 2009, 220:879-887.
    • (2009) Ecological Modelling , vol.220 , pp. 879-887
    • Anctil, F.1    Filion, M.2    Tournebize, J.3
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. 1: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee Artificial neural networks in hydrology. 1: preliminary concepts. Journal of Hydrological Engineering ASCE 2000, 5(2):115-123.
    • (2000) Journal of Hydrological Engineering ASCE , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 9444245344 scopus 로고    scopus 로고
    • Rainfall-runoff Modelling Using Three Neural Network Methods
    • Lecture Notes in Artificial Intelligencepp. Springer-Verlag
    • Cigizoglu H.K., Alp M. Rainfall-runoff Modelling Using Three Neural Network Methods. Lecture Notes in Computer Science 2004, Lecture Notes in Artificial Intelligencepp. 166-171, Springer-Verlag.
    • (2004) Lecture Notes in Computer Science , pp. 166-171
    • Cigizoglu, H.K.1    Alp, M.2
  • 6
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E., Sengorur B., Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management 2009, 90:1229-1235.
    • (2009) Journal of Environmental Management , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 8
    • 0000152448 scopus 로고
    • Forecasting with neural networks: an application using bankruptcy data
    • Fletcher D., Goss E. Forecasting with neural networks: an application using bankruptcy data. Information and Management 1993, 24(3):159-167.
    • (1993) Information and Management , vol.24 , Issue.3 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 9
    • 33745195283 scopus 로고    scopus 로고
    • Estimation of chemical oxygen demand by ultraviolet spectroscopic profiling and artificial neural networks
    • Fogelman S., Blumenstein M., Zhao H. Estimation of chemical oxygen demand by ultraviolet spectroscopic profiling and artificial neural networks. Neural Computation Application 2006, 15:197-203.
    • (2006) Neural Computation Application , vol.15 , pp. 197-203
    • Fogelman, S.1    Blumenstein, M.2    Zhao, H.3
  • 10
    • 43149103290 scopus 로고    scopus 로고
    • Application of the artificial neural network method to estimate the missing hydrological data
    • He B., Takase K. Application of the artificial neural network method to estimate the missing hydrological data. Journal of Japan Society of Hydrology and Water Resource (JSHWR) 2006, 19(4):249-257.
    • (2006) Journal of Japan Society of Hydrology and Water Resource (JSHWR) , vol.19 , Issue.4 , pp. 249-257
    • He, B.1    Takase, K.2
  • 11
    • 68349135171 scopus 로고    scopus 로고
    • Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan
    • He B., Oki T., Kanae S., Mouri G., Kodama K., Komori D., Seto S. Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan. Ecological Modelling 2009, 220:2325-2334.
    • (2009) Ecological Modelling , vol.220 , pp. 2325-2334
    • He, B.1    Oki, T.2    Kanae, S.3    Mouri, G.4    Kodama, K.5    Komori, D.6    Seto, S.7
  • 12
    • 73349099090 scopus 로고    scopus 로고
    • Using remotely sensed imagery to estimate potential annual pollutant loads in river basins
    • He B., Oki K., Wang Y., Oki T. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins. Water Science and Technology 2009, 60(8):2009-2015. 10.2166/wst.2009.596.
    • (2009) Water Science and Technology , vol.60 , Issue.8 , pp. 2009-2015
    • He, B.1    Oki, K.2    Wang, Y.3    Oki, T.4
  • 13
    • 43049097117 scopus 로고    scopus 로고
    • Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA
    • He L.M., He Z.L. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research 2009, 42:2563-2573.
    • (2009) Water Research , vol.42 , pp. 2563-2573
    • He, L.M.1    He, Z.L.2
  • 14
    • 33646162414 scopus 로고    scopus 로고
    • An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change
    • Holmberg M., Forsius M., Starr M., Huttunen M. An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate change. Ecological Modelling 2006, 195:51-60.
    • (2006) Ecological Modelling , vol.195 , pp. 51-60
    • Holmberg, M.1    Forsius, M.2    Starr, M.3    Huttunen, M.4
  • 15
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta V.H., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resource Research 1995, 31:2517-2530.
    • (1995) Water Resource Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.H.2    Sorooshian, S.3
  • 16
    • 53549097342 scopus 로고    scopus 로고
    • Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas
    • Kim M., Gilley J.E. Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Computers and Electronics in Agriculture 2008, 64(2):268-275.
    • (2008) Computers and Electronics in Agriculture , vol.64 , Issue.2 , pp. 268-275
    • Kim, M.1    Gilley, J.E.2
  • 17
    • 14644420957 scopus 로고    scopus 로고
    • Influence of N flow change on environment between 1912 and 2002: a case study of one city in Hokkaido, Japan
    • Kimura S.D., Liang L., Hatano R. Influence of N flow change on environment between 1912 and 2002: a case study of one city in Hokkaido, Japan. Nutrient Cycling in Agroecosystems 2004, 70:271-282.
    • (2004) Nutrient Cycling in Agroecosystems , vol.70 , pp. 271-282
    • Kimura, S.D.1    Liang, L.2    Hatano, R.3
  • 18
    • 85168785880 scopus 로고    scopus 로고
    • Creation of an eco-balance model to assess environmental risks caused by nitrogen load in a basin-agroecosystem. PhD thesis, Hokkaido University Graduate School of Agriculture, Japan.
    • Kimura, S.D., 2005. Creation of an eco-balance model to assess environmental risks caused by nitrogen load in a basin-agroecosystem. PhD thesis, Hokkaido University Graduate School of Agriculture, Japan.
    • (2005)
    • Kimura, S.D.1
  • 19
    • 33947702689 scopus 로고    scopus 로고
    • An eco-balance approach to the evaluation of historical changes in nitrogen loads at a regional scale
    • Kimura S.D., Hatano R. An eco-balance approach to the evaluation of historical changes in nitrogen loads at a regional scale. Agricultural Systems 2007, 94:165-176.
    • (2007) Agricultural Systems , vol.94 , pp. 165-176
    • Kimura, S.D.1    Hatano, R.2
  • 20
    • 0032842742 scopus 로고    scopus 로고
    • Predicting stream nitrogen concentration from watershed features using neural networks
    • Lek S., Guiresse M., Giraudel J. Predicting stream nitrogen concentration from watershed features using neural networks. Water Research 1999, 33(16):3469-3478.
    • (1999) Water Research , vol.33 , Issue.16 , pp. 3469-3478
    • Lek, S.1    Guiresse, M.2    Giraudel, J.3
  • 21
    • 0035110876 scopus 로고    scopus 로고
    • Investigating trends of hydrochemical time series of small catchments by artificial neural networks
    • Lischeid G. Investigating trends of hydrochemical time series of small catchments by artificial neural networks. Physics and Chemistry of the Earth (B) 2001, 26:15-18.
    • (2001) Physics and Chemistry of the Earth (B) , vol.26 , pp. 15-18
    • Lischeid, G.1
  • 23
    • 53149099780 scopus 로고    scopus 로고
    • Artificial neural networks and grey-box modelling: a comparison
    • The Institution of Engineers Australia, Sydney, Australia, I.B. Joliffe, J.E. Ball (Eds.), A 30;S 3,
    • Loke E., Arnbjerg-Nielsen K., Harremoes P. Artificial neural networks and grey-box modelling: a comparison. Eighth International Conference: Urban Storm Drainage Proceedings August 30-September 3, 1999, vol. 1. The Institution of Engineers Australia, Sydney, Australia. I.B. Joliffe, J.E. Ball (Eds.).
    • (1999) Eighth International Conference: Urban Storm Drainage Proceedings , vol.1
    • Loke, E.1    Arnbjerg-Nielsen, K.2    Harremoes, P.3
  • 24
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resource Research 1996, 32(4):1013-1022.
    • (1996) Water Resource Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 53149113747 scopus 로고    scopus 로고
    • Prediction of urban stormwater quality using artificial neural networks
    • May D.B., Sivakumar M. Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling & Software 2009, 24:296-302.
    • (2009) Environmental Modelling & Software , vol.24 , pp. 296-302
    • May, D.B.1    Sivakumar, M.2
  • 26
    • 27644537224 scopus 로고    scopus 로고
    • Prediction of flow characteristics using multiple regression and neural networks: a case study in Zimbabwe
    • Mazvimavi D., Meijerink A.M.J., Savenije H.H.G., Stein A. Prediction of flow characteristics using multiple regression and neural networks: a case study in Zimbabwe. Physics and Chemistry of the Earth 2005, 30:639-647.
    • (2005) Physics and Chemistry of the Earth , vol.30 , pp. 639-647
    • Mazvimavi, D.1    Meijerink, A.M.J.2    Savenije, H.H.G.3    Stein, A.4
  • 27
    • 85168790402 scopus 로고    scopus 로고
    • Ministry of Land, Infrastructure, Transport and Tourism, MLIT Land Use Data, .
    • Ministry of Land, Infrastructure, Transport and Tourism, MLIT Land Use Data, http://nlftp.mlit.go.jp/ksj2/index.html.
  • 28
    • 85168780929 scopus 로고    scopus 로고
    • Ministry of Land, Infrastructure, Transport and Tourism, MLIT Water Information System, .
    • Ministry of Land, Infrastructure, Transport and Tourism, MLIT Water Information System, http://www1.river.go.jp/.
  • 29
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall runoff models. Hydrological Sciences Journal 1996, 41(3):399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 30
    • 0035038829 scopus 로고    scopus 로고
    • Recent trend of nitrogen flow associated with agricultural production in Japan
    • Mishima S. Recent trend of nitrogen flow associated with agricultural production in Japan. Soil Science and Plant Nutrition 2001, 47(1):157-166.
    • (2001) Soil Science and Plant Nutrition , vol.47 , Issue.1 , pp. 157-166
    • Mishima, S.1
  • 31
    • 33748054300 scopus 로고    scopus 로고
    • Global Hydrologic Cycle and world water resources
    • Oki T., Kanae S. Global Hydrologic Cycle and world water resources. Science 2006, 313(5790):1068-1072. 10.1126/science.1128845.
    • (2006) Science , vol.313 , Issue.5790 , pp. 1068-1072
    • Oki, T.1    Kanae, S.2
  • 34
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India
    • Sarangi A., Bhattacharya A.K. Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India. Agricultural Water Management 2005, 78:195-208.
    • (2005) Agricultural Water Management , vol.78 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 37
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • 9a
    • Sengorur B., Dogan E., Koklu R., Samandar A. Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environmental Bulletin 2006, 15(9a):1064-1067.
    • (2006) Fresenius Environmental Bulletin , vol.15 , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 38
    • 0032842742 scopus 로고    scopus 로고
    • Prediction of stream nitrogen concentration from watershed features using neural network
    • Sovan L.G., Maritxu A., Giraudel J. Prediction of stream nitrogen concentration from watershed features using neural network. Water Research 1999, 33(16):3469-3478.
    • (1999) Water Research , vol.33 , Issue.16 , pp. 3469-3478
    • Sovan, L.G.1    Maritxu, A.2    Giraudel, J.3
  • 41
    • 20444494282 scopus 로고    scopus 로고
    • Case study: finite element method and artificial neural network models for flow through Jeziorsko Earthfill dam in Poland
    • Tayfur G., Swiatek D., Wita A., Singh V.P. Case study: finite element method and artificial neural network models for flow through Jeziorsko Earthfill dam in Poland. Journal of Hydraulic Engineering 2005, 131(6):431-440.
    • (2005) Journal of Hydraulic Engineering , vol.131 , Issue.6 , pp. 431-440
    • Tayfur, G.1    Swiatek, D.2    Wita, A.3    Singh, V.P.4
  • 42
    • 0031908080 scopus 로고    scopus 로고
    • A neural network approach to multiobjective optimization for water quality management in a river basin
    • Wen C.G., Lee C.S. A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resource Research 1998, 34(3):427-436.
    • (1998) Water Resource Research , vol.34 , Issue.3 , pp. 427-436
    • Wen, C.G.1    Lee, C.S.2
  • 43
    • 0345801150 scopus 로고    scopus 로고
    • Application of artificial neural network for water quality management
    • Zaheer I., Bai C.G. Application of artificial neural network for water quality management. Journal of Lowland Technology International 2003, 5(2):10-15.
    • (2003) Journal of Lowland Technology International , vol.5 , Issue.2 , pp. 10-15
    • Zaheer, I.1    Bai, C.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.