메뉴 건너뛰기




Volumn 14, Issue 1, 2012, Pages 167-179

Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system

Author keywords

Adaptive network based fuzzy inference system; Dissolved oxygen; Modelling; Reservoir

Indexed keywords


EID: 84865022391     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2011.084     Document Type: Article
Times cited : (37)

References (38)
  • 1
    • 27744588537 scopus 로고    scopus 로고
    • Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn
    • DOI 10.1016/j.ecolmodel.2005.03.007, PII S0304380005002036
    • Altunkaynak, A., Özger, M. & Cakmakci, M. 2005 Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol Model 189 (3-4), 436-446. (Pubitemid 41630728)
    • (2005) Ecological Modelling , vol.189 , Issue.3-4 , pp. 436-446
    • Altunkaynak, A.1    Ozger, M.2    Cakmakci, M.3
  • 2
    • 0037302368 scopus 로고    scopus 로고
    • Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece
    • DOI 10.1016/S0304-3800(02)00286-7, PII S0304380002002867
    • Antonopoulos, V. Z. & Gianniou, S. K. 2003 Simulation of water temperature and dissolved oxygen distribution in the Lake Vegoritis, Greece. Ecol. Model. 160 (1-2), 39-53. (Pubitemid 36117245)
    • (2003) Ecological Modelling , vol.160 , Issue.1-2 , pp. 39-53
    • Antonopoulos, V.Z.1    Gianniou, S.K.2
  • 3
    • 33847710603 scopus 로고    scopus 로고
    • Conceptual fuzzy neural network model for water quality simulation
    • DOI 10.1002/hyp.6279
    • Chaves, P. & Kojiri, T. 2007 Conceptual fuzzy neural network model for water quality simulation. Hydrol. Process. 21 (5), 634-646. (Pubitemid 46371803)
    • (2007) Hydrological Processes , vol.21 , Issue.5 , pp. 634-646
    • Chaves, P.1    Kojiri, T.2
  • 4
    • 33846953950 scopus 로고    scopus 로고
    • Hydroinformatics techniques in eco-environmental modelling and management
    • Chen, Q., Morales-Chaves, Y., Li, H. & Mynett, A. E. 2006 Hydroinformatics techniques in eco-environmental modelling and management. J. Hydroinform. 8 (4), 297-316.
    • (2006) J. Hydroinform. , vol.8 , Issue.4 , pp. 297-316
    • Chen, Q.1    Morales-Chaves, Y.2    Li, H.3    Mynett, A.E.4
  • 5
    • 77949637588 scopus 로고    scopus 로고
    • Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast China
    • Chen, D., Lu, J. & Shen, Y. 2010 Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast China. Hydrol. Process. 24 (3), 290-299.
    • (2010) Hydrol. Process. , vol.24 , Issue.3 , pp. 290-299
    • Chen, D.1    Lu, J.2    Shen, Y.3
  • 6
    • 33750181522 scopus 로고    scopus 로고
    • Ecological informatics as an advanced interdisciplinary interpretation of ecosystems
    • Chon, T. S. & Park, Y. S. 2006 Ecological informatics as an advanced interdisciplinary interpretation of ecosystems. Ecol. Inform. 1 (3), 213-217.
    • (2006) Ecol. Inform. , vol.1 , Issue.3 , pp. 213-217
    • Chon, T.S.1    Park, Y.S.2
  • 8
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan, E., Sengorur, B. & Koklu, R. 2009 Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manag. 90 (2), 1229-1235.
    • (2009) J. Environ. Manag. , vol.90 , Issue.2 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 9
    • 0036888603 scopus 로고    scopus 로고
    • Structure identification and parameter optimization for non-linear fuzzy modeling
    • DOI 10.1016/S0165-0114(02)00111-2, PII S0165011402001112
    • Evsukoff, A., Branco, A. C. S. & Galichet, S. 2002 Structure identification and parameter optimization for non-linear fuzzy modeling. Fuzzy Sets Sys. 132 (2), 173-188. (Pubitemid 35290970)
    • (2002) Fuzzy Sets and Systems , vol.132 , Issue.2 , pp. 173-188
    • Evsukoff, A.1    Branco, A.C.S.2    Galichet, S.3
  • 10
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • DOI 10.1002/hyp.6812
    • Firat, M. & Güngör, M. 2008 Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrol. Process. 22 (13), 2122-2132. (Pubitemid 351927456)
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2122-2132
    • Firat, M.1    Gungor, M.2
  • 11
    • 68949108236 scopus 로고    scopus 로고
    • Spatio-temporal dissolved oxygen dynamics in the Orbetello lagoon by fuzzy pattern recognition
    • Giusti, E. & Marsili-Libelli, S. 2009 Spatio-temporal dissolved oxygen dynamics in the Orbetello lagoon by fuzzy pattern recognition. Ecol. Model. 220 (19), 2415-2426.
    • (2009) Ecol. Model. , vol.220 , Issue.19 , pp. 2415-2426
    • Giusti, E.1    Marsili-Libelli, S.2
  • 12
    • 68949105694 scopus 로고    scopus 로고
    • Review of the application of fuzzy inference systems in river flow forecasting
    • Jacquin, A. P. & Shamseldin, A. Y. 2009 Review of the application of fuzzy inference systems in river flow forecasting. J. Hydroinform. 11 (3-4), 202-210.
    • (2009) J. Hydroinform. , vol.11 , Issue.3-4 , pp. 202-210
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • Jang, J. S. R. 1993 ANFIS: Adaptive-Network-Based Fuzzy Inference Systems. IEEE Trans. Syst. Man Cybernet. 23 (3), 665-685.
    • (1993) IEEE Trans. Syst. Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang, J. S. R. & Sun, C. T. 1993 Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neur. Net. 4 (1), 156-159.
    • (1993) IEEE Trans. Neur. Net. , vol.4 , Issue.1 , pp. 156-159
    • Jang, J.S.R.1    Sun, C.T.2
  • 17
    • 0028532753 scopus 로고
    • Fuzzy Systems as universal approximators
    • Kosko, B. 1994 Fuzzy Systems as universal approximators. IEEE Trans. Comp. 43 (11), 1329-1333.
    • (1994) IEEE Trans. Comp. , vol.43 , Issue.11 , pp. 1329-1333
    • Kosko, B.1
  • 18
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • DOI 10.1016/j.ecolmodel.2006.06.018, PII S0304380006002985
    • Kuo, J. T., Hsieh, M. H., Lung, W. S. & She, N. 2007 Using artificial neural network for reservoir eutrophication prediction. Ecol. Model. 200 (1-2), 171-177. (Pubitemid 44828246)
    • (2007) Ecological Modelling , vol.200 , Issue.1-2 , pp. 171-177
    • Kuo, J.-T.1    Hsieh, M.-H.2    Lung, W.-S.3    She, N.4
  • 19
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J. Y., Cheng, C. T. & Chau, K. W. 2006 Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 51 (4), 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 20
    • 0037366651 scopus 로고    scopus 로고
    • Application of two-stage fuzzy set theory to river quality evaluation in Taiwan
    • Liou, S. M., Lo, S. L. & Hu, C. Y. 2003 Application of two-stage fuzzy set theory to river quality evaluation in Taiwan. Water Res. 37 (6), 1406-1416.
    • (2003) Water Res , vol.37 , Issue.6 , pp. 1406-1416
    • Liou, S.M.1    Lo, S.L.2    Hu, C.Y.3
  • 21
    • 2642570244 scopus 로고    scopus 로고
    • Fuzzy prediction of the algal blooms in the Orbetello lagoon
    • DOI 10.1016/j.envsoft.2003.03.008, PII S136481520300207X, Environmenatl Sciences and Artificial Intelligence
    • Marsili-Libelli, S. 2004 Fuzzy prediction of the algal blooms in the Orbetello lagoon. Environ. Model. Softw. 19 (9), 799-808. (Pubitemid 38722588)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.9 , pp. 799-808
    • Marsili-Libelli, S.1
  • 22
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May, R. J., Maier, H. R., Dandy, G. C. & Fernando, T. M. K. G 2008 Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Model. Software 23 (10-11), 1312-1326.
    • (2008) Environ. Model. Software , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 23
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • DOI 10.1504/IJEP.2006.011208
    • Muttil, N. & Chau, K. W. 2006 Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut. 28 (3-4), 223-238. (Pubitemid 44905987)
    • (2006) International Journal of Environment and Pollution , vol.28 , Issue.3-4 , pp. 223-238
    • Muttil, N.1    Chau, K.-W.2
  • 24
    • 29844438162 scopus 로고    scopus 로고
    • Estimate of the eutrophication process in the Gruža Reservoir (Serbia and Montenegro)
    • DOI 10.1002/aheh.200500601
    • Ostojic, A., Curcic, S., Comic, Lj. & Topuzovic, M. 2005 Estimate of the eutrophication process in the Gruza Reservoir (Serbia and Montenegro). Acta Hydrochim. Hydrobiol. 33 (6), 605-613. (Pubitemid 43033946)
    • (2005) Acta Hydrochimica et Hydrobiologica , vol.33 , Issue.6 , pp. 605-613
    • Ostojic, A.1    Curcic, S.2    Comic, L.3    Topuzovic, M.4
  • 25
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S. Y. & Tkalich, P. 2008 An ANN application for water quality forecasting. Marine Pollut. Bull. 56 (9), 1586-1597.
    • (2008) Marine Pollut. Bull. , vol.56 , Issue.9 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 26
    • 65549160093 scopus 로고    scopus 로고
    • Fuzzy modelling of chlorophyll production in a Brazilian upwelling system
    • Pereira, G. C., Evsukoff, A. & Ebecken, N. F. F. 2009 Fuzzy modelling of chlorophyll production in a Brazilian upwelling system. Ecol. Model. 220 (12), 1506-1512.
    • (2009) Ecol. Model. , vol.220 , Issue.12 , pp. 1506-1512
    • Pereira, G.C.1    Evsukoff, A.2    Ebecken, N.F.F.3
  • 28
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • Sengorur, B., Dogan, E., Koklu, R. & Samandar, A. 2006 Dissolved oxygen estimation using artificial neural network for water quality control. Fresen. Environ. Bull. 15 (9a), 1064-1067. (Pubitemid 44555334)
    • (2006) Fresenius Environmental Bulletin , vol.15 , Issue.9 A , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 29
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality - A case study
    • Singh, K. P., Basant, A., Malik, A. & Jain, G. 2009 Artificial neural network modeling of the river water quality - a case study. Ecol Model. 220 (6), 888-895.
    • (2009) Ecol Model , vol.220 , Issue.6 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 30
    • 3542995160 scopus 로고    scopus 로고
    • Fuzzy logic model to estimate seasonal pseudo steady state chlorophyll-a concentrations in reservoirs
    • DOI 10.1023/B:ENMO.0000020890.57185.92
    • Soyupak, S. & Chen, D. G. 2004 Fuzzy logic model to estimate seasonal pseudo steady state chlorophyll-a concentrations in reservoirs. Environ. Model. Assess. 9 (1), 51-59. (Pubitemid 39008977)
    • (2004) Environmental Modeling and Assessment , vol.9 , Issue.1 , pp. 51-59
    • Soyupak, S.1    Chen, D.-G.2
  • 31
    • 0346972461 scopus 로고    scopus 로고
    • A neural network-based approach for calculating dissolved oxygen profiles in reservoirs
    • DOI 10.1007/s00521-003-0378-8
    • Soyupak, S., Karaer, F., Gürbüz, H., Kivrak, E., Sentürk, E. & Yazici, A. 2003 A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput. Appl. 12 (3-4), 166-172. (Pubitemid 38039903)
    • (2003) Neural Computing and Applications , vol.12 , Issue.3-4 , pp. 166-172
    • Soyupak, S.1    Karaer, F.2    Gurbuz, H.3    Kivrak, E.4    Senturk, E.5    Yazici, A.6
  • 32
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno, M. & Kang, G. T. 1988 Structure identification of fuzzy model. Fuzzy Sets Syst. 28 (1), 15-33.
    • (1988) Fuzzy Sets Syst , vol.28 , Issue.1 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 33
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi, T. & Sugeno, M. 1985 Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1), 116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 34
    • 33845713790 scopus 로고    scopus 로고
    • Evaluation of uncertainty propagation into river water quality predictions to guide future monitoring campaigns
    • DOI 10.1016/j.envsoft.2005.12.019, PII S1364815206000466, The Implications of Complexity for Integrated Resources The Second Biannual Meeting of the International EnvironmentalModelling and Software Society: Complexity and Integrated Resources Management
    • Vandenberghe, V., Bauwens, W. & Vanrolleghem, P. A. 2007 Evaluation of uncertainty propagation into river water quality predictions to guide future monitoring campaigns. Environ. Model. Software 22 (5), 725-732. (Pubitemid 44970006)
    • (2007) Environmental Modelling and Software , vol.22 , Issue.5 , pp. 725-732
    • Vandenberghe, V.1    Bauwens, W.2    Vanrolleghem, P.A.3
  • 35
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • Wang, H., Kwong, S., Jinb, Y., Wei, W. & Mand, K. F. 2005 Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Set. Syst. 149 (1), 149-186.
    • (2005) Fuzzy Set. Syst. , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jinb, Y.3    Wei, W.4    Mand, K.F.5
  • 36
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T. & Qiu, L. 2009 A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374 (3-4), 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 37
    • 34748907750 scopus 로고    scopus 로고
    • Adaptive fuzzy modeling versus artificial neural networks
    • DOI 10.1016/j.envsoft.2007.06.004, PII S136481520700117X
    • Wieland, R. & Mirschel, W. 2008 Adaptive fuzzy modeling versus artificial neural networks. Environ. Model. Software 23 (2), 215-224. (Pubitemid 47488938)
    • (2008) Environmental Modelling and Software , vol.23 , Issue.2 , pp. 215-224
    • Wieland, R.1    Mirschel, W.2
  • 38
    • 34548260729 scopus 로고    scopus 로고
    • Water quality forecast through application of BP neural network at Yuquio reservoir
    • Ying, Z., Jun, N., Fuyi, C. & Liang, G. 2007 Water quality forecast through application of BP neural network at Yuquio reservoir. J. Zhejiang Univ. Sci. A. 8 (9), 1482-1487.
    • (2007) J. Zhejiang Univ. Sci. A. , vol.8 , Issue.9 , pp. 1482-1487
    • Ying, Z.1    Jun, N.2    Fuyi, C.3    Liang, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.