메뉴 건너뛰기




Volumn 38, Issue 2, 2006, Pages 227-237

Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks

Author keywords

Artificial reservoir; Cyanobacteria; Eutrophication; Forecasting; Modelling; Neural network; Water quality management

Indexed keywords

EUTROPHICATION; MATHEMATICAL MODELS; NEURAL NETWORKS; RESERVOIRS (WATER); RIVERS; TIME SERIES ANALYSIS;

EID: 33745323400     PISSN: 0364152X     EISSN: 14321009     Source Type: Journal    
DOI: 10.1007/s00267-005-0074-9     Document Type: Article
Times cited : (35)

References (35)
  • 2
    • 0034767364 scopus 로고    scopus 로고
    • Inducing explanatory rules for the prediction of algal blooms by genetic algorithms
    • Bobbin, J., and F. Recknagel. 2001a. Inducing explanatory rules for the prediction of algal blooms by genetic algorithms. Environmental International 27:237-242.
    • (2001) Environmental International , vol.27 , pp. 237-242
    • Bobbin, J.1    Recknagel, F.2
  • 3
    • 0035672574 scopus 로고    scopus 로고
    • Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms
    • Bobbin, J., and F. Recknagel. 2001b. Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms. Ecological Modelling 146:253-262.
    • (2001) Ecological Modelling , vol.146 , pp. 253-262
    • Bobbin, J.1    Recknagel, F.2
  • 4
    • 0035179486 scopus 로고    scopus 로고
    • PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal)
    • Ferreira, F. M. B., J. M. F. Soler, M. L. Fidalgo, and P. Fernández-Vila. 2001. PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon 39(6):757-761.
    • (2001) Toxicon , vol.39 , Issue.6 , pp. 757-761
    • Ferreira, F.M.B.1    Soler, J.M.F.2    Fidalgo, M.L.3    Fernández-Vila, P.4
  • 5
    • 0028602193 scopus 로고
    • Modelling of algal blooms in freshwaters using artificial neural networks
    • Zaneti P (ed.), Computational Mechanics Publications, Boston
    • French, M., and F. Recknagel.. 1994. Modelling of algal blooms in freshwaters using artificial neural networks. Pages 87-94 in Zaneti P (ed.), Computer techniques in environmental studies V. Environmental systems. Vio. II. Computational Mechanics Publications, Boston.
    • (1994) Computer Techniques in Environmental Studies V. Environmental Systems , vol.2 , pp. 87-94
    • French, M.1    Recknagel, F.2
  • 7
    • 0025751820 scopus 로고
    • Approximation capability of multilayer feedforward networks
    • Hornik K. 1991. Approximation capability of multilayer feedforward networks. Neural Networks 4:251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 8
    • 0035669752 scopus 로고    scopus 로고
    • Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network
    • Jeong, K.-S., G.-J. Joo, H.-W Kim, K. Ha, and F. Recknagel. 2001. Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecological Modelling 146(1-3):115-129.
    • (2001) Ecological Modelling , vol.146 , Issue.1-3 , pp. 115-129
    • Jeong, K.-S.1    Joo, G.-J.2    Kim, H.-W.3    Ha, K.4    Recknagel, F.5
  • 9
    • 6744229741 scopus 로고    scopus 로고
    • Neural network models as a management tool in lakes
    • Karul, C., S. Soyupak, and C. Yurteri. 1999. Neural network models as a management tool in lakes. Hydrobiologia 408/ 409:139-144.
    • (1999) Hydrobiologia , vol.408-409 , pp. 139-144
    • Karul, C.1    Soyupak, S.2    Yurteri, C.3
  • 10
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modelling
    • Karul, C., S. Soyupak, A. F. Çilesiz, N. Akbay, and E. Germen. 2000. Case studies on the use of neural networks in eutrophication modelling. Ecological Modelling 134:145-152.
    • (2000) Ecological Modelling , vol.134 , pp. 145-152
    • Karul, C.1    Soyupak, S.2    Çilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 11
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
    • Maier, H. G., and G. C. Dandy. 1998. The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling and Software 13:193-209.
    • (1998) Environmental Modelling and Software , vol.13 , pp. 193-209
    • Maier, G.H.1    Dandy, G.C.2
  • 12
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. G., and G. C. Dandy. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15:101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.G.1    Dandy, G.C.2
  • 13
    • 0035108726 scopus 로고    scopus 로고
    • Neural network based modelling of environmental variables: A systematic approach
    • Maier, H. G., and G. C. Dandy. 2001. Neural network based modelling of environmental variables: a systematic approach. Mathematical and Computer Modelling 33:669-682.
    • (2001) Mathematical and Computer Modelling , vol.33 , pp. 669-682
    • Maier, H.G.1    Dandy, G.C.2
  • 14
    • 0031933254 scopus 로고    scopus 로고
    • Use of artificial networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia
    • Maier, H. G., G. C. Dandy, and M. Burch. 1998. Use of artificial networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling 105:257-272.
    • (1998) Ecological Modelling , vol.105 , pp. 257-272
    • Maier, H.G.1    Dandy, G.C.2    Burch, M.3
  • 15
    • 0035669543 scopus 로고    scopus 로고
    • Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models
    • Maier, H. G., T. Sayed, and B. J. Lence. 2001. Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models. Ecological Modelling 146:85-96.
    • (2001) Ecological Modelling , vol.146 , pp. 85-96
    • Maier, H.G.1    Sayed, T.2    Lence, B.J.3
  • 18
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi, M., and G. P. Zhang. 2001. An investigation of model selection criteria for neural network time series forecasting. European Journal of Operational Research 132(3):666-680.
    • (2001) European Journal of Operational Research , vol.132 , Issue.3 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 19
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modelling
    • Recknagel, F. 2001. Applications of machine learning to ecological modelling. Ecological Modelling 146:303-310.
    • (2001) Ecological Modelling , vol.146 , pp. 303-310
    • Recknagel, F.1
  • 20
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel, F., M. French, P. Harkonen, and K.-I. Yabunaka. 1997. Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling 96:11-28.
    • (1997) Ecological Modelling , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.-I.4
  • 21
    • 0035673819 scopus 로고    scopus 로고
    • Advances in neural network modelling of phytoplankton primary production
    • Scardi, M. 2001. Advances in neural network modelling of phytoplankton primary production. Ecological Modelling 146:33-45.
    • (2001) Ecological Modelling , vol.146 , pp. 33-45
    • Scardi, M.1
  • 22
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • Scardi, M., and L. Harding. 1999. Developing an empirical model of phytoplankton primary production: a neural network case study. Ecological Modelling 120:213-223.
    • (1999) Ecological Modelling , vol.120 , pp. 213-223
    • Scardi, M.1    Harding, L.2
  • 23
    • 0034306915 scopus 로고    scopus 로고
    • Neural networks in agroecological modelling: Stylish application or helpful tool?
    • Schultz, A., R. Wieland, and G. Lutze. 2000. Neural networks in agroecological modelling: stylish application or helpful tool? Computers and Electronics in Agriculture 29:73-97.
    • (2000) Computers and Electronics in Agriculture , vol.29 , pp. 73-97
    • Schultz, A.1    Wieland, R.2    Lutze, G.3
  • 24
    • 0026254768 scopus 로고
    • A generalized regression neural network
    • Speckt, D. F. 1991. A generalized regression neural network. IEEE Transactions on Neural Networks 2(6):568-576.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Speckt, D.F.1
  • 27
    • 0027139083 scopus 로고
    • Isolation of microcystin-LR from a Microcystis (Cyanobacteria) bloom collected in the drinking water reservoir for Porto, Portugal
    • Vasconcelos, V. M., W. W. Evans, W. Carmichael, and M. Namikoshi. 1993. Isolation of microcystin-LR from a Microcystis (Cyanobacteria) bloom collected in the drinking water reservoir for Porto, Portugal. Journal of Environmental Science and Health 28(9):2081-2094.
    • (1993) Journal of Environmental Science and Health , vol.28 , Issue.9 , pp. 2081-2094
    • Vasconcelos, V.M.1    Evans, W.W.2    Carmichael, W.3    Namikoshi, M.4
  • 28
    • 0035057610 scopus 로고    scopus 로고
    • Use of artificial neural network in the prediction of algal blooms
    • Wei, B., N. Sugiura, and T. Maekawa. 2001. Use of artificial neural network in the prediction of algal blooms. Water Research 35(8):2022-2028.
    • (2001) Water Research , vol.35 , Issue.8 , pp. 2022-2028
    • Wei, B.1    Sugiura, N.2    Maekawa, T.3
  • 29
    • 0035669859 scopus 로고    scopus 로고
    • Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms
    • Whigham, P. A., and F. Recknagel. 2001a. Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecological Modelling 146:243-251.
    • (2001) Ecological Modelling , vol.146 , pp. 243-251
    • Whigham, P.A.1    Recknagel, F.2
  • 30
    • 0035669679 scopus 로고    scopus 로고
    • An inductive approach to ecological time series modelling by evolutionary computation
    • Whigham, P. A., and F. Recknagel. 2001b. An inductive approach to ecological time series modelling by evolutionary computation. Ecological Modelling 146:275-287.
    • (2001) Ecological Modelling , vol.146 , pp. 275-287
    • Whigham, P.A.1    Recknagel, F.2
  • 31
    • 0030729974 scopus 로고    scopus 로고
    • Modelling algal growth and transport in rivers: A comparison of time series analysis, dynamic mass balance and neural network techniques
    • Whitehead, P. G., A. Howard, and C. Arulmani. 1997. Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia 349:39-46.
    • (1997) Hydrobiologia , vol.349 , pp. 39-46
    • Whitehead, P.G.1    Howard, A.2    Arulmani, C.3
  • 33
    • 0032133950 scopus 로고    scopus 로고
    • Neural network forecasting of the British pound/US dollar exchange rate
    • Zhang, G. P., and M. Y. Hu. 1998. Neural network forecasting of the British pound/US dollar exchange rate. Omega, International Journal of Management Science 26(4):495-506.
    • (1998) Omega, International Journal of Management Science , vol.26 , Issue.4 , pp. 495-506
    • Zhang, G.P.1    Hu, M.Y.2
  • 35
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-series forecasting
    • Zhang, G. P., B. E. Patuwo, and M. Y. Hu. 2001. A simulation study of artificial neural networks for nonlinear time-series forecasting. Computers and Operation Research 28:381-396.
    • (2001) Computers and Operation Research , vol.28 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.