메뉴 건너뛰기




Volumn 201, Issue 3-4, 2007, Pages 359-368

An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs

Author keywords

Automata networks; Behavioral modeling; Integer linear programming; Primary productivity; Quasi Newton method; Reservoirs

Indexed keywords

COMPUTER SIMULATION; ENVIRONMENTAL IMPACT; INTEGER PROGRAMMING; LINEAR PROGRAMMING; NEURAL NETWORKS; RESERVOIRS (WATER); VECTORS;

EID: 33846653402     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2006.09.026     Document Type: Article
Times cited : (6)

References (19)
  • 4
    • 33846650249 scopus 로고    scopus 로고
    • CE-QUAL-R1, 1986. A Numerical One-dimensional Model of Reservoir Water Quality; User's Manual, Instruction Report E-82-1, Revised ed. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
  • 5
    • 33846703608 scopus 로고    scopus 로고
    • CE-QUAL-W2, 1986. A Numerical Two-dimensional, Laterally Averaged Model of Hydrodynamics and Water Quality; User's Manual, Instruction Report E-86-5. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
  • 7
    • 33846656847 scopus 로고    scopus 로고
    • GAMS Development Corporation, 2005. General Algebraic Modeling System (GAMS) User Manual. http://www.gams.com/docs/document.htm as of October 12.
  • 9
    • 0032095729 scopus 로고    scopus 로고
    • Built-in self-test generator design using non-uniform cellular automata model
    • Guler M., and Kilic H. Built-in self-test generator design using non-uniform cellular automata model. IEE Proc. Circuits Dev. Syst. 145 3 (1998) 155-161
    • (1998) IEE Proc. Circuits Dev. Syst. , vol.145 , Issue.3 , pp. 155-161
    • Guler, M.1    Kilic, H.2
  • 10
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., and Menjah M. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menjah, M.2
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 5 (1989) 359-366
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modeling
    • Karul C., Soyupak S., Çilesiz A.F., Akbay N., and Germen E. Case studies on the use of neural networks in eutrophication modeling. Ecol. Model. 134 (2000) 145-153
    • (2000) Ecol. Model. , vol.134 , pp. 145-153
    • Karul, C.1    Soyupak, S.2    Çilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 15
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., and Yabunaka K. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 96 (1997) 11-28
    • (1997) Ecol. Model. , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.4
  • 16
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models for estimating phytoplankton production
    • Scardi M. Artificial neural networks as empirical models for estimating phytoplankton production. Mar. Ecol. Ser. 139 (1996) 289-299
    • (1996) Mar. Ecol. Ser. , vol.139 , pp. 289-299
    • Scardi, M.1
  • 17
    • 0030619282 scopus 로고    scopus 로고
    • Evaluation of eutrophication control strategies for the Keban Dam reservoir
    • Soyupak S., Mukhallalati L., Yemisen D., Bayar A., and Yurteri C. Evaluation of eutrophication control strategies for the Keban Dam reservoir. Ecol. Model. 97 (1997) 99-110
    • (1997) Ecol. Model. , vol.97 , pp. 99-110
    • Soyupak, S.1    Mukhallalati, L.2    Yemisen, D.3    Bayar, A.4    Yurteri, C.5
  • 18
    • 0020495993 scopus 로고
    • Universality and complexity in cellular automata
    • Wolfram S. Universality and complexity in cellular automata. Physica D 10 (1984) 1-35
    • (1984) Physica D , vol.10 , pp. 1-35
    • Wolfram, S.1
  • 19
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of a back-propagation artificial neural network model formulated to predict algal bloom
    • Yabunaka K., Hosomi M., and Murakami A. Novel application of a back-propagation artificial neural network model formulated to predict algal bloom. Water Res. 36 (1997) 89-97
    • (1997) Water Res. , vol.36 , pp. 89-97
    • Yabunaka, K.1    Hosomi, M.2    Murakami, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.