-
1
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Feb 17
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795-800.
-
(2000)
Nature
, vol.403
, Issue.6771
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
2
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
May 23
-
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.11
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
Pillus, L.6
-
3
-
-
12944283150
-
A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family
-
Jun 6
-
Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.12
, pp. 6658-6663
-
-
Smith, J.S.1
Brachmann, C.B.2
Celic, I.3
Kenna, M.A.4
Muhammad, S.5
Starai, V.J.6
-
4
-
-
0034193776
-
Sir2 links chromatin silencing, metabolism, and aging
-
May 1
-
Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000 May 1;14(9):1021-6.
-
(2000)
Genes Dev
, vol.14
, Issue.9
, pp. 1021-1026
-
-
Guarente, L.1
-
5
-
-
35348972430
-
Genetic links between diet and lifespan: Shared mechanisms from yeast to humans
-
Nov
-
Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet. 2007 Nov;8(11):835-44.
-
(2007)
Nat Rev Genet
, vol.8
, Issue.11
, pp. 835-844
-
-
Bishop, N.A.1
Guarente, L.2
-
6
-
-
0031459980
-
Extrachromosomal rDNA circles-a cause of aging in yeast
-
Sinclair D, Guarente L. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell. 1997;91:1033-1042.
-
(1997)
Cell
, vol.91
, pp. 1033-1042
-
-
Sinclair, D.1
Guarente, L.2
-
7
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Oct 1
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999 Oct 1;13(19):2570-80.
-
(1999)
Genes Dev
, vol.13
, Issue.19
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
8
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417-35.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
9
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-95.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
10
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Mar 8
-
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001 Mar 8;410(6825):227-30.
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
11
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Nov 9
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.45
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
12
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Jul 5
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000 Jul 5;273(2):793-8.
-
(2000)
Biochem Biophys Res Commun
, vol.273
, Issue.2
, pp. 793-798
-
-
Frye, R.A.1
-
13
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Sep 8
-
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006 Sep 8;126(5):941-54.
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, A.J.6
-
14
-
-
36349030394
-
Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
-
Nov 16
-
Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem. 2007 Nov 16;282(46):33583-92.
-
(2007)
J Biol Chem
, vol.282
, Issue.46
, pp. 33583-33592
-
-
Ahuja, N.1
Schwer, B.2
Carobbio, S.3
Waltregny, D.4
North, B.J.5
Castronovo, V.6
-
15
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
-
Mar 2
-
Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007 Mar 2;282(9):6823-32.
-
(2007)
J Biol Chem
, vol.282
, Issue.9
, pp. 6823-6832
-
-
Tanno, M.1
Sakamoto, J.2
Miura, T.3
Shimamoto, K.4
Horio, Y.5
-
16
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Jan 27
-
Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006 Jan 27;124(2):315-29.
-
(2006)
Cell
, vol.124
, Issue.2
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
Pang, W.W.4
Fischer, M.R.5
Gellon, L.6
-
17
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
-
May 1
-
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006 May 1;20(9):1075-80.
-
(2006)
Genes Dev
, vol.20
, Issue.9
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
Magin, C.4
Grummt, I.5
Guarente, L.6
-
18
-
-
78649328799
-
Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling
-
Dec
-
Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010 Dec;35(12):669-75.
-
(2010)
Trends Biochem Sci
, vol.35
, Issue.12
, pp. 669-675
-
-
Verdin, E.1
Hirschey, M.D.2
Finley, L.W.3
Haigis, M.C.4
-
19
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277:45099-107.
-
(2002)
J Biol Chem
, vol.277
, pp. 45099-45107
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
Latorre-Esteves, M.4
Sinclair, D.A.5
-
20
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
Jan 1
-
Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004 Jan 1;18(1):12-6.
-
(2004)
Genes Dev
, vol.18
, Issue.1
, pp. 12-16
-
-
Lin, S.J.1
Ford, E.2
Haigis, M.3
Liszt, G.4
Guarente, L.5
-
21
-
-
77953291369
-
Sirtuins regulate key aspects of lipid metabolism
-
Aug
-
Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta. 2010 Aug;1804(8):1652-7.
-
(2010)
Biochim Biophys Acta
, vol.1804
, Issue.8
, pp. 1652-1657
-
-
Lomb, D.J.1
Laurent, G.2
Haigis, M.C.3
-
22
-
-
33846861558
-
Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity
-
Jul
-
Kim C, Park J, Kang E, Ahn C, Cha B, Lim S, et al. Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity. Obesity (Silver Spring). 2006 Jul;14(7):1164-71.
-
(2006)
Obesity (Silver Spring)
, vol.14
, Issue.7
, pp. 1164-1171
-
-
Kim, C.1
Park, J.2
Kang, E.3
Ahn, C.4
Cha, B.5
Lim, S.6
-
23
-
-
2342647592
-
Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
-
Apr 27
-
Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6659-63.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.17
, pp. 6659-6663
-
-
Fontana, L.1
Meyer, T.E.2
Klein, S.3
Holloszy, J.O.4
-
24
-
-
77957294848
-
Autophagic pathways and metabolic stress
-
Oct
-
Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab. 2010 Oct;12 (Suppl 2):4-14.
-
(2010)
Diabetes Obes Metab
, vol.12
, Issue.SUPPL. 2
, pp. 4-14
-
-
Kaushik, S.1
Singh, R.2
Cuervo, A.M.3
-
26
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Sep 22
-
Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000 Sep 22;289(5487):2126-8.
-
(2000)
Science
, vol.289
, Issue.5487
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
27
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Jun 17
-
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004 Jun 17;429(6993):771-6.
-
(2004)
Nature
, vol.429
, Issue.6993
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
de Oliveira, R.M.6
-
28
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Oct 14
-
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005 Oct 14;310(5746):314-7.
-
(2005)
Science
, vol.310
, Issue.5746
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
Tedesco, L.6
-
29
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Apr 8
-
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005 Apr 8;280(14):13560-7.
-
(2005)
J Biol Chem
, vol.280
, Issue.14
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
30
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Sep
-
Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL3rd, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 2009 Sep;1(9):771-83.
-
(2009)
Aging (Albany NY)
, vol.1
, Issue.9
, pp. 771-783
-
-
Palacios, O.M.1
Carmona, J.J.2
Michan, S.3
Chen, K.Y.4
Manabe, Y.5
Ward III, J.L.6
-
31
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Jul 1
-
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008 Jul 1;22(13):1753-7.
-
(2008)
Genes Dev
, vol.22
, Issue.13
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.J.4
Cheng, H.L.5
Alt, F.W.6
-
32
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Dec 9
-
Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science. 2005 Dec 9;310(5754):1641.
-
(2005)
Science
, vol.310
, Issue.5754
-
-
Chen, D.1
Steele, A.D.2
Lindquist, S.3
Guarente, L.4
-
33
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE. 2008;3(3):e1759.
-
(2008)
PLoS ONE
, vol.3
, Issue.3
-
-
Boily, G.1
Seifert, E.L.2
Bevilacqua, L.3
He, X.H.4
Sabourin, G.5
Estey, C.6
-
34
-
-
72849130743
-
Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
-
Dec 15
-
Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009 Dec 15;23(24):2812-7.
-
(2009)
Genes Dev
, vol.23
, Issue.24
, pp. 2812-2817
-
-
Cohen, D.E.1
Supinski, A.M.2
Bonkowski, M.S.3
Donmez, G.4
Guarente, L.P.5
-
35
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Dec 1
-
Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010 Dec 1;12(6):662-7.
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
36
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Nov 24
-
Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010 Nov 24;143(5):802-12.
-
(2010)
Cell
, vol.143
, Issue.5
, pp. 802-812
-
-
Someya, S.1
Yu, W.2
Hallows, W.C.3
Xu, J.4
Vann, J.M.5
Leeuwenburgh, C.6
-
37
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Dec
-
Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007 Dec;6(6):759-67.
-
(2007)
Aging Cell
, vol.6
, Issue.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
Motta, M.C.4
van Veen, E.5
Czopik, A.6
-
38
-
-
52749091816
-
SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice
-
Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, et al. SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell metabolism. 2008;8:333-41.
-
(2008)
Cell Metabolism
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutierrez-Juarez, R.5
Rossetti, L.6
-
39
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Jul 15
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9793-8.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
40
-
-
0025768055
-
The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism
-
van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis. 1991;14(4):407-20.
-
(1991)
J Inherit Metab Dis
, vol.14
, Issue.4
, pp. 407-420
-
-
van den Berghe, G.1
-
41
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456(7219):269-73.
-
(2008)
Nature
, vol.456
, Issue.7219
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
Hedrick, S.4
Ravnskjaer, K.5
Schenk, S.6
-
42
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Mar 3
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005 Mar 3;434(7029):113-8.
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
43
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Apr
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009 Apr;9(4):327-38.
-
(2009)
Cell Metab
, vol.9
, Issue.4
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
44
-
-
77953292242
-
Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5
-
Aug
-
Dominy JE Jr., Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta. 2010 Aug;1804(8):1676-83.
-
(2010)
Biochim Biophys Acta
, vol.1804
, Issue.8
, pp. 1676-1683
-
-
Dominy Jr, J.E.1
Lee, Y.2
Gerhart-Hines, Z.3
Puigserver, P.4
-
45
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
-
May 27
-
Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005 May 27;280(21):20589-95.
-
(2005)
J Biol Chem
, vol.280
, Issue.21
, pp. 20589-20595
-
-
Frescas, D.1
Valenti, L.2
Accili, D.3
-
46
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Jul 31
-
Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12861-6.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.31
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
47
-
-
78650533816
-
Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
-
Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci. 2010;6(7):682-90.
-
(2010)
Int J Biol Sci
, vol.6
, Issue.7
, pp. 682-690
-
-
Wang, R.H.1
Li, C.2
Deng, C.X.3
-
48
-
-
79955661493
-
Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
-
May
-
Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011 May;25(5):1664-79.
-
(2011)
FASEB J
, vol.25
, Issue.5
, pp. 1664-1679
-
-
Li, Y.1
Xu, S.2
Giles, A.3
Nakamura, K.4
Lee, J.W.5
Hou, X.6
-
49
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Oct 12
-
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007 Oct 12;28(1):91-106.
-
(2007)
Mol Cell
, vol.28
, Issue.1
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
50
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Nov
-
Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009 Nov;10(5):392-404.
-
(2009)
Cell Metab
, vol.10
, Issue.5
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
-
51
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Jul 1
-
Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010 Jul 1;24(13):1403-17.
-
(2010)
Genes Dev
, vol.24
, Issue.13
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.Y.4
Watts, J.L.5
Purushotham, A.6
-
52
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Oct 29
-
Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010 Oct 29;285(44):33959-70.
-
(2010)
J Biol Chem
, vol.285
, Issue.44
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
-
53
-
-
0029562554
-
The RXR heterodimers and orphan receptors
-
Dec 15
-
Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841-50.
-
(1995)
Cell
, vol.83
, Issue.6
, pp. 841-850
-
-
Mangelsdorf, D.J.1
Evans, R.M.2
-
54
-
-
72749086098
-
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it's been
-
Nov 15
-
Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 2009 Nov 15;23(22):2578-91.
-
(2009)
Genes Dev
, vol.23
, Issue.22
, pp. 2578-2591
-
-
Osborne, T.F.1
Espenshade, P.J.2
-
55
-
-
50649097541
-
Fat and beyond: The diverse biology of PPARgamma
-
Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289-312.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 289-312
-
-
Tontonoz, P.1
Spiegelman, B.M.2
-
56
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Nov 16
-
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006 Nov 16;444(7117):337-42.
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
Kalra, A.6
-
57
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Dec 15
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006 Dec 15;127(6):1109-22.
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
-
58
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Nov 29
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007 Nov 29;450(7170):712-6.
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
-
59
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Dec
-
Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009 Dec;74(6):619-24.
-
(2009)
Chem Biol Drug Des
, vol.74
, Issue.6
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
Kim, K.W.4
Lu, S.C.5
Atangan, L.6
-
60
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Mar 12
-
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010 Mar 12;285(11):8340-51.
-
(2010)
J Biol Chem
, vol.285
, Issue.11
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
Cunningham, D.4
Flynn, D.5
Garofalo, R.S.6
-
61
-
-
34248372084
-
Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages
-
Mar 13
-
Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4401-6.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.11
, pp. 4401-4406
-
-
Timmons, J.A.1
Wennmalm, K.2
Larsson, O.3
Walden, T.B.4
Lassmann, T.5
Petrovic, N.6
-
62
-
-
77956644726
-
SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
-
Jul 4
-
Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010 Jul 4;12(1):78-87.
-
(2010)
Cell Metab
, vol.12
, Issue.1
, pp. 78-87
-
-
Ramadori, G.1
Fujikawa, T.2
Fukuda, M.3
Anderson, J.4
Morgan, D.A.5
Mostoslavsky, R.6
-
63
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Nov
-
Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008 Nov;8(5):347-58.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
Strehle, A.4
Houten, S.M.5
Milne, J.C.6
-
64
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Aug
-
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005 Aug;2(2):105-17.
-
(2005)
Cell Metab
, vol.2
, Issue.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
Cras-Meneur, C.6
-
65
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Feb
-
Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006 Feb;4(2):e31.
-
(2006)
PLoS Biol
, vol.4
, Issue.2
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
Apfeld, J.6
-
66
-
-
79953206276
-
Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through Sirt1 dependent mechanism
-
Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through Sirt1 dependent mechanism. J Biol Chem. 2011;286(8):6049-60.
-
(2011)
J Biol Chem
, vol.286
, Issue.8
, pp. 6049-6060
-
-
Vetterli, L.1
Brun, T.2
Giovannoni, L.3
Bosco, D.4
Maechler, P.5
-
67
-
-
77949506721
-
Hypothalamic Sirt1 regulates food intake in a rodent model system
-
Cakir I, Perello M, Lansari O, Messier NJ, Vaslet CA, Nillni EA. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One. 2009;4(12):e8322.
-
(2009)
PLoS One
, vol.4
, Issue.12
-
-
Cakir, I.1
Perello, M.2
Lansari, O.3
Messier, N.J.4
Vaslet, C.A.5
Nillni, E.A.6
-
68
-
-
77955344258
-
SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
-
Jul 28
-
Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010 Jul 28;30(30):10220-32.
-
(2010)
J Neurosci
, vol.30
, Issue.30
, pp. 10220-10232
-
-
Satoh, A.1
Brace, C.S.2
Ben-Josef, G.3
West, T.4
Wozniak, D.F.5
Holtzman, D.M.6
-
69
-
-
33748931457
-
Central nervous system control of food intake and body weight
-
Sep 21
-
Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006 Sep 21;443(7109):289-95.
-
(2006)
Nature
, vol.443
, Issue.7109
, pp. 289-295
-
-
Morton, G.J.1
Cummings, D.E.2
Baskin, D.G.3
Barsh, G.S.4
Schwartz, M.W.5
-
70
-
-
77956241193
-
Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity
-
Sep 1
-
Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y, et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci. 2010 Sep 1;30(35):11815-25.
-
(2010)
J Neurosci
, vol.30
, Issue.35
, pp. 11815-11825
-
-
Dietrich, M.O.1
Antunes, C.2
Geliang, G.3
Liu, Z.W.4
Borok, E.5
Nie, Y.6
-
71
-
-
71949100263
-
Central administration of resveratrol improves diet-induced diabetes
-
Dec
-
Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology. 2009 Dec;150(12):5326-33.
-
(2009)
Endocrinology
, vol.150
, Issue.12
, pp. 5326-5333
-
-
Ramadori, G.1
Gautron, L.2
Fujikawa, T.3
Vianna, C.R.4
Elmquist, J.K.5
Coppari, R.6
-
72
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006;40:409-48.
-
(2006)
Annu Rev Genet
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
73
-
-
65549128208
-
Circadian rhythms. A circadian loop asSIRTs itself
-
May 1
-
Wijnen H. Circadian rhythms. A circadian loop asSIRTs itself. Science. 2009 May 1;324(5927):598-9.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 598-599
-
-
Wijnen, H.1
-
74
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
May 5
-
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006 May 5;125(3):497-508.
-
(2006)
Cell
, vol.125
, Issue.3
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
75
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Jul 25
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008 Jul 25;134(2):317-28.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
-
76
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Jul 25
-
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008 Jul 25;134(2):329-40.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
-
77
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
May 1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009 May 1;324(5927):654-7.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
78
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
May 1
-
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009 May 1;324(5927):651-4.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
Abrassart, D.4
Kobayashi, Y.5
Marcheva, B.6
-
79
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
Jan 31
-
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008 Jan 31;451(7178):587-90.
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.P.2
Tang, Y.3
Jung, S.Y.4
Qin, J.5
Gu, W.6
-
80
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
Jan 31
-
Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008 Jan 31;451(7178):583-6.
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 583-586
-
-
Kim, J.E.1
Chen, J.2
Lou, Z.3
-
81
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Oct 26
-
Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007 Oct 26;28(2):277-90.
-
(2007)
Mol Cell
, vol.28
, Issue.2
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
82
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Nov
-
Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nature cell biology. 2007 Nov;9(11):1253-62.
-
(2007)
Nature Cell Biology
, vol.9
, Issue.11
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
Nicosia, S.V.6
-
83
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, et al. Phosphorylation regulates SIRT1 function. PLoS ONE. 2008;3(12):e4020.
-
(2008)
PLoS ONE
, vol.3
, Issue.12
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
Chruszcz, M.4
Gluba, W.5
Stukenberg, P.T.6
-
84
-
-
69949138641
-
CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
-
Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE. 2009;4(8):e6611.
-
(2009)
PLoS ONE
, vol.4
, Issue.8
-
-
Kang, H.1
Jung, J.W.2
Kim, M.K.3
Chung, J.H.4
-
85
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE. 2009;4(12):e8414.
-
(2009)
PLoS ONE
, vol.4
, Issue.12
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
Wall, D.4
Pearson, K.J.5
de Cabo, R.6
-
86
-
-
77951225449
-
DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
-
Apr 23
-
Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem. 2010 Apr 23;285(17):13223-32.
-
(2010)
J Biol Chem
, vol.285
, Issue.17
, pp. 13223-13232
-
-
Guo, X.1
Williams, J.G.2
Schug, T.T.3
Li, X.4
-
87
-
-
77949363859
-
DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
-
Apr
-
Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol. 2010 Apr;30(7):1757-68.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.7
, pp. 1757-1768
-
-
Kurabayashi, N.1
Hirota, T.2
Sakai, M.3
Sanada, K.4
Fukada, Y.5
-
88
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Jun 3
-
Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005 Jun 3;280(22):21313-20.
-
(2005)
J Biol Chem
, vol.280
, Issue.22
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
89
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Mar 27
-
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008 Mar 27;452(7186):492-6.
-
(2008)
Nature
, vol.452
, Issue.7186
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
Damian, M.6
-
90
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Aug 15
-
Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009 Aug 15;8(16):2664-6.
-
(2009)
Cell Cycle
, vol.8
, Issue.16
, pp. 2664-2666
-
-
Michishita, E.1
McCord, R.A.2
Boxer, L.D.3
Barber, M.F.4
Hong, T.5
Gozani, O.6
-
91
-
-
69249229772
-
The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
-
Aug 15
-
Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle. 2009 Aug 15;8(16):2662-3.
-
(2009)
Cell Cycle
, vol.8
, Issue.16
, pp. 2662-2663
-
-
Yang, B.1
Zwaans, B.M.2
Eckersdorff, M.3
Lombard, D.B.4
-
92
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Sep 10
-
Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010 Sep 10;329(5997):1348-53.
-
(2010)
Science
, vol.329
, Issue.5997
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
93
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
-
Jan 9
-
Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009 Jan 9;136(1):62-74.
-
(2009)
Cell
, vol.136
, Issue.1
, pp. 62-74
-
-
Kawahara, T.L.1
Michishita, E.2
Adler, A.S.3
Damian, M.4
Berber, E.5
Lin, M.6
-
94
-
-
59649117804
-
Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner
-
Feb
-
Van Gool F, Galli M, Gueydan C, Kruys V, Prevot PP, Bedalov A, et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med. 2009 Feb;15(2):206-10.
-
(2009)
Nat Med
, vol.15
, Issue.2
, pp. 206-210
-
-
van Gool, F.1
Galli, M.2
Gueydan, C.3
Kruys, V.4
Prevot, P.P.5
Bedalov, A.6
-
95
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
Jan 22
-
Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010 Jan 22;140(2):280-93.
-
(2010)
Cell
, vol.140
, Issue.2
, pp. 280-293
-
-
Zhong, L.1
D'urso, A.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
Vadysirisack, D.D.6
-
96
-
-
78449248442
-
SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
-
Nov 19
-
Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem. 2010 Nov 19;285(47):36776-84.
-
(2010)
J Biol Chem
, vol.285
, Issue.47
, pp. 36776-36784
-
-
Xiao, C.1
Kim, H.S.2
Lahusen, T.3
Wang, R.H.4
Xu, X.5
Gavrilova, O.6
-
97
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Sep 8
-
Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010 Sep 8;12(3):224-36.
-
(2010)
Cell Metab
, vol.12
, Issue.3
, pp. 224-236
-
-
Kim, H.S.1
Xiao, C.2
Wang, R.H.3
Lahusen, T.4
Xu, X.5
Vassilopoulos, A.6
-
98
-
-
78650724968
-
Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
-
Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A. 2010;107(50):21790-4.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.50
, pp. 21790-21794
-
-
Schwer, B.1
Schumacher, B.2
Lombard, D.B.3
Xiao, C.4
Kurtev, M.V.5
Gao, J.6
-
99
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Feb 25
-
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005 Feb 25;120(4):483-95.
-
(2005)
Cell
, vol.120
, Issue.4
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
100
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine
-
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359-407.
-
(2005)
Annu Rev Genet
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
101
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Dec
-
Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007 Dec;27(24):8807-14.
-
(2007)
Mol Cell Biol
, vol.27
, Issue.24
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.L.3
Bunkenborg, J.4
Streeper, R.S.5
Mostoslavsky, R.6
-
102
-
-
0037135972
-
The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
-
Aug 19
-
Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002 Aug 19;158(4):647-57.
-
(2002)
J Cell Biol
, vol.158
, Issue.4
, pp. 647-657
-
-
Schwer, B.1
North, B.J.2
Frye, R.A.3
Ott, M.4
Verdin, E.5
-
103
-
-
0037108799
-
SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
-
Oct 15
-
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13653-8.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.21
, pp. 13653-13658
-
-
Onyango, P.1
Celic, I.2
McCaffery, J.M.3
Boeke, J.D.4
Feinberg, A.P.5
-
104
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Sep 23
-
Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.38
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
-
105
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Jul 5
-
Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-9.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.27
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
Andersen, J.S.4
Verdin, E.5
-
106
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Jul 5
-
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-5.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.27
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
107
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Mar 4
-
Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010 Mar 4;464(7285):121-5.
-
(2010)
Nature
, vol.464
, Issue.7285
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
-
108
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Dec 1
-
Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010 Dec 1;12(6):654-61.
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 654-661
-
-
Shimazu, T.1
Hirschey, M.D.2
Hua, L.3
Dittenhafer-Reed, K.E.4
Schwer, B.5
Lombard, D.B.6
-
109
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Dec 22
-
Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010 Dec 22;40(6):893-904.
-
(2010)
Mol Cell
, vol.40
, Issue.6
, pp. 893-904
-
-
Tao, R.1
Coleman, M.C.2
Pennington, J.D.3
Ozden, O.4
Park, S.H.5
Jiang, H.6
-
110
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Jan 14
-
Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011 Jan 14;433(3):505-14.
-
(2011)
Biochem J
, vol.433
, Issue.3
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
van Hove, J.L.6
-
111
-
-
77951235122
-
NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
-
Mar 5
-
Yang Y, Cimen H, Han MJ, Shi T, Deng JH, Koc H, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem. 2010 Mar 5;285(10):7417-29.
-
(2010)
J Biol Chem
, vol.285
, Issue.10
, pp. 7417-7429
-
-
Yang, Y.1
Cimen, H.2
Han, M.J.3
Shi, T.4
Deng, J.H.5
Koc, H.6
-
112
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sep
-
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009 Sep;119(9):2758-71.
-
(2009)
J Clin Invest
, vol.119
, Issue.9
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
113
-
-
79952266729
-
Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
-
Dec
-
Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010 Dec;2(12):914-23.
-
(2010)
Aging (Albany NY)
, vol.2
, Issue.12
, pp. 914-923
-
-
Hafner, A.V.1
Dai, J.2
Gomes, A.P.3
Xiao, C.Y.4
Palmeira, C.M.5
Rosenzweig, A.6
-
114
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Jan 19
-
Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010 Jan 19;17(1):41-52.
-
(2010)
Cancer Cell
, vol.17
, Issue.1
, pp. 41-52
-
-
Kim, H.S.1
Patel, K.2
Muldoon-Jacobs, K.3
Bisht, K.S.4
Aykin-Burns, N.5
Pennington, J.D.6
-
115
-
-
77955287479
-
Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest
-
Aug 2
-
Kawamura Y, Uchijima Y, Horike N, Tonami K, Nishiyama K, Amano T, et al. Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. J Clin Invest. 2010 Aug 2;120(8):2817-28.
-
(2010)
J Clin Invest
, vol.120
, Issue.8
, pp. 2817-2828
-
-
Kawamura, Y.1
Uchijima, Y.2
Horike, N.3
Tonami, K.4
Nishiyama, K.5
Amano, T.6
-
116
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Oct 15
-
Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010 Oct 15;285(42):31995-2002.
-
(2010)
J Biol Chem
, vol.285
, Issue.42
, pp. 31995-32002
-
-
Nasrin, N.1
Wu, X.2
Fortier, E.3
Feng, Y.4
Bare, O.C.5
Chen, S.6
-
117
-
-
65249087389
-
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
May 1
-
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009 May 1;137(3):560-70.
-
(2009)
Cell
, vol.137
, Issue.3
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
118
-
-
77249128352
-
Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
-
Feb 26
-
Ogura M, Nakamura Y, Tanaka D, Zhuang X, Fujita Y, Obara A, et al. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun. 2010 Feb 26;393(1):73-8.
-
(2010)
Biochem Biophys Res Commun
, vol.393
, Issue.1
, pp. 73-78
-
-
Ogura, M.1
Nakamura, Y.2
Tanaka, D.3
Zhuang, X.4
Fujita, Y.5
Obara, A.6
-
119
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Oct
-
Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol. 2010 Oct;30(19):4712-21.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.19
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
Peres-da-Silva, A.4
Draper, D.W.5
Fessler, M.B.6
-
120
-
-
77955347446
-
Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010;5(7):e11707.
-
(2010)
PLoS One
, vol.5
, Issue.7
-
-
Kong, X.1
Wang, R.2
Xue, Y.3
Liu, X.4
Zhang, H.5
Chen, Y.6
-
121
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Sep 11
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003 Sep 11;425(6954):191-6.
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
-
122
-
-
78649861860
-
Sirtuin activators: Designing molecules to extend life span
-
Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Pelegri C, et al. Sirtuin activators: Designing molecules to extend life span. Biochim Biophys Acta. 2010;1799(10-12):740-9.
-
(2010)
Biochim Biophys Acta
, vol.1799
, Issue.10-12
, pp. 740-749
-
-
Camins, A.1
Sureda, F.X.2
Junyent, F.3
Verdaguer, E.4
Folch, J.5
Pelegri, C.6
-
123
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
Aug
-
Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007 Aug;6(4):505-14.
-
(2007)
Aging Cell
, vol.6
, Issue.4
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.3
Tong, Q.4
-
124
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
Feb
-
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular cell. 2003 Feb;11(2):437-44.
-
(2003)
Molecular Cell
, vol.11
, Issue.2
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
125
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
May 15
-
Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & development. 2006 May 15;20(10):1256-61.
-
(2006)
Genes & Development
, vol.20
, Issue.10
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
Sutton, A.4
Cheng, H.L.5
Alt, F.W.6
-
126
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
Mar 28
-
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008 Mar 28;102(6):703-10.
-
(2008)
Circ Res
, vol.102
, Issue.6
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
|