메뉴 건너뛰기




Volumn 71, Issue , 2009, Pages 177-203

Transcriptional control of mitochondrial biogenesis and function

Author keywords

Energy homeostasis; Exercise training; Nuclear receptor; PGC 1

Indexed keywords

ADENYLATE KINASE; CALCIUM ION; CYCLIC AMP; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; ESTROGEN RELATED RECEPTOR ALPHA; ESTROGEN RELATED RECEPTOR BETA; ESTROGEN RELATED RECEPTOR GAMMA; GA BINDING PROTEIN; HISTONE DEACETYLASE; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; MYC PROTEIN; NEU DIFFERENTIATION FACTOR; NITRIC OXIDE; NUCLEAR RESPIRATORY FACTOR 1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR DELTA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; SIRTUIN 1; STEROID RECEPTOR; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR YY1; TRICARBOXYLIC ACID; UNCLASSIFIED DRUG;

EID: 67651159365     PISSN: 00664278     EISSN: 15451585     Source Type: Book Series    
DOI: 10.1146/annurev.physiol.010908.163119     Document Type: Review
Times cited : (511)

References (178)
  • 1
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112-123
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1    Calvo, S.E.2    Chang, B.3    Sheth, S.A.4    Vafai, S.B.5
  • 2
    • 10744224439 scopus 로고    scopus 로고
    • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
    • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629-640
    • (2003) Cell , vol.115 , pp. 629-640
    • Mootha, V.K.1    Bunkenborg, J.2    Olsen, J.V.3    Hjerrild, M.4    Wisniewski, J.R.5
  • 3
    • 33847766208 scopus 로고    scopus 로고
    • Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function
    • Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, et al. 2007. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J. Appl. Physiol. 102:1078-1089
    • (2007) J. Appl. Physiol. , vol.102 , pp. 1078-1089
    • Chow, L.S.1    Greenlund, L.J.2    Asmann, Y.W.3    Short, K.R.4    McCrady, S.K.5
  • 5
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • Scarpulla RC. 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88:611-638
    • (2008) Physiol. Rev. , vol.88 , pp. 611-638
    • Scarpulla, R.C.1
  • 6
    • 1942518840 scopus 로고    scopus 로고
    • PPARs and the complex journey to obesity
    • Evans RM, Barish GD, Wang YX. 2004. PPARs and the complex journey to obesity. Nat. Med. 10:355-361
    • (2004) Nat. Med. , vol.10 , pp. 355-361
    • Evans, R.M.1    Barish, G.D.2    Wang, Y.X.3
  • 7
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 8
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-124
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3    Zhang, C.4    Adelmant, G.5
  • 9
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor α coactivator 1 coactivators, energy homeostasis, and metabolism
    • Handschin C, Spiegelman BM. 2006. Peroxisome proliferator-activated receptor α coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27:728-735
    • (2006) Endocr. Rev. , vol.27 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 10
    • 52249090234 scopus 로고    scopus 로고
    • ERRα: A metabolic function for the oldest orphan
    • Villena JA, Kralli A. 2008. ERRα: a metabolic function for the oldest orphan. Trends Endocrinol. Metab. 8:269-276
    • (2008) Trends Endocrinol. Metab. , vol.8 , pp. 269-276
    • Villena, J.A.1    Kralli, A.2
  • 11
    • 0027135555 scopus 로고
    • NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators
    • Virbasius CA, Virbasius JV, Scarpulla RC. 1993. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7:2431-2445
    • (1993) Genes Dev. , vol.7 , pp. 2431-2445
    • Virbasius, C.A.1    Virbasius, J.V.2    Scarpulla, R.C.3
  • 12
    • 45549087482 scopus 로고    scopus 로고
    • Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits
    • Ramachandran B, Yu G, Gulick T. 2008. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J. Biol. Chem. 283:11935-11946
    • (2008) J. Biol. Chem. , vol.283 , pp. 11935-11946
    • Ramachandran, B.1    Yu, G.2    Gulick, T.3
  • 13
    • 8644281106 scopus 로고    scopus 로고
    • A common set of gene regulatory networks links metabolism and growth inhibition
    • Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, et al. 2004. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16:399-411
    • (2004) Mol. Cell , vol.16 , pp. 399-411
    • Cam, H.1    Balciunaite, E.2    Blais, A.3    Spektor, A.4    Scarpulla, R.C.5
  • 14
    • 33746814985 scopus 로고    scopus 로고
    • Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function
    • Wang C, Li Z, Lu Y, Du R, Katiyar S, et al. 2006. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Natl. Acad. Sci. USA 103:11567-11572
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 11567-11572
    • Wang, C.1    Li, Z.2    Lu, Y.3    Du, R.4    Katiyar, S.5
  • 15
    • 41249086496 scopus 로고    scopus 로고
    • Nuclear respiratory factor 1 regulates all ten nuclearencoded subunits of cytochrome c oxidase in neurons
    • Dhar SS, Ongwijitwat S, Wong-Riley MT. 2008. Nuclear respiratory factor 1 regulates all ten nuclearencoded subunits of cytochrome c oxidase in neurons. J. Biol. Chem. 283:3120-3129
    • (2008) J. Biol. Chem. , vol.283 , pp. 3120-3129
    • Dhar, S.S.1    Ongwijitwat, S.2    Wong-Riley, M.T.3
  • 16
    • 0035016566 scopus 로고    scopus 로고
    • Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cell
    • Andersson U, Scarpulla RC. 2001. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cell. Mol. Cell. Biol. 21:3738-3749
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 3738-3749
    • Andersson, U.1    Scarpulla, R.C.2
  • 17
    • 0037127204 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1 beta;), a novel PGC-1-related transcription coactivator associated with host cell factor
    • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002. Peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1 beta;), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277:1645-1648
    • (2002) J. Biol. Chem. , vol.277 , pp. 1645-1648
    • Lin, J.1    Puigserver, P.2    Donovan, J.3    Tarr, P.4    Spiegelman, B.M.5
  • 19
    • 0037389416 scopus 로고    scopus 로고
    • Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle
    • Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO. 2003. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J. 17:675-681
    • (2003) FASEB J. , vol.17 , pp. 675-681
    • Ojuka, E.O.1    Jones, T.E.2    Han, D.H.3    Chen, M.4    Holloszy, J.O.5
  • 20
    • 44349184864 scopus 로고    scopus 로고
    • Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation
    • Fu X, Wan S, Lyu YL, Liu LF, Qi H. 2008. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE 3:e2009
    • (2008) PLoS ONE , vol.3
    • Fu, X.1    Wan, S.2    Lyu, Y.L.3    Liu, L.F.4    Qi, H.5
  • 21
    • 0032486315 scopus 로고    scopus 로고
    • Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle
    • Murakami T, Shimomura Y, Yoshimura A, Sokabe M, Fujitsuka N. 1998. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim. Biophys. Acta 1381:113-122
    • (1998) Biochim. Biophys. Acta , vol.1381 , pp. 113-122
    • Murakami, T.1    Shimomura, Y.2    Yoshimura, A.3    Sokabe, M.4    Fujitsuka, N.5
  • 22
    • 0036903174 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
    • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886
    • (2002) FASEB J. , vol.16 , pp. 1879-1886
    • Baar, K.1    Wende, A.R.2    Jones, T.E.3    Marison, M.4    Nolte, L.A.5
  • 23
    • 33751335266 scopus 로고    scopus 로고
    • Temperature- And exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)
    • McClelland GB, Craig PM, Dhekney K, Dipardo S. 2006. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577:739-751
    • (2006) J. Physiol. , vol.577 , pp. 739-751
    • McClelland, G.B.1    Craig, P.M.2    Dhekney, K.3    Dipardo, S.4
  • 24
    • 0037322888 scopus 로고    scopus 로고
    • Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
    • Pilegaard H, Saltin B, Neufer PD. 2003. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546:851-858
    • (2003) J. Physiol. , vol.546 , pp. 851-858
    • Pilegaard, H.1    Saltin, B.2    Neufer, P.D.3
  • 25
    • 23844494686 scopus 로고    scopus 로고
    • Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise
    • Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, et al. 2005. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567:349-358
    • (2005) J. Physiol. , vol.567 , pp. 349-358
    • Cartoni, R.1    Leger, B.2    Hock, M.B.3    Praz, M.4    Crettenand, A.5
  • 27
    • 0035169827 scopus 로고    scopus 로고
    • Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice
    • Huo L, Scarpulla RC. 2001. Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol. Cell. Biol. 21:644-654
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 644-654
    • Huo, L.1    Scarpulla, R.C.2
  • 28
    • 0042415526 scopus 로고    scopus 로고
    • Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity
    • Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, et al. 2003. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J. 17:1666-1673
    • (2003) FASEB J. , vol.17 , pp. 1666-1673
    • Baar, K.1    Song, Z.2    Semenkovich, C.F.3    Jones, T.E.4    Han, D.H.5
  • 29
    • 0027256435 scopus 로고
    • Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters
    • Virbasius JV, Virbasius CA, Scarpulla RC. 1993. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 7:380-392
    • (1993) Genes Dev. , vol.7 , pp. 380-392
    • Virbasius, J.V.1    Virbasius, C.A.2    Scarpulla, R.C.3
  • 30
    • 2342477730 scopus 로고    scopus 로고
    • Errα and Gabpa/b specify PGC- 1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
    • Mootha VK, Handschin C, Arlow D, Xie X, St. Pierre J, et al. 2004. Errα and Gabpa/b specify PGC- 1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. 101:6570-6575
    • (2004) Proc. Natl. Acad. Sci. , vol.101 , pp. 6570-6575
    • Mootha, V.K.1    Handschin, C.2    Arlow, D.3    Xie, X.4    St Pierre, J.5
  • 31
    • 33646690296 scopus 로고    scopus 로고
    • Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs
    • Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT. 2006. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374:39-49
    • (2006) Gene , vol.374 , pp. 39-49
    • Ongwijitwat, S.1    Liang, H.L.2    Graboyes, E.M.3    Wong-Riley, M.T.4
  • 32
    • 34548394227 scopus 로고    scopus 로고
    • Neuregulins increase mitochondrial oxidative capacity and insulin sensitivity in skeletal muscle cells
    • Canto C, Pich S, Paz JC, Sanches R, Martinez V, et al. 2007. Neuregulins increase mitochondrial oxidative capacity and insulin sensitivity in skeletal muscle cells. Diabetes 56:2185-2193
    • (2007) Diabetes , vol.56 , pp. 2185-2193
    • Canto, C.1    Pich, S.2    Paz, J.C.3    Sanches, R.4    Martinez, V.5
  • 33
    • 34147109662 scopus 로고    scopus 로고
    • PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy
    • Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. 2007. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 21:770-783
    • (2007) Genes Dev. , vol.21 , pp. 770-783
    • Handschin, C.1    Kobayashi, Y.M.2    Chin, S.3    Seale, P.4    Campbell, K.P.5    Spiegelman, B.M.6
  • 34
    • 45549103553 scopus 로고    scopus 로고
    • PGC-1-related coactivator (PRC) complexes with HCF-1 and NRF-2β in mediating NRF-2(GABP)-dependent respiratory gene expression
    • Vercauteren K, Gleyzer N, Scarpulla RC. 2008. PGC-1-related coactivator (PRC) complexes with HCF-1 and NRF-2β in mediating NRF-2(GABP)-dependent respiratory gene expression. J. Biol. Chem. 283:12102-12111
    • (2008) J. Biol. Chem. , vol.283 , pp. 12102-12111
    • Vercauteren, K.1    Gleyzer, N.2    Scarpulla, R.C.3
  • 36
    • 0036866036 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors
    • Villena JA, Carmona MC, Rodríguez de la Concepción M, Rossmeisl M, Viñas O, et al. 2002. Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors. Cell. Mol. Life Sci. 59:1934-1944
    • (2002) Cell. Mol. Life Sci. , vol.59 , pp. 1934-1944
    • Villena, J.A.1    Carmona, M.C.2    Rodríguez De La Concepción, M.3    Rossmeisl, M.4    Viñas, O.5
  • 37
    • 0037070565 scopus 로고    scopus 로고
    • Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 α-subunit in rat liver
    • Rodríguez-Peña A, Escrivá H, Handler AC, Vallejo CG. 2002. Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 α-subunit in rat liver. FEBS Lett. 514:309-314
    • (2002) FEBS Lett. , vol.514 , pp. 309-314
    • Rodríguez-Peña, A.1    Escrivá, H.2    Handler, A.C.3    Vallejo, C.G.4
  • 38
    • 0141634243 scopus 로고    scopus 로고
    • Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles
    • Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. 2003. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J. Physiol. 551:491-501
    • (2003) J. Physiol. , vol.551 , pp. 491-501
    • Garnier, A.1    Fortin, D.2    Delomenie, C.3    Momken, I.4    Veksler, V.5    Ventura-Clapier, R.6
  • 39
    • 33847355216 scopus 로고    scopus 로고
    • The Ets transcription factor GABP is required for cell-cycle progression
    • Yang ZF, Mott S, Rosmarin AG. 2007. The Ets transcription factor GABP is required for cell-cycle progression. Nat. Cell Biol. 9:339-346
    • (2007) Nat. Cell Biol. , vol.9 , pp. 339-346
    • Yang, Z.F.1    Mott, S.2    Rosmarin, A.G.3
  • 40
    • 34247107198 scopus 로고    scopus 로고
    • The transcription factor GABP is a critical regulator of B lymphocyte development
    • Xue HH, Bollenbacher-Reilley J, Wu Z, Spolski R, Jing X, et al. 2007. The transcription factor GABP is a critical regulator of B lymphocyte development. Immunity 26:421-431
    • (2007) Immunity , vol.26 , pp. 421-431
    • Xue, H.H.1    Bollenbacher-Reilley, J.2    Wu, Z.3    Spolski, R.4    Jing, X.5
  • 41
    • 34347359670 scopus 로고    scopus 로고
    • GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression
    • Jaworski A, Smith CL, Burden SJ. 2007. GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. Mol. Cell. Biol. 27:5040-5046
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5040-5046
    • Jaworski, A.1    Smith, C.L.2    Burden, S.J.3
  • 43
    • 36849068108 scopus 로고    scopus 로고
    • Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart
    • Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, et al. 2007. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J. Clin. Investig. 117:3930-3939
    • (2007) J. Clin. Investig. , vol.117 , pp. 3930-3939
    • Burkart, E.M.1    Sambandam, N.2    Han, X.3    Gross, R.W.4    Courtois, M.5
  • 44
    • 37349007681 scopus 로고    scopus 로고
    • PPARδ as a therapeutic target in metabolic disease
    • Reilly SM, Lee CH. 2008. PPARδ as a therapeutic target in metabolic disease. FEBS Lett. 582:26-31
    • (2008) FEBS Lett. , vol.582 , pp. 26-31
    • Reilly, S.M.1    Lee, C.H.2
  • 45
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferatoractivated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP. 2000. The coactivator PGC-1 cooperates with peroxisome proliferatoractivated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20:1868-1876
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 47
    • 85047689659 scopus 로고    scopus 로고
    • Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
    • Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, et al. 2004. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Investig. 114:1281-1289
    • (2004) J. Clin. Investig. , vol.114 , pp. 1281-1289
    • Wilson-Fritch, L.1    Nicoloro, S.2    Chouinard, M.3    Lazar, M.A.4    Chui, P.C.5
  • 48
    • 33644821858 scopus 로고    scopus 로고
    • Mitochondria are impaired in the adipocytes of type 2 diabetic mice
    • Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, et al. 2006. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784-791
    • (2006) Diabetologia , vol.49 , pp. 784-791
    • Choo, H.J.1    Kim, J.H.2    Kwon, O.B.3    Lee, C.S.4    Mun, J.Y.5
  • 49
    • 34347391646 scopus 로고    scopus 로고
    • Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone
    • Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, et al. 2007. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751-1760
    • (2007) Diabetes , vol.56 , pp. 1751-1760
    • Rong, J.X.1    Qiu, Y.2    Hansen, M.K.3    Zhu, L.4    Zhang, V.5
  • 50
    • 17844385363 scopus 로고    scopus 로고
    • Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
    • Bogacka I, Xie H, Bray GA, Smith SR. 2005. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392-1399
    • (2005) Diabetes , vol.54 , pp. 1392-1399
    • Bogacka, I.1    Xie, H.2    Bray, G.A.3    Smith, S.R.4
  • 51
    • 0037304599 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
    • Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, et al. 2003. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 23:1085-1094
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1085-1094
    • Wilson-Fritch, L.1    Burkart, A.2    Bell, G.3    Mendelson, K.4    Leszyk, J.5
  • 52
    • 33646782581 scopus 로고    scopus 로고
    • Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1á gene transcription: An autoregulatory loop controls PGC-1á expression in adipocytes via peroxisome proliferatoractivated receptor-α coactivation
    • Hondares E, Mora O, Yubero P, Rodriguez de la Concepción M, Iglesias R, et al. 2006. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1á gene transcription: An autoregulatory loop controls PGC-1á expression in adipocytes via peroxisome proliferatoractivated receptor-α coactivation. Endocrinology 147:2829-2838
    • (2006) Endocrinology , vol.147 , pp. 2829-2838
    • Hondares, E.1    Mora, O.2    Yubero, P.3    Rodriguez De La Concepción, M.4    Iglesias, R.5
  • 53
    • 9144271149 scopus 로고    scopus 로고
    • Activation of peroxisome proliferatoractivated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome
    • Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, et al. 2003. Activation of peroxisome proliferatoractivated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100:15924-15929
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 15924-15929
    • Tanaka, T.1    Yamamoto, J.2    Iwasaki, S.3    Asaba, H.4    Hamura, H.5
  • 54
    • 0642303113 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability
    • Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, et al. 2003. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 17:2299-2301
    • (2003) FASEB J. , vol.17 , pp. 2299-2301
    • Luquet, S.1    Lopez-Soriano, J.2    Holst, D.3    Fredenrich, A.4    Melki, J.5
  • 55
    • 33750427891 scopus 로고    scopus 로고
    • PGC1á expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
    • Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, et al. 2006. PGC1á expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4:407-414
    • (2006) Cell Metab. , vol.4 , pp. 407-414
    • Schuler, M.1    Ali, F.2    Chambon, C.3    Duteil, D.4    Bornert, J.M.5
  • 56
    • 0346849699 scopus 로고    scopus 로고
    • The peroxisome proliferatoractivated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells
    • Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE. 2003. The peroxisome proliferatoractivated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17:2477-2493
    • (2003) Mol. Endocrinol. , vol.17 , pp. 2477-2493
    • Dressel, U.1    Allen, T.L.2    Pippal, J.B.3    Rohde, P.R.4    Lau, P.5    Muscat, G.E.6
  • 57
    • 0038460823 scopus 로고    scopus 로고
    • Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle
    • Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA. 2003. Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim. Biophys. Acta 1633:43-50
    • (2003) Biochim. Biophys. Acta , vol.1633 , pp. 43-50
    • Holst, D.1    Luquet, S.2    Nogueira, V.3    Kristiansen, K.4    Leverve, X.5    Grimaldi, P.A.6
  • 58
    • 42049114658 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components
    • Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F. 2008. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components. J. Clin. Endocrinol. Metab. 93:1433-1441
    • (2008) J. Clin. Endocrinol. Metab. , vol.93 , pp. 1433-1441
    • Bastin, J.1    Aubey, F.2    Rotig, A.3    Munnich, A.4    Djouadi, F.5
  • 60
    • 33144455156 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage
    • Lee CH, Kang K, Mehl IR, Nofsinger R, Alaynick WA, et al. 2006. Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc. Natl. Acad. Sci. USA 103:2434-2439
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 2434-2439
    • Lee, C.H.1    Kang, K.2    Mehl, I.R.3    Nofsinger, R.4    Alaynick, W.A.5
  • 61
    • 34347354309 scopus 로고    scopus 로고
    • Macrophagespecific PPARγ controls alternative activation and improves insulin resistance
    • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, et al. 2007. Macrophagespecific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116-1120
    • (2007) Nature , vol.447 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3    Morel, C.R.4    Subramanian, V.5
  • 62
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
    • Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, et al. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4:13-24
    • (2006) Cell Metab. , vol.4 , pp. 13-24
    • Vats, D.1    Mukundan, L.2    Odegaard, J.I.3    Zhang, L.4    Smith, K.L.5
  • 63
    • 44349112305 scopus 로고    scopus 로고
    • Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
    • Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, et al. 2008. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7:485-495
    • (2008) Cell Metab. , vol.7 , pp. 485-495
    • Kang, K.1    Reilly, S.M.2    Karabacak, V.3    Gangl, M.R.4    Fitzgerald, K.5
  • 64
    • 53849088227 scopus 로고    scopus 로고
    • Transcriptional control of energy homeostasis by the estrogen-related receptors (ERRs)
    • Giguere V. 2008. Transcriptional control of energy homeostasis by the estrogen-related receptors (ERRs). Endocr. Rev. 29:677-696
    • (2008) Endocr. Rev. , vol.29 , pp. 677-696
    • Giguere, V.1
  • 65
    • 0036187372 scopus 로고    scopus 로고
    • Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3
    • Greschik H, Wurtz JM, Sanglier S, Bourguet W, van Dorsselaer A, et al. 2002. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol. Cell 9:303-313
    • (2002) Mol. Cell , vol.9 , pp. 303-313
    • Greschik, H.1    Wurtz, J.M.2    Sanglier, S.3    Bourguet, W.4    Van Dorsselaer, A.5
  • 66
    • 10344247702 scopus 로고    scopus 로고
    • Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRδ): Crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α
    • Kallen J, Schlaeppi JM, Bitsch F, Filipuzzi I, Schilb A, et al. 2004. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRδ): Crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J. Biol. Chem. 279:49330-49337
    • (2004) J. Biol. Chem. , vol.279 , pp. 49330-49337
    • Kallen, J.1    Schlaeppi, J.M.2    Bitsch, F.3    Filipuzzi, I.4    Schilb, A.5
  • 67
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α
    • Huss JM, Kopp RP, Kelly DP. 2002. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem. 277:40265-40274
    • (2002) J. Biol. Chem. , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 68
    • 0142091356 scopus 로고    scopus 로고
    • PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity
    • Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, et al. 2003. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. USA 100:12378-12383
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 12378-12383
    • Kamei, Y.1    Ohizumi, H.2    Fujitani, Y.3    Nemoto, T.4    Tanaka, T.5
  • 69
    • 0038660688 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα)
    • Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. 2003. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J. Biol. Chem. 278:9013-9018
    • (2003) J. Biol. Chem. , vol.278 , pp. 9013-9018
    • Schreiber, S.N.1    Knutti, D.2    Brogli, K.3    Uhlmann, T.4    Kralli, A.5
  • 71
    • 2342592545 scopus 로고    scopus 로고
    • The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis
    • Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, et al. 2004. The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. Proc. Natl. Acad. Sci. USA 101:6472-6477
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6472-6477
    • Schreiber, S.N.1    Emter, R.2    Hock, M.B.3    Knutti, D.4    Cardenas, J.5
  • 72
    • 34247554887 scopus 로고    scopus 로고
    • Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ
    • Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, et al. 2007. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 5:345-356
    • (2007) Cell Metab. , vol.5 , pp. 345-356
    • Dufour, C.R.1    Wilson, B.J.2    Huss, J.M.3    Kelly, D.P.4    Alaynick, W.A.5
  • 73
    • 34547643550 scopus 로고    scopus 로고
    • Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense
    • Sonoda J, Laganiere J, Mehl IR, Barish GD, Chong LW, et al. 2007. Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev. 21:1909-1920
    • (2007) Genes Dev. , vol.21 , pp. 1909-1920
    • Sonoda, J.1    Laganiere, J.2    Mehl, I.R.3    Barish, G.D.4    Chong, L.W.5
  • 75
    • 4744371376 scopus 로고    scopus 로고
    • Estrogen-related receptor α directs peroxisome proliferator- activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle
    • Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. 2004. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24:9079-9091
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9079-9091
    • Huss, J.M.1    Torra, I.P.2    Staels, B.3    Giguere, V.4    Kelly, D.P.5
  • 76
    • 2442607758 scopus 로고    scopus 로고
    • A polymorphic autoregulatory hormone response element in the human estrogen-related receptor α (ERRα) promoter dictates peroxisome proliferator-activated receptor ã coactivator-1α control of ERRα expression
    • Laganiere J, Tremblay GB, Dufour CR, Giroux S, Rousseau F, Giguere V. 2004. A polymorphic autoregulatory hormone response element in the human estrogen-related receptor α (ERRα) promoter dictates peroxisome proliferator-activated receptor ã coactivator-1α control of ERRα expression. J. Biol. Chem. 279:18504-18510
    • (2004) J. Biol. Chem. , vol.279 , pp. 18504-18510
    • Laganiere, J.1    Tremblay, G.B.2    Dufour, C.R.3    Giroux, S.4    Rousseau, F.5    Giguere, V.6
  • 77
    • 0037185003 scopus 로고    scopus 로고
    • Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)
    • Ichida M, Nemoto S, Finkel T. 2002. Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). J. Biol. Chem. 277:50991-50995
    • (2002) J. Biol. Chem. , vol.277 , pp. 50991-50995
    • Ichida, M.1    Nemoto, S.2    Finkel, T.3
  • 78
    • 34347248013 scopus 로고    scopus 로고
    • The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload
    • Huss JM, Imahashi K-I, Dufour CR, Weinheimer CJ, Courtois M, et al. 2007. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 6:25-37
    • (2007) Cell Metab. , vol.6 , pp. 25-37
    • Huss, J.M.1    Imahashi, K.-I.2    Dufour, C.R.3    Weinheimer, C.J.4    Courtois, M.5
  • 79
    • 0242580188 scopus 로고    scopus 로고
    • Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α
    • Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V. 2003. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α. Mol. Cell. Biol. 23:7947-7956
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7947-7956
    • Luo, J.1    Sladek, R.2    Carrier, J.3    Bader, J.A.4    Richard, D.5    Giguere, V.6
  • 80
    • 10644274243 scopus 로고    scopus 로고
    • Estrogen-related receptor α (ERRα) is a transcriptional regulator of apolipoprotein A-IV and controls lipid handling in the intestine
    • Carrier JC, Deblois G, Champigny C, Levy E, Giguere V. 2004. Estrogen-related receptor α (ERRα) is a transcriptional regulator of apolipoprotein A-IV and controls lipid handling in the intestine. J. Biol. Chem. 279:52052-52058
    • (2004) J. Biol. Chem. , vol.279 , pp. 52052-52058
    • Carrier, J.C.1    Deblois, G.2    Champigny, C.3    Levy, E.4    Giguere, V.5
  • 81
    • 34347259219 scopus 로고    scopus 로고
    • ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart
    • Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, et al. 2007. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 6:13-24
    • (2007) Cell Metab. , vol.6 , pp. 13-24
    • Alaynick, W.A.1    Kondo, R.P.2    Xie, W.3    He, W.4    Dufour, C.R.5
  • 82
    • 34248996170 scopus 로고    scopus 로고
    • Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation
    • Ijichi N, Ikeda K, Horie-Inoue K, Yagi K, Okazaki Y, Inoue S. 2007. Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation. Biochem. Biophys. Res. Commun. 358:813-818
    • (2007) Biochem. Biophys. Res. Commun. , vol.358 , pp. 813-818
    • Ijichi, N.1    Ikeda, K.2    Horie-Inoue, K.3    Yagi, K.4    Okazaki, Y.5    Inoue, S.6
  • 83
    • 0030869565 scopus 로고    scopus 로고
    • Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β
    • Luo J, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguere V. 1997. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β. Nature 388:778-782
    • (1997) Nature , vol.388 , pp. 778-782
    • Luo, J.1    Sladek, R.2    Bader, J.A.3    Matthyssen, A.4    Rossant, J.5    Giguere, V.6
  • 84
    • 33746773659 scopus 로고    scopus 로고
    • Dissecting self-renewal in stem cells with RNA interference
    • Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, et al. 2006. Dissecting self-renewal in stem cells with RNA interference. Nature 442:533-538
    • (2006) Nature , vol.442 , pp. 533-538
    • Ivanova, N.1    Dobrin, R.2    Lu, R.3    Kotenko, I.4    Levorse, J.5
  • 85
    • 34548183083 scopus 로고    scopus 로고
    • Estrogen-related receptor β/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis
    • Chen J, Nathans J. 2007. Estrogen-related receptor β/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev. Cell 13:325-337
    • (2007) Dev. Cell , vol.13 , pp. 325-337
    • Chen, J.1    Nathans, J.2
  • 86
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179-183
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3    Hedrick, S.4    Quinn, R.5
  • 87
    • 1642293248 scopus 로고    scopus 로고
    • P38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene
    • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, et al. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057-3067
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3057-3067
    • Cao, W.1    Daniel, K.W.2    Robidoux, J.3    Puigserver, P.4    Medvedev, A.V.5
  • 88
    • 46349099384 scopus 로고    scopus 로고
    • Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo
    • Kim J, Lee JH, Iyer VR. 2008. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS ONE 3:e1798
    • (2008) PLoS ONE , vol.3
    • Kim, J.1    Lee, J.H.2    Iyer, V.R.3
  • 89
    • 34247614521 scopus 로고    scopus 로고
    • HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity
    • Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, et al. 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407-420
    • (2007) Cancer Cell , vol.11 , pp. 407-420
    • Zhang, H.1    Gao, P.2    Fukuda, R.3    Kumar, G.4    Krishnamachary, B.5
  • 90
    • 21744442902 scopus 로고    scopus 로고
    • Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis
    • Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, et al. 2005. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25:6225-6234
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6225-6234
    • Li, F.1    Wang, Y.2    Zeller, K.I.3    Potter, J.J.4    Wonsey, D.R.5
  • 91
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. 2007. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450:736-740
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 92
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
    • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, et al. 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26:1913-1923
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3    Lerin, C.4    Kim, S.H.5
  • 93
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
    • Jager S, Handschin C, St-Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 104:12017-12022
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 94
    • 0037134493 scopus 로고    scopus 로고
    • The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α
    • Kressler D, Schreiber SN, Knutti D, Kralli A. 2002. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α. J. Biol. Chem. 277:13918-13925
    • (2002) J. Biol. Chem. , vol.277 , pp. 13918-13925
    • Kressler, D.1    Schreiber, S.N.2    Knutti, D.3    Kralli, A.4
  • 95
    • 0035859836 scopus 로고    scopus 로고
    • Regulation of the transcriptional coactivator PGC-1 via MAPKsensitive interaction with a repressor
    • Knutti D, Kressler D, Kralli A. 2001. Regulation of the transcriptional coactivator PGC-1 via MAPKsensitive interaction with a repressor. Proc. Natl. Acad. Sci. USA 98:9713-9718
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 9713-9718
    • Knutti, D.1    Kressler, D.2    Kralli, A.3
  • 96
    • 33749630419 scopus 로고    scopus 로고
    • PGC-1-related coactivator: Immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth
    • Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. 2006. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol. Cell. Biol. 26:7409-7419
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 7409-7419
    • Vercauteren, K.1    Pasko, R.A.2    Gleyzer, N.3    Marino, V.M.4    Scarpulla, R.C.5
  • 97
    • 0032589689 scopus 로고    scopus 로고
    • Activation of PPARγ coactivator-1 through transcription factor docking
    • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, et al. 1999. Activation of PPARγ coactivator-1 through transcription factor docking. Science 286:1368-1371
    • (1999) Science , vol.286 , pp. 1368-1371
    • Puigserver, P.1    Adelmant, G.2    Wu, Z.3    Fan, M.4    Xu, J.5
  • 98
    • 0034116143 scopus 로고    scopus 로고
    • A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen
    • Knutti D, Kaul A, Kralli A. 2000. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 20:2411-2422
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2411-2422
    • Knutti, D.1    Kaul, A.2    Kralli, A.3
  • 99
    • 38349057556 scopus 로고    scopus 로고
    • Cdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis
    • Cdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 22:252-264
    • (2008) Genes Dev. , vol.22 , pp. 252-264
    • Olson, B.L.1    Hock, M.B.2    Ekholm-Reed, S.3    Wohlschlegel, J.A.4    Dev, K.K.5
  • 100
    • 0033638283 scopus 로고    scopus 로고
    • Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
    • Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6:307-316
    • (2000) Mol. Cell , vol.6 , pp. 307-316
    • Monsalve, M.1    Wu, Z.2    Adelmant, G.3    Puigserver, P.4    Fan, M.5    Spiegelman, B.M.6
  • 101
    • 33750359682 scopus 로고    scopus 로고
    • PGC-1α regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor α transcript
    • Thijssen-Timmer DC, Schiphorst MP, Kwakkel J, Emter R, Kralli A, et al. 2006. PGC-1α regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor α transcript. J. Mol. Endocrinol. 37:251-257
    • (2006) J. Mol. Endocrinol. , vol.37 , pp. 251-257
    • Thijssen-Timmer, D.C.1    Schiphorst, M.P.2    Kwakkel, J.3    Emter, R.4    Kralli, A.5
  • 102
    • 0038036024 scopus 로고    scopus 로고
    • Bioenergetic analysis of peroxisome proliferatoractivated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells
    • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, et al. 2003. Bioenergetic analysis of peroxisome proliferatoractivated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 278:26597-26603
    • (2003) J. Biol. Chem. , vol.278 , pp. 26597-26603
    • St-Pierre, J.1    Lin, J.2    Krauss, S.3    Tarr, P.T.4    Yang, R.5
  • 103
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α drives the formation of slow-twitch muscle fibres
    • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, et al. 2002. Transcriptional coactivator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797-801
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3    Zhang, C.Y.4    Wu, Z.5
  • 104
    • 33845674997 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle
    • Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, et al. 2007. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5:35-46
    • (2007) Cell Metab. , vol.5 , pp. 35-46
    • Arany, Z.1    Lebrasseur, N.2    Morris, C.3    Smith, E.4    Yang, W.5
  • 105
    • 45149108625 scopus 로고    scopus 로고
    • Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake
    • Calvo JA, Daniels TG, Wang X, Paul A, Lin J, et al. 2008. Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol. 104:1304-1312
    • (2008) J. Appl. Physiol. , vol.104 , pp. 1304-1312
    • Calvo, J.A.1    Daniels, T.G.2    Wang, X.3    Paul, A.4    Lin, J.5
  • 106
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
    • Lin J, Wu P-H, Tarr PT, Lindenberg KS, St-Pierre J, et al. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121-135
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1    Wu, P.-H.2    Tarr, P.T.3    Lindenberg, K.S.4    St-Pierre, J.5
  • 107
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
    • Arany Z, He H, Lin J, Hoyer K, Handschin C, et al. 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 1:259-271
    • (2005) Cell Metab. , vol.1 , pp. 259-271
    • Arany, Z.1    He, H.2    Lin, J.3    Hoyer, K.4    Handschin, C.5
  • 108
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1á deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, et al. 2005. PGC-1á deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3:e101
    • (2005) PLoS Biol. , vol.3
    • Leone, T.C.1    Lehman, J.J.2    Finck, B.N.3    Schaeffer, P.J.4    Wende, A.R.5
  • 109
    • 33745627066 scopus 로고    scopus 로고
    • Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α
    • Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. 2006. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc. Natl. Acad. Sci. USA 103:10086-10091
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10086-10091
    • Arany, Z.1    Novikov, M.2    Chin, S.3    Ma, Y.4    Rosenzweig, A.5    Spiegelman, B.M.6
  • 110
    • 33751022208 scopus 로고    scopus 로고
    • Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
    • Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, et al. 2006. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4:e369
    • (2006) PLoS Biol. , vol.4
    • Lelliott, C.J.1    Medina-Gomez, G.2    Petrovic, N.3    Kis, A.4    Feldmann, H.M.5
  • 111
    • 33751400561 scopus 로고    scopus 로고
    • Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
    • Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, et al. 2006. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4:453-64
    • (2006) Cell Metab. , vol.4 , pp. 453-464
    • Vianna, C.R.1    Huntgeburth, M.2    Coppari, R.3    Choi, C.S.4    Lin, J.5
  • 112
    • 33646124709 scopus 로고    scopus 로고
    • Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation
    • Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. 2006. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3:333-41
    • (2006) Cell Metab. , vol.3 , pp. 333-341
    • Uldry, M.1    Yang, W.2    St-Pierre, J.3    Lin, J.4    Seale, P.5    Spiegelman, B.M.6
  • 113
    • 47549114849 scopus 로고    scopus 로고
    • Transcriptional coactivators PGC-1á and PGC-lâ control overlapping programs required for perinatal maturation of the heart
    • Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, et al. 2008. Transcriptional coactivators PGC-1á and PGC-lâ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22:1948-1961
    • (2008) Genes Dev. , vol.22 , pp. 1948-1961
    • Lai, L.1    Leone, T.C.2    Zechner, C.3    Schaeffer, P.J.4    Kelly, S.M.5
  • 114
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1
    • Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8:971-982
    • (2001) Mol. Cell , vol.8 , pp. 971-982
    • Puigserver, P.1    Rhee, J.2    Lin, J.3    Wu, Z.4    Yoon, J.C.5
  • 115
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator
    • Li X, Monks B, Ge Q, Birnbaum MJ. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447:1012-1016
    • (2007) Nature , vol.447 , pp. 1012-1016
    • Li, X.1    Monks, B.2    Ge, Q.3    Birnbaum, M.J.4
  • 116
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
    • Lerin C, Rodgers JT, Kalume DE, Kim S-H, Pandey A, Puigserver P. 2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3:429-438
    • (2006) Cell Metab. , vol.3 , pp. 429-438
    • Lerin, C.1    Rodgers, J.T.2    Kalume, D.E.3    Kim, S.-H.4    Pandey, A.5    Puigserver, P.6
  • 117
    • 22344440666 scopus 로고    scopus 로고
    • Activation of nuclear receptor coactivator PGC-1α by arginine methylation
    • Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. 2005. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 19:1466-1473
    • (2005) Genes Dev. , vol.19 , pp. 1466-1473
    • Teyssier, C.1    Ma, H.2    Emter, R.3    Kralli, A.4    Stallcup, M.R.5
  • 118
    • 10744222588 scopus 로고    scopus 로고
    • Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: Modulation by p38 MAPK
    • Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, et al. 2004. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. Genes Dev. 18:278-289
    • (2004) Genes Dev. , vol.18 , pp. 278-289
    • Fan, M.1    Rhee, J.2    St-Pierre, J.3    Handschin, C.4    Puigserver, P.5
  • 119
    • 33746077514 scopus 로고    scopus 로고
    • Metabolic regulation by the nuclear receptor corepressor RIP140
    • Christian M, White R, Parker MG. 2006. Metabolic regulation by the nuclear receptor corepressor RIP140. Trends Endocrinol. Metab. 17:243-250
    • (2006) Trends Endocrinol. Metab. , vol.17 , pp. 243-250
    • Christian, M.1    White, R.2    Parker, M.G.3
  • 120
    • 31044432605 scopus 로고    scopus 로고
    • Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes
    • Powelka AM, Seth A, Virbasius JV, Kiskinis E, Nicoloro SM, et al. 2006. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J. Clin. Investig. 116:125-136
    • (2006) J. Clin. Investig. , vol.116 , pp. 125-136
    • Powelka, A.M.1    Seth, A.2    Virbasius, J.V.3    Kiskinis, E.4    Nicoloro, S.M.5
  • 122
    • 34548208233 scopus 로고    scopus 로고
    • The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle
    • Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, et al. 2007. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 6:236-245
    • (2007) Cell Metab. , vol.6 , pp. 236-245
    • Seth, A.1    Steel, J.H.2    Nichol, D.3    Pocock, V.4    Kumaran, M.K.5
  • 123
    • 33845948962 scopus 로고    scopus 로고
    • RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis
    • Nichol D, Christian M, Steel JH, White R, Parker MG. 2006. RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis. J. Biol. Chem. 281:32140-32147
    • (2006) J. Biol. Chem. , vol.281 , pp. 32140-32147
    • Nichol, D.1    Christian, M.2    Steel, J.H.3    White, R.4    Parker, M.G.5
  • 124
    • 45549093122 scopus 로고    scopus 로고
    • SUMOylation modulates the transcription repressor function of RIP140
    • Rytinki MM, Palvimo JJ. 2008. SUMOylation modulates the transcription repressor function of RIP140. J. Biol. Chem. 283:11586-11595
    • (2008) J. Biol. Chem. , vol.283 , pp. 11586-11595
    • Rytinki, M.M.1    Palvimo, J.J.2
  • 125
    • 49549112242 scopus 로고    scopus 로고
    • Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation
    • Ho PC, Gupta P, Tsui YC, Ha SG, Huq M, Wei LN. 2008. Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cell Signal. 20:1911-1919
    • (2008) Cell Signal. , vol.20 , pp. 1911-1919
    • Ho, P.C.1    Gupta, P.2    Tsui, Y.C.3    Ha, S.G.4    Huq, M.5    Wei, L.N.6
  • 126
    • 33750438775 scopus 로고    scopus 로고
    • Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation
    • Mostaqul Huq MD, Gupta P, Tsai NP, White R, Parker MG, Wei LN. 2006. Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J. 25:5094-5104
    • (2006) EMBO J. , vol.25 , pp. 5094-5104
    • Mostaqul Huq, M.D.1    Gupta, P.2    Tsai, N.P.3    White, R.4    Parker, M.G.5    Wei, L.N.6
  • 127
    • 44049092767 scopus 로고    scopus 로고
    • Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise
    • Rockl KS, Witczak CA, Goodyear LJ. 2008. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145-153
    • (2008) IUBMB Life , vol.60 , pp. 145-153
    • Rockl, K.S.1    Witczak, C.A.2    Goodyear, L.J.3
  • 128
    • 0037251008 scopus 로고    scopus 로고
    • Cold-induced recruitment of brown adipose tissue thermogenesis
    • Klingenspor M. 2003. Cold-induced recruitment of brown adipose tissue thermogenesis. Exp. Physiol. 88:141-148
    • (2003) Exp. Physiol. , vol.88 , pp. 141-148
    • Klingenspor, M.1
  • 130
    • 34347237611 scopus 로고    scopus 로고
    • An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation
    • Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, et al. 2007. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation. Endocrinology 148:3441-3448
    • (2007) Endocrinology , vol.148 , pp. 3441-3448
    • Miura, S.1    Kawanaka, K.2    Kai, Y.3    Tamura, M.4    Goto, M.5
  • 131
    • 20444477952 scopus 로고    scopus 로고
    • Regulation of metabolic transcriptional coactivators and transcription factors with acute exercise
    • Russell AP, Hesselink MK, Lo SK, Schrauwen P. 2005. Regulation of metabolic transcriptional coactivators and transcription factors with acute exercise. FASEB J. 19:986-988
    • (2005) FASEB J. , vol.19 , pp. 986-988
    • Russell, A.P.1    Hesselink, M.K.2    Lo, S.K.3    Schrauwen, P.4
  • 133
    • 42449092519 scopus 로고    scopus 로고
    • Gene expressionbased screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation
    • Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM. 2008. Gene expressionbased screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 105:4721-4726
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 4721-4726
    • Arany, Z.1    Wagner, B.K.2    Ma, Y.3    Chinsomboon, J.4    Laznik, D.5    Spiegelman, B.M.6
  • 134
    • 1342307974 scopus 로고    scopus 로고
    • The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption
    • Lambert AJ, Wang B, Yardley J, Edwards J, Merry BJ. 2004. The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp. Gerontol. 39:289-295
    • (2004) Exp. Gerontol. , vol.39 , pp. 289-295
    • Lambert, A.J.1    Wang, B.2    Yardley, J.3    Edwards, J.4    Merry, B.J.5
  • 135
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, et al. 2005. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314-317
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1    Tonello, C.2    Cardile, A.3    Cozzi, V.4    Bracale, R.5
  • 136
    • 32444437067 scopus 로고    scopus 로고
    • Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
    • Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, et al. 2006. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. USA 103:1768-1773
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 1768-1773
    • Lopez-Lluch, G.1    Hunt, N.2    Jones, B.3    Zhu, M.4    Jamieson, H.5
  • 137
    • 33845670719 scopus 로고    scopus 로고
    • Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1á
    • Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M. 2006. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1á. FASEB J. 20:1889-1891
    • (2006) FASEB J. , vol.20 , pp. 1889-1891
    • Borniquel, S.1    Valle, I.2    Cadenas, S.3    Lamas, S.4    Monsalve, M.5
  • 138
    • 34848835736 scopus 로고    scopus 로고
    • Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis
    • Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS. 2007. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Investig. 117:2723-2734
    • (2007) J. Clin. Investig. , vol.117 , pp. 2723-2734
    • Eaton, J.S.1    Lin, Z.P.2    Sartorelli, A.C.3    Bonawitz, N.D.4    Shadel, G.S.5
  • 141
    • 0033081478 scopus 로고    scopus 로고
    • Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk
    • Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, et al. 1999. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 18:522-533
    • (1999) EMBO J. , vol.18 , pp. 522-533
    • Biswas, G.1    Adebanjo, O.A.2    Freedman, B.D.3    Anandatheerthavarada, H.K.4    Vijayasarathy, C.5
  • 142
    • 34547092191 scopus 로고    scopus 로고
    • Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
    • Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. 2007. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282:18793-18799
    • (2007) J. Biol. Chem. , vol.282 , pp. 18793-18799
    • Wright, D.C.1    Geiger, P.C.2    Han, D.H.3    Jones, T.E.4    Holloszy, J.O.5
  • 144
    • 0037066459 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
    • Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, et al. 2002. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349-352
    • (2002) Science , vol.296 , pp. 349-352
    • Wu, H.1    Kanatous, S.B.2    Thurmond, F.A.3    Gallardo, T.4    Isotani, E.5
  • 145
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle
    • Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle. Proc. Natl. Acad. Sci. USA100:7111-7116
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tarr, P.T.4    Spiegelman, B.M.5
  • 146
    • 2342599054 scopus 로고    scopus 로고
    • Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle
    • McGee SL, Hargreaves M. 2004. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53:1208-1214
    • (2004) Diabetes , vol.53 , pp. 1208-1214
    • McGee, S.L.1    Hargreaves, M.2
  • 147
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
    • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, et al. 2005. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280:19587-19593
    • (2005) J. Biol. Chem. , vol.280 , pp. 19587-19593
    • Akimoto, T.1    Pohnert, S.C.2    Li, P.3    Zhang, M.4    Gumbs, C.5
  • 148
    • 52749095883 scopus 로고    scopus 로고
    • Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging
    • Akimoto T, Li P, Yan Z. 2008. Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am. J. Physiol. Cell Physiol. 295:C288-92
    • (2008) Am. J. Physiol. Cell Physiol. , vol.295
    • Akimoto, T.1    Li, P.2    Yan, Z.3
  • 149
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor β coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5
    • Czubryt MP, McAnally J, Fishman GI, Olson EN. 2003. Regulation of peroxisome proliferator-activated receptor β coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. USA 100:1711-1716
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 150
    • 34447511610 scopus 로고    scopus 로고
    • Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: Potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation
    • Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, et al. 2007. Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282:15439-15450
    • (2007) J. Biol. Chem. , vol.282 , pp. 15439-15450
    • Crunkhorn, S.1    Dearie, F.2    Mantzoros, C.3    Gami, H.4    Da Silva, W.S.5
  • 152
    • 29244436681 scopus 로고    scopus 로고
    • AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1
    • Lee WJ, Kim M, Park H-S, Kim HS, Jeon MJ, et al. 2006. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochem. Biophys. Res. Commun. 340:291-295
    • (2006) Biochem. Biophys. Res. Commun. , vol.340 , pp. 291-295
    • Lee, W.J.1    Kim, M.2    Park, H.-S.3    Kim, H.S.4    Jeon, M.J.5
  • 153
    • 42449161465 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
    • McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, et al. 2008. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860-867
    • (2008) Diabetes , vol.57 , pp. 860-867
    • McGee, S.L.1    Van Denderen, B.J.2    Howlett, K.F.3    Mollica, J.4    Schertzer, J.D.5
  • 154
    • 48449094498 scopus 로고    scopus 로고
    • AMPK and PPARδ agonists are exercise mimetics
    • Narkar VA, Downes M, Yu RT, Embler E, Wang YX, et al. 2008. AMPK and PPARδ agonists are exercise mimetics. Cell 134:405-415
    • (2008) Cell , vol.134 , pp. 405-415
    • Narkar, V.A.1    Downes, M.2    Yu, R.T.3    Embler, E.4    Wang, Y.X.5
  • 155
    • 0037122766 scopus 로고    scopus 로고
    • Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase
    • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, et al. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339-343
    • (2002) Nature , vol.415 , pp. 339-343
    • Minokoshi, Y.1    Kim, Y.B.2    Peroni, O.D.3    Fryer, L.G.4    Muller, C.5
  • 156
    • 33750578279 scopus 로고    scopus 로고
    • Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α
    • Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. 2006. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α. Diabetes 55:2562-2570
    • (2006) Diabetes , vol.55 , pp. 2562-2570
    • Yoon, M.J.1    Lee, G.Y.2    Chung, J.J.3    Ahn, Y.H.4    Hong, S.H.5    Kim, J.B.6
  • 157
    • 38349063250 scopus 로고    scopus 로고
    • Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo
    • Irrcher I, Walkinshaw DR, Sheehan TE, Hood DA. 2008. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J. Appl. Physiol. 104:178-185
    • (2008) J. Appl. Physiol. , vol.104 , pp. 178-185
    • Irrcher, I.1    Walkinshaw, D.R.2    Sheehan, T.E.3    Hood, D.A.4
  • 159
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109-1122
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3    Meziane, H.4    Lerin, C.5
  • 160
    • 34249846128 scopus 로고    scopus 로고
    • Resveratrol stimulates AMP kinase activity in neurons
    • Dasgupta B, Milbrandt J. 2007. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104:7217-7222
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 7217-7222
    • Dasgupta, B.1    Milbrandt, J.2
  • 161
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, et al. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712-716
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3    Carney, D.P.4    Smith, J.J.5
  • 162
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
    • Nemoto S, Fergusson MM, Finkel T. 2005. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280:16456-16460
    • (2005) J. Biol. Chem. , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 164
    • 33746826045 scopus 로고    scopus 로고
    • Neuregulins mediate calcium-induced glucose transport during muscle contraction
    • Canto C, Chibalin AV, Barnes BR, Glund S, Suarez E, et al. 2006. Neuregulins mediate calcium-induced glucose transport during muscle contraction. J. Biol. Chem. 281:21690-21697
    • (2006) J. Biol. Chem. , vol.281 , pp. 21690-21697
    • Canto, C.1    Chibalin, A.V.2    Barnes, B.R.3    Glund, S.4    Suarez, E.5
  • 165
    • 33846951523 scopus 로고    scopus 로고
    • Estrogen-related receptor α1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway
    • Ariazi EA, Kraus RJ, Farrell ML, Jordan VC, Mertz JE. 2007. Estrogen-related receptor α1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway. Mol. Cancer Res. 5:71-85
    • (2007) Mol. Cancer Res. , vol.5 , pp. 71-85
    • Ariazi, E.A.1    Kraus, R.J.2    Farrell, M.L.3    Jordan, V.C.4    Mertz, J.E.5
  • 166
    • 0347579845 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide
    • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896-899
    • (2003) Science , vol.299 , pp. 896-899
    • Nisoli, E.1    Clementi, E.2    Paolucci, C.3    Cozzi, V.4    Tonello, C.5
  • 167
    • 33846629472 scopus 로고    scopus 로고
    • Ménage-à-trois 1 is critical for the transcriptional function of PPARγ coactivator 1
    • Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, et al. 2007. Ménage-à-trois 1 is critical for the transcriptional function of PPARγ coactivator 1. Cell Metab. 5:129-142
    • (2007) Cell Metab. , vol.5 , pp. 129-142
    • Sano, M.1    Izumi, Y.2    Helenius, K.3    Asakura, M.4    Rossi, D.J.5
  • 168
    • 44949147109 scopus 로고    scopus 로고
    • Gene set enrichment in eQTL data identifies novel annotations and pathway regulators
    • Wu C, Delano DL, Mitro N, Su SV, Janes J, et al. 2008. Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet. 4:e1000070
    • (2008) PLoS Genet. , vol.4
    • Wu, C.1    Delano, D.L.2    Mitro, N.3    Su, S.V.4    Janes, J.5
  • 169
    • 33846580517 scopus 로고    scopus 로고
    • Aging-associated reductions in AMPactivated protein kinase activity and mitochondrial biogenesis
    • Reznick RM, Zong H, Li J, Morino K, Moore IK, et al. 2007. Aging-associated reductions in AMPactivated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5:151-156
    • (2007) Cell Metab. , vol.5 , pp. 151-156
    • Reznick, R.M.1    Zong, H.2    Li, J.3    Morino, K.4    Moore, I.K.5
  • 170
    • 33749442351 scopus 로고    scopus 로고
    • TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents
    • Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. 2006. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J. Clin. Investig. 116:2791-2798
    • (2006) J. Clin. Investig. , vol.116 , pp. 2791-2798
    • Valerio, A.1    Cardile, A.2    Cozzi, V.3    Bracale, R.4    Tedesco, L.5
  • 171
    • 15444370639 scopus 로고    scopus 로고
    • Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle
    • Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, et al. 2005. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem. 280:10290-10297
    • (2005) J. Biol. Chem. , vol.280 , pp. 10290-10297
    • Richardson, D.K.1    Kashyap, S.2    Bajaj, M.3    Cusi, K.4    Mandarino, S.J.5
  • 172
    • 21344444333 scopus 로고    scopus 로고
    • A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle
    • Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, et al. 2005. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926-1933
    • (2005) Diabetes , vol.54 , pp. 1926-1933
    • Sparks, L.M.1    Xie, H.2    Koza, R.A.3    Mynatt, R.4    Hulver, M.W.5
  • 173
  • 174
    • 45549089279 scopus 로고    scopus 로고
    • High-fat diets cause insulin resistance despite an increase in muscle mitochondria
    • Hancock CR, Han D-H, Chen M, Terada S, Yasuda T, et al. 2008. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 105:7815-7820
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 7815-7820
    • Hancock, C.R.1    Han, D.-H.2    Chen, M.3    Terada, S.4    Yasuda, T.5
  • 175
    • 0037342151 scopus 로고    scopus 로고
    • Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
    • Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-649
    • (2003) Diabetes , vol.52 , pp. 642-649
    • Daitoku, H.1    Yamagata, K.2    Matsuzaki, H.3    Hatta, M.4    Fukamizu, A.5
  • 176
    • 28744459153 scopus 로고    scopus 로고
    • PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle
    • doi:10.1096/fj.05-3993fje
    • Southgate RJ, Bruce CR, Carey AL, Steinberg GR, Walder K, et al. 2005. PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J. doi:10.1096/fj.05-3993fje
    • (2005) FASEB J.
    • Southgate, R.J.1    Bruce, C.R.2    Carey, A.L.3    Steinberg, G.R.4    Walder, K.5
  • 177
    • 33846694082 scopus 로고    scopus 로고
    • Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways
    • Kim D, Kwon YK, Cho KH. 2007. Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. Bioessays 29:85-90
    • (2007) Bioessays , vol.29 , pp. 85-90
    • Kim, D.1    Kwon, Y.K.2    Cho, K.H.3
  • 178
    • 50449102941 scopus 로고    scopus 로고
    • Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise
    • Miura S, Kai Y, Kamei Y, Ezaki O. 2008. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise. Endocrinology 149:4527-4533
    • (2008) Endocrinology , vol.149 , pp. 4527-4533
    • Miura, S.1    Kai, Y.2    Kamei, Y.3    Ezaki, O.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.