-
1
-
-
46349103594
-
A mitochondrial protein compendium elucidates complex I disease biology
-
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112-123
-
(2008)
Cell
, vol.134
, pp. 112-123
-
-
Pagliarini, D.J.1
Calvo, S.E.2
Chang, B.3
Sheth, S.A.4
Vafai, S.B.5
-
2
-
-
10744224439
-
Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
-
Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629-640
-
(2003)
Cell
, vol.115
, pp. 629-640
-
-
Mootha, V.K.1
Bunkenborg, J.2
Olsen, J.V.3
Hjerrild, M.4
Wisniewski, J.R.5
-
3
-
-
33847766208
-
Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function
-
Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, et al. 2007. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J. Appl. Physiol. 102:1078-1089
-
(2007)
J. Appl. Physiol.
, vol.102
, pp. 1078-1089
-
-
Chow, L.S.1
Greenlund, L.J.2
Asmann, Y.W.3
Short, K.R.4
McCrady, S.K.5
-
4
-
-
33947710793
-
Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
-
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, et al. 2007. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4:e76
-
(2007)
PLoS Med.
, vol.4
-
-
Civitarese, A.E.1
Carling, S.2
Heilbronn, L.K.3
Hulver, M.H.4
Ukropcova, B.5
-
5
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
Scarpulla RC. 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88:611-638
-
(2008)
Physiol. Rev.
, vol.88
, pp. 611-638
-
-
Scarpulla, R.C.1
-
6
-
-
1942518840
-
PPARs and the complex journey to obesity
-
Evans RM, Barish GD, Wang YX. 2004. PPARs and the complex journey to obesity. Nat. Med. 10:355-361
-
(2004)
Nat. Med.
, vol.10
, pp. 355-361
-
-
Evans, R.M.1
Barish, G.D.2
Wang, Y.X.3
-
7
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
8
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-124
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
-
9
-
-
33845596500
-
Peroxisome proliferator-activated receptor α coactivator 1 coactivators, energy homeostasis, and metabolism
-
Handschin C, Spiegelman BM. 2006. Peroxisome proliferator-activated receptor α coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27:728-735
-
(2006)
Endocr. Rev.
, vol.27
, pp. 728-735
-
-
Handschin, C.1
Spiegelman, B.M.2
-
10
-
-
52249090234
-
ERRα: A metabolic function for the oldest orphan
-
Villena JA, Kralli A. 2008. ERRα: a metabolic function for the oldest orphan. Trends Endocrinol. Metab. 8:269-276
-
(2008)
Trends Endocrinol. Metab.
, vol.8
, pp. 269-276
-
-
Villena, J.A.1
Kralli, A.2
-
11
-
-
0027135555
-
NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators
-
Virbasius CA, Virbasius JV, Scarpulla RC. 1993. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7:2431-2445
-
(1993)
Genes Dev.
, vol.7
, pp. 2431-2445
-
-
Virbasius, C.A.1
Virbasius, J.V.2
Scarpulla, R.C.3
-
12
-
-
45549087482
-
Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits
-
Ramachandran B, Yu G, Gulick T. 2008. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J. Biol. Chem. 283:11935-11946
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 11935-11946
-
-
Ramachandran, B.1
Yu, G.2
Gulick, T.3
-
13
-
-
8644281106
-
A common set of gene regulatory networks links metabolism and growth inhibition
-
Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, et al. 2004. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16:399-411
-
(2004)
Mol. Cell
, vol.16
, pp. 399-411
-
-
Cam, H.1
Balciunaite, E.2
Blais, A.3
Spektor, A.4
Scarpulla, R.C.5
-
14
-
-
33746814985
-
Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function
-
Wang C, Li Z, Lu Y, Du R, Katiyar S, et al. 2006. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Natl. Acad. Sci. USA 103:11567-11572
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11567-11572
-
-
Wang, C.1
Li, Z.2
Lu, Y.3
Du, R.4
Katiyar, S.5
-
15
-
-
41249086496
-
Nuclear respiratory factor 1 regulates all ten nuclearencoded subunits of cytochrome c oxidase in neurons
-
Dhar SS, Ongwijitwat S, Wong-Riley MT. 2008. Nuclear respiratory factor 1 regulates all ten nuclearencoded subunits of cytochrome c oxidase in neurons. J. Biol. Chem. 283:3120-3129
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 3120-3129
-
-
Dhar, S.S.1
Ongwijitwat, S.2
Wong-Riley, M.T.3
-
16
-
-
0035016566
-
Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cell
-
Andersson U, Scarpulla RC. 2001. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cell. Mol. Cell. Biol. 21:3738-3749
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 3738-3749
-
-
Andersson, U.1
Scarpulla, R.C.2
-
17
-
-
0037127204
-
Peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1 beta;), a novel PGC-1-related transcription coactivator associated with host cell factor
-
Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002. Peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1 beta;), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277:1645-1648
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
Puigserver, P.2
Donovan, J.3
Tarr, P.4
Spiegelman, B.M.5
-
18
-
-
33745858709
-
Cyclin D1 determines mitochondrial function in vivo
-
Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, et al. 2006. Cyclin D1 determines mitochondrial function in vivo. Mol. Cell. Biol. 26:5449-5469
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5449-5469
-
-
Sakamaki, T.1
Casimiro, M.C.2
Ju, X.3
Quong, A.A.4
Katiyar, S.5
-
19
-
-
0037389416
-
Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle
-
Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO. 2003. Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J. 17:675-681
-
(2003)
FASEB J.
, vol.17
, pp. 675-681
-
-
Ojuka, E.O.1
Jones, T.E.2
Han, D.H.3
Chen, M.4
Holloszy, J.O.5
-
20
-
-
44349184864
-
Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation
-
Fu X, Wan S, Lyu YL, Liu LF, Qi H. 2008. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE 3:e2009
-
(2008)
PLoS ONE
, vol.3
-
-
Fu, X.1
Wan, S.2
Lyu, Y.L.3
Liu, L.F.4
Qi, H.5
-
21
-
-
0032486315
-
Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle
-
Murakami T, Shimomura Y, Yoshimura A, Sokabe M, Fujitsuka N. 1998. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim. Biophys. Acta 1381:113-122
-
(1998)
Biochim. Biophys. Acta
, vol.1381
, pp. 113-122
-
-
Murakami, T.1
Shimomura, Y.2
Yoshimura, A.3
Sokabe, M.4
Fujitsuka, N.5
-
22
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
-
Baar K, Wende AR, Jones TE, Marison M, Nolte LA, et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886
-
(2002)
FASEB J.
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
-
23
-
-
33751335266
-
Temperature- And exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)
-
McClelland GB, Craig PM, Dhekney K, Dipardo S. 2006. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577:739-751
-
(2006)
J. Physiol.
, vol.577
, pp. 739-751
-
-
McClelland, G.B.1
Craig, P.M.2
Dhekney, K.3
Dipardo, S.4
-
24
-
-
0037322888
-
Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
-
Pilegaard H, Saltin B, Neufer PD. 2003. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546:851-858
-
(2003)
J. Physiol.
, vol.546
, pp. 851-858
-
-
Pilegaard, H.1
Saltin, B.2
Neufer, P.D.3
-
25
-
-
23844494686
-
Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise
-
Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, et al. 2005. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567:349-358
-
(2005)
J. Physiol.
, vol.567
, pp. 349-358
-
-
Cartoni, R.1
Leger, B.2
Hock, M.B.3
Praz, M.4
Crettenand, A.5
-
26
-
-
0035665594
-
Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
-
Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, et al. 2001. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281:E1340-46
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.281
-
-
Bergeron, R.1
Ren, J.M.2
Cadman, K.S.3
Moore, I.K.4
Perret, P.5
-
27
-
-
0035169827
-
Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice
-
Huo L, Scarpulla RC. 2001. Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol. Cell. Biol. 21:644-654
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 644-654
-
-
Huo, L.1
Scarpulla, R.C.2
-
28
-
-
0042415526
-
Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity
-
Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, et al. 2003. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J. 17:1666-1673
-
(2003)
FASEB J.
, vol.17
, pp. 1666-1673
-
-
Baar, K.1
Song, Z.2
Semenkovich, C.F.3
Jones, T.E.4
Han, D.H.5
-
29
-
-
0027256435
-
Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters
-
Virbasius JV, Virbasius CA, Scarpulla RC. 1993. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 7:380-392
-
(1993)
Genes Dev.
, vol.7
, pp. 380-392
-
-
Virbasius, J.V.1
Virbasius, C.A.2
Scarpulla, R.C.3
-
30
-
-
2342477730
-
Errα and Gabpa/b specify PGC- 1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
-
Mootha VK, Handschin C, Arlow D, Xie X, St. Pierre J, et al. 2004. Errα and Gabpa/b specify PGC- 1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. 101:6570-6575
-
(2004)
Proc. Natl. Acad. Sci.
, vol.101
, pp. 6570-6575
-
-
Mootha, V.K.1
Handschin, C.2
Arlow, D.3
Xie, X.4
St Pierre, J.5
-
31
-
-
33646690296
-
Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs
-
Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT. 2006. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374:39-49
-
(2006)
Gene
, vol.374
, pp. 39-49
-
-
Ongwijitwat, S.1
Liang, H.L.2
Graboyes, E.M.3
Wong-Riley, M.T.4
-
32
-
-
34548394227
-
Neuregulins increase mitochondrial oxidative capacity and insulin sensitivity in skeletal muscle cells
-
Canto C, Pich S, Paz JC, Sanches R, Martinez V, et al. 2007. Neuregulins increase mitochondrial oxidative capacity and insulin sensitivity in skeletal muscle cells. Diabetes 56:2185-2193
-
(2007)
Diabetes
, vol.56
, pp. 2185-2193
-
-
Canto, C.1
Pich, S.2
Paz, J.C.3
Sanches, R.4
Martinez, V.5
-
33
-
-
34147109662
-
PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy
-
Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. 2007. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 21:770-783
-
(2007)
Genes Dev.
, vol.21
, pp. 770-783
-
-
Handschin, C.1
Kobayashi, Y.M.2
Chin, S.3
Seale, P.4
Campbell, K.P.5
Spiegelman, B.M.6
-
34
-
-
45549103553
-
PGC-1-related coactivator (PRC) complexes with HCF-1 and NRF-2β in mediating NRF-2(GABP)-dependent respiratory gene expression
-
Vercauteren K, Gleyzer N, Scarpulla RC. 2008. PGC-1-related coactivator (PRC) complexes with HCF-1 and NRF-2β in mediating NRF-2(GABP)-dependent respiratory gene expression. J. Biol. Chem. 283:12102-12111
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 12102-12111
-
-
Vercauteren, K.1
Gleyzer, N.2
Scarpulla, R.C.3
-
35
-
-
2942709643
-
The ETS transcription factor GABPα is essential for early embryogenesis
-
Ristevski S, O'Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ. 2004. The ETS transcription factor GABPα is essential for early embryogenesis. Mol. Cell. Biol. 24:5844-5849
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 5844-5849
-
-
Ristevski, S.1
O'Leary, D.A.2
Thornell, A.P.3
Owen, M.J.4
Kola, I.5
Hertzog, P.J.6
-
36
-
-
0036866036
-
Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors
-
Villena JA, Carmona MC, Rodríguez de la Concepción M, Rossmeisl M, Viñas O, et al. 2002. Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors. Cell. Mol. Life Sci. 59:1934-1944
-
(2002)
Cell. Mol. Life Sci.
, vol.59
, pp. 1934-1944
-
-
Villena, J.A.1
Carmona, M.C.2
Rodríguez De La Concepción, M.3
Rossmeisl, M.4
Viñas, O.5
-
37
-
-
0037070565
-
Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 α-subunit in rat liver
-
Rodríguez-Peña A, Escrivá H, Handler AC, Vallejo CG. 2002. Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 α-subunit in rat liver. FEBS Lett. 514:309-314
-
(2002)
FEBS Lett.
, vol.514
, pp. 309-314
-
-
Rodríguez-Peña, A.1
Escrivá, H.2
Handler, A.C.3
Vallejo, C.G.4
-
38
-
-
0141634243
-
Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles
-
Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. 2003. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J. Physiol. 551:491-501
-
(2003)
J. Physiol.
, vol.551
, pp. 491-501
-
-
Garnier, A.1
Fortin, D.2
Delomenie, C.3
Momken, I.4
Veksler, V.5
Ventura-Clapier, R.6
-
39
-
-
33847355216
-
The Ets transcription factor GABP is required for cell-cycle progression
-
Yang ZF, Mott S, Rosmarin AG. 2007. The Ets transcription factor GABP is required for cell-cycle progression. Nat. Cell Biol. 9:339-346
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 339-346
-
-
Yang, Z.F.1
Mott, S.2
Rosmarin, A.G.3
-
40
-
-
34247107198
-
The transcription factor GABP is a critical regulator of B lymphocyte development
-
Xue HH, Bollenbacher-Reilley J, Wu Z, Spolski R, Jing X, et al. 2007. The transcription factor GABP is a critical regulator of B lymphocyte development. Immunity 26:421-431
-
(2007)
Immunity
, vol.26
, pp. 421-431
-
-
Xue, H.H.1
Bollenbacher-Reilley, J.2
Wu, Z.3
Spolski, R.4
Jing, X.5
-
41
-
-
34347359670
-
GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression
-
Jaworski A, Smith CL, Burden SJ. 2007. GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. Mol. Cell. Biol. 27:5040-5046
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 5040-5046
-
-
Jaworski, A.1
Smith, C.L.2
Burden, S.J.3
-
42
-
-
34247598240
-
Targeting of the ETS factor Gabpα disrupts neuromuscular junction synaptic function
-
O'Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. 2007. Targeting of the ETS factor Gabpα disrupts neuromuscular junction synaptic function. Mol. Cell. Biol. 27:3470-3480
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3470-3480
-
-
O'Leary, D.A.1
Noakes, P.G.2
Lavidis, N.A.3
Kola, I.4
Hertzog, P.J.5
Ristevski, S.6
-
43
-
-
36849068108
-
Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart
-
Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, et al. 2007. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J. Clin. Investig. 117:3930-3939
-
(2007)
J. Clin. Investig.
, vol.117
, pp. 3930-3939
-
-
Burkart, E.M.1
Sambandam, N.2
Han, X.3
Gross, R.W.4
Courtois, M.5
-
44
-
-
37349007681
-
PPARδ as a therapeutic target in metabolic disease
-
Reilly SM, Lee CH. 2008. PPARδ as a therapeutic target in metabolic disease. FEBS Lett. 582:26-31
-
(2008)
FEBS Lett.
, vol.582
, pp. 26-31
-
-
Reilly, S.M.1
Lee, C.H.2
-
45
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferatoractivated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. 2000. The coactivator PGC-1 cooperates with peroxisome proliferatoractivated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20:1868-1876
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
46
-
-
8844276054
-
Regulation of muscle fiber type and running endurance by PPARδ
-
Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, et al. 2004. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2:e294
-
(2004)
PLoS Biol.
, vol.2
-
-
Wang, Y.X.1
Zhang, C.L.2
Yu, R.T.3
Cho, H.K.4
Nelson, M.C.5
-
47
-
-
85047689659
-
Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
-
Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, et al. 2004. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Investig. 114:1281-1289
-
(2004)
J. Clin. Investig.
, vol.114
, pp. 1281-1289
-
-
Wilson-Fritch, L.1
Nicoloro, S.2
Chouinard, M.3
Lazar, M.A.4
Chui, P.C.5
-
48
-
-
33644821858
-
Mitochondria are impaired in the adipocytes of type 2 diabetic mice
-
Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, et al. 2006. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784-791
-
(2006)
Diabetologia
, vol.49
, pp. 784-791
-
-
Choo, H.J.1
Kim, J.H.2
Kwon, O.B.3
Lee, C.S.4
Mun, J.Y.5
-
49
-
-
34347391646
-
Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone
-
Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, et al. 2007. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751-1760
-
(2007)
Diabetes
, vol.56
, pp. 1751-1760
-
-
Rong, J.X.1
Qiu, Y.2
Hansen, M.K.3
Zhu, L.4
Zhang, V.5
-
50
-
-
17844385363
-
Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
-
Bogacka I, Xie H, Bray GA, Smith SR. 2005. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392-1399
-
(2005)
Diabetes
, vol.54
, pp. 1392-1399
-
-
Bogacka, I.1
Xie, H.2
Bray, G.A.3
Smith, S.R.4
-
51
-
-
0037304599
-
Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
-
Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, et al. 2003. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 23:1085-1094
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 1085-1094
-
-
Wilson-Fritch, L.1
Burkart, A.2
Bell, G.3
Mendelson, K.4
Leszyk, J.5
-
52
-
-
33646782581
-
Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1á gene transcription: An autoregulatory loop controls PGC-1á expression in adipocytes via peroxisome proliferatoractivated receptor-α coactivation
-
Hondares E, Mora O, Yubero P, Rodriguez de la Concepción M, Iglesias R, et al. 2006. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1á gene transcription: An autoregulatory loop controls PGC-1á expression in adipocytes via peroxisome proliferatoractivated receptor-α coactivation. Endocrinology 147:2829-2838
-
(2006)
Endocrinology
, vol.147
, pp. 2829-2838
-
-
Hondares, E.1
Mora, O.2
Yubero, P.3
Rodriguez De La Concepción, M.4
Iglesias, R.5
-
53
-
-
9144271149
-
Activation of peroxisome proliferatoractivated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome
-
Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, et al. 2003. Activation of peroxisome proliferatoractivated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100:15924-15929
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 15924-15929
-
-
Tanaka, T.1
Yamamoto, J.2
Iwasaki, S.3
Asaba, H.4
Hamura, H.5
-
54
-
-
0642303113
-
Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability
-
Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, et al. 2003. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 17:2299-2301
-
(2003)
FASEB J.
, vol.17
, pp. 2299-2301
-
-
Luquet, S.1
Lopez-Soriano, J.2
Holst, D.3
Fredenrich, A.4
Melki, J.5
-
55
-
-
33750427891
-
PGC1á expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
-
Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, et al. 2006. PGC1á expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4:407-414
-
(2006)
Cell Metab.
, vol.4
, pp. 407-414
-
-
Schuler, M.1
Ali, F.2
Chambon, C.3
Duteil, D.4
Bornert, J.M.5
-
56
-
-
0346849699
-
The peroxisome proliferatoractivated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells
-
Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE. 2003. The peroxisome proliferatoractivated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17:2477-2493
-
(2003)
Mol. Endocrinol.
, vol.17
, pp. 2477-2493
-
-
Dressel, U.1
Allen, T.L.2
Pippal, J.B.3
Rohde, P.R.4
Lau, P.5
Muscat, G.E.6
-
57
-
-
0038460823
-
Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle
-
Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA. 2003. Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim. Biophys. Acta 1633:43-50
-
(2003)
Biochim. Biophys. Acta
, vol.1633
, pp. 43-50
-
-
Holst, D.1
Luquet, S.2
Nogueira, V.3
Kristiansen, K.4
Leverve, X.5
Grimaldi, P.A.6
-
58
-
-
42049114658
-
Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components
-
Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F. 2008. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components. J. Clin. Endocrinol. Metab. 93:1433-1441
-
(2008)
J. Clin. Endocrinol. Metab.
, vol.93
, pp. 1433-1441
-
-
Bastin, J.1
Aubey, F.2
Rotig, A.3
Munnich, A.4
Djouadi, F.5
-
59
-
-
33846890004
-
PPARα, but not PPARα, activates PGC-1α gene transcription in muscle
-
Hondares E, Pineda-Torra I, Iglesias R, Staels B, Villarroya F, Giralt M. 2007. PPARα, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem. Biophys. Res. Commun. 354:1021-1027
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.354
, pp. 1021-1027
-
-
Hondares, E.1
Pineda-Torra, I.2
Iglesias, R.3
Staels, B.4
Villarroya, F.5
Giralt, M.6
-
60
-
-
33144455156
-
Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage
-
Lee CH, Kang K, Mehl IR, Nofsinger R, Alaynick WA, et al. 2006. Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc. Natl. Acad. Sci. USA 103:2434-2439
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 2434-2439
-
-
Lee, C.H.1
Kang, K.2
Mehl, I.R.3
Nofsinger, R.4
Alaynick, W.A.5
-
61
-
-
34347354309
-
Macrophagespecific PPARγ controls alternative activation and improves insulin resistance
-
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, et al. 2007. Macrophagespecific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116-1120
-
(2007)
Nature
, vol.447
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
Morel, C.R.4
Subramanian, V.5
-
62
-
-
33745428666
-
Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
-
Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, et al. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4:13-24
-
(2006)
Cell Metab.
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
Zhang, L.4
Smith, K.L.5
-
63
-
-
44349112305
-
Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
-
Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, et al. 2008. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7:485-495
-
(2008)
Cell Metab.
, vol.7
, pp. 485-495
-
-
Kang, K.1
Reilly, S.M.2
Karabacak, V.3
Gangl, M.R.4
Fitzgerald, K.5
-
64
-
-
53849088227
-
Transcriptional control of energy homeostasis by the estrogen-related receptors (ERRs)
-
Giguere V. 2008. Transcriptional control of energy homeostasis by the estrogen-related receptors (ERRs). Endocr. Rev. 29:677-696
-
(2008)
Endocr. Rev.
, vol.29
, pp. 677-696
-
-
Giguere, V.1
-
65
-
-
0036187372
-
Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3
-
Greschik H, Wurtz JM, Sanglier S, Bourguet W, van Dorsselaer A, et al. 2002. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol. Cell 9:303-313
-
(2002)
Mol. Cell
, vol.9
, pp. 303-313
-
-
Greschik, H.1
Wurtz, J.M.2
Sanglier, S.3
Bourguet, W.4
Van Dorsselaer, A.5
-
66
-
-
10344247702
-
Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRδ): Crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α
-
Kallen J, Schlaeppi JM, Bitsch F, Filipuzzi I, Schilb A, et al. 2004. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRδ): Crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J. Biol. Chem. 279:49330-49337
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 49330-49337
-
-
Kallen, J.1
Schlaeppi, J.M.2
Bitsch, F.3
Filipuzzi, I.4
Schilb, A.5
-
67
-
-
0037174798
-
Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α
-
Huss JM, Kopp RP, Kelly DP. 2002. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem. 277:40265-40274
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 40265-40274
-
-
Huss, J.M.1
Kopp, R.P.2
Kelly, D.P.3
-
68
-
-
0142091356
-
PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity
-
Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, et al. 2003. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. USA 100:12378-12383
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 12378-12383
-
-
Kamei, Y.1
Ohizumi, H.2
Fujitani, Y.3
Nemoto, T.4
Tanaka, T.5
-
69
-
-
0038660688
-
The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα)
-
Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. 2003. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J. Biol. Chem. 278:9013-9018
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 9013-9018
-
-
Schreiber, S.N.1
Knutti, D.2
Brogli, K.3
Uhlmann, T.4
Kralli, A.5
-
70
-
-
37349090082
-
Role of RIP140 in metabolic tissues: Connections to disease
-
White R, Morganstein D, Christian M, Seth A, Herzog B, Parker MG. 2008. Role of RIP140 in metabolic tissues: connections to disease. FEBS Lett. 582:39-45
-
(2008)
FEBS Lett.
, vol.582
, pp. 39-45
-
-
White, R.1
Morganstein, D.2
Christian, M.3
Seth, A.4
Herzog, B.5
Parker, M.G.6
-
71
-
-
2342592545
-
The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis
-
Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, et al. 2004. The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. Proc. Natl. Acad. Sci. USA 101:6472-6477
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 6472-6477
-
-
Schreiber, S.N.1
Emter, R.2
Hock, M.B.3
Knutti, D.4
Cardenas, J.5
-
72
-
-
34247554887
-
Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ
-
Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, et al. 2007. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 5:345-356
-
(2007)
Cell Metab.
, vol.5
, pp. 345-356
-
-
Dufour, C.R.1
Wilson, B.J.2
Huss, J.M.3
Kelly, D.P.4
Alaynick, W.A.5
-
73
-
-
34547643550
-
Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense
-
Sonoda J, Laganiere J, Mehl IR, Barish GD, Chong LW, et al. 2007. Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev. 21:1909-1920
-
(2007)
Genes Dev.
, vol.21
, pp. 1909-1920
-
-
Sonoda, J.1
Laganiere, J.2
Mehl, I.R.3
Barish, G.D.4
Chong, L.W.5
-
74
-
-
33846604723
-
Orphan nuclear receptor estrogen-related receptor α is essential for adaptive thermogenesis
-
Villena JA, Hock MB, Chang WY, Barcas JE, Giguere V, Kralli A. 2007. Orphan nuclear receptor estrogen-related receptor α is essential for adaptive thermogenesis. Proc. Natl. Acad. Sci. USA 104:1418-1423
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1418-1423
-
-
Villena, J.A.1
Hock, M.B.2
Chang, W.Y.3
Barcas, J.E.4
Giguere, V.5
Kralli, A.6
-
75
-
-
4744371376
-
Estrogen-related receptor α directs peroxisome proliferator- activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle
-
Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. 2004. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24:9079-9091
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9079-9091
-
-
Huss, J.M.1
Torra, I.P.2
Staels, B.3
Giguere, V.4
Kelly, D.P.5
-
76
-
-
2442607758
-
A polymorphic autoregulatory hormone response element in the human estrogen-related receptor α (ERRα) promoter dictates peroxisome proliferator-activated receptor ã coactivator-1α control of ERRα expression
-
Laganiere J, Tremblay GB, Dufour CR, Giroux S, Rousseau F, Giguere V. 2004. A polymorphic autoregulatory hormone response element in the human estrogen-related receptor α (ERRα) promoter dictates peroxisome proliferator-activated receptor ã coactivator-1α control of ERRα expression. J. Biol. Chem. 279:18504-18510
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 18504-18510
-
-
Laganiere, J.1
Tremblay, G.B.2
Dufour, C.R.3
Giroux, S.4
Rousseau, F.5
Giguere, V.6
-
77
-
-
0037185003
-
Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)
-
Ichida M, Nemoto S, Finkel T. 2002. Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). J. Biol. Chem. 277:50991-50995
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 50991-50995
-
-
Ichida, M.1
Nemoto, S.2
Finkel, T.3
-
78
-
-
34347248013
-
The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload
-
Huss JM, Imahashi K-I, Dufour CR, Weinheimer CJ, Courtois M, et al. 2007. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 6:25-37
-
(2007)
Cell Metab.
, vol.6
, pp. 25-37
-
-
Huss, J.M.1
Imahashi, K.-I.2
Dufour, C.R.3
Weinheimer, C.J.4
Courtois, M.5
-
79
-
-
0242580188
-
Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α
-
Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V. 2003. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α. Mol. Cell. Biol. 23:7947-7956
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7947-7956
-
-
Luo, J.1
Sladek, R.2
Carrier, J.3
Bader, J.A.4
Richard, D.5
Giguere, V.6
-
80
-
-
10644274243
-
Estrogen-related receptor α (ERRα) is a transcriptional regulator of apolipoprotein A-IV and controls lipid handling in the intestine
-
Carrier JC, Deblois G, Champigny C, Levy E, Giguere V. 2004. Estrogen-related receptor α (ERRα) is a transcriptional regulator of apolipoprotein A-IV and controls lipid handling in the intestine. J. Biol. Chem. 279:52052-52058
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 52052-52058
-
-
Carrier, J.C.1
Deblois, G.2
Champigny, C.3
Levy, E.4
Giguere, V.5
-
81
-
-
34347259219
-
ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart
-
Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, et al. 2007. ERRγ directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 6:13-24
-
(2007)
Cell Metab.
, vol.6
, pp. 13-24
-
-
Alaynick, W.A.1
Kondo, R.P.2
Xie, W.3
He, W.4
Dufour, C.R.5
-
82
-
-
34248996170
-
Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation
-
Ijichi N, Ikeda K, Horie-Inoue K, Yagi K, Okazaki Y, Inoue S. 2007. Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation. Biochem. Biophys. Res. Commun. 358:813-818
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.358
, pp. 813-818
-
-
Ijichi, N.1
Ikeda, K.2
Horie-Inoue, K.3
Yagi, K.4
Okazaki, Y.5
Inoue, S.6
-
83
-
-
0030869565
-
Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β
-
Luo J, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguere V. 1997. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β. Nature 388:778-782
-
(1997)
Nature
, vol.388
, pp. 778-782
-
-
Luo, J.1
Sladek, R.2
Bader, J.A.3
Matthyssen, A.4
Rossant, J.5
Giguere, V.6
-
84
-
-
33746773659
-
Dissecting self-renewal in stem cells with RNA interference
-
Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, et al. 2006. Dissecting self-renewal in stem cells with RNA interference. Nature 442:533-538
-
(2006)
Nature
, vol.442
, pp. 533-538
-
-
Ivanova, N.1
Dobrin, R.2
Lu, R.3
Kotenko, I.4
Levorse, J.5
-
85
-
-
34548183083
-
Estrogen-related receptor β/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis
-
Chen J, Nathans J. 2007. Estrogen-related receptor β/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev. Cell 13:325-337
-
(2007)
Dev. Cell
, vol.13
, pp. 325-337
-
-
Chen, J.1
Nathans, J.2
-
86
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179-183
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
-
87
-
-
1642293248
-
P38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene
-
Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, et al. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057-3067
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3057-3067
-
-
Cao, W.1
Daniel, K.W.2
Robidoux, J.3
Puigserver, P.4
Medvedev, A.V.5
-
88
-
-
46349099384
-
Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo
-
Kim J, Lee JH, Iyer VR. 2008. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS ONE 3:e1798
-
(2008)
PLoS ONE
, vol.3
-
-
Kim, J.1
Lee, J.H.2
Iyer, V.R.3
-
89
-
-
34247614521
-
HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity
-
Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, et al. 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407-420
-
(2007)
Cancer Cell
, vol.11
, pp. 407-420
-
-
Zhang, H.1
Gao, P.2
Fukuda, R.3
Kumar, G.4
Krishnamachary, B.5
-
90
-
-
21744442902
-
Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis
-
Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, et al. 2005. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25:6225-6234
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 6225-6234
-
-
Li, F.1
Wang, Y.2
Zeller, K.I.3
Potter, J.J.4
Wonsey, D.R.5
-
91
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. 2007. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450:736-740
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
92
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, et al. 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26:1913-1923
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
-
93
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 104:12017-12022
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
94
-
-
0037134493
-
The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α
-
Kressler D, Schreiber SN, Knutti D, Kralli A. 2002. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α. J. Biol. Chem. 277:13918-13925
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 13918-13925
-
-
Kressler, D.1
Schreiber, S.N.2
Knutti, D.3
Kralli, A.4
-
95
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPKsensitive interaction with a repressor
-
Knutti D, Kressler D, Kralli A. 2001. Regulation of the transcriptional coactivator PGC-1 via MAPKsensitive interaction with a repressor. Proc. Natl. Acad. Sci. USA 98:9713-9718
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
Kressler, D.2
Kralli, A.3
-
96
-
-
33749630419
-
PGC-1-related coactivator: Immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth
-
Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. 2006. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol. Cell. Biol. 26:7409-7419
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 7409-7419
-
-
Vercauteren, K.1
Pasko, R.A.2
Gleyzer, N.3
Marino, V.M.4
Scarpulla, R.C.5
-
97
-
-
0032589689
-
Activation of PPARγ coactivator-1 through transcription factor docking
-
Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, et al. 1999. Activation of PPARγ coactivator-1 through transcription factor docking. Science 286:1368-1371
-
(1999)
Science
, vol.286
, pp. 1368-1371
-
-
Puigserver, P.1
Adelmant, G.2
Wu, Z.3
Fan, M.4
Xu, J.5
-
98
-
-
0034116143
-
A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen
-
Knutti D, Kaul A, Kralli A. 2000. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 20:2411-2422
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 2411-2422
-
-
Knutti, D.1
Kaul, A.2
Kralli, A.3
-
100
-
-
0033638283
-
Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
-
Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6:307-316
-
(2000)
Mol. Cell
, vol.6
, pp. 307-316
-
-
Monsalve, M.1
Wu, Z.2
Adelmant, G.3
Puigserver, P.4
Fan, M.5
Spiegelman, B.M.6
-
101
-
-
33750359682
-
PGC-1α regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor α transcript
-
Thijssen-Timmer DC, Schiphorst MP, Kwakkel J, Emter R, Kralli A, et al. 2006. PGC-1α regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor α transcript. J. Mol. Endocrinol. 37:251-257
-
(2006)
J. Mol. Endocrinol.
, vol.37
, pp. 251-257
-
-
Thijssen-Timmer, D.C.1
Schiphorst, M.P.2
Kwakkel, J.3
Emter, R.4
Kralli, A.5
-
102
-
-
0038036024
-
Bioenergetic analysis of peroxisome proliferatoractivated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells
-
St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, et al. 2003. Bioenergetic analysis of peroxisome proliferatoractivated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 278:26597-26603
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 26597-26603
-
-
St-Pierre, J.1
Lin, J.2
Krauss, S.3
Tarr, P.T.4
Yang, R.5
-
103
-
-
0037102256
-
Transcriptional coactivator PGC-1α drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, et al. 2002. Transcriptional coactivator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797-801
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
-
104
-
-
33845674997
-
The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle
-
Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, et al. 2007. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5:35-46
-
(2007)
Cell Metab.
, vol.5
, pp. 35-46
-
-
Arany, Z.1
Lebrasseur, N.2
Morris, C.3
Smith, E.4
Yang, W.5
-
105
-
-
45149108625
-
Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake
-
Calvo JA, Daniels TG, Wang X, Paul A, Lin J, et al. 2008. Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol. 104:1304-1312
-
(2008)
J. Appl. Physiol.
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
Daniels, T.G.2
Wang, X.3
Paul, A.4
Lin, J.5
-
106
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
Lin J, Wu P-H, Tarr PT, Lindenberg KS, St-Pierre J, et al. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121-135
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.-H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
-
107
-
-
22144434964
-
Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
-
Arany Z, He H, Lin J, Hoyer K, Handschin C, et al. 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 1:259-271
-
(2005)
Cell Metab.
, vol.1
, pp. 259-271
-
-
Arany, Z.1
He, H.2
Lin, J.3
Hoyer, K.4
Handschin, C.5
-
108
-
-
21144446106
-
PGC-1á deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, et al. 2005. PGC-1á deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3:e101
-
(2005)
PLoS Biol.
, vol.3
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
Schaeffer, P.J.4
Wende, A.R.5
-
109
-
-
33745627066
-
Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α
-
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. 2006. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc. Natl. Acad. Sci. USA 103:10086-10091
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 10086-10091
-
-
Arany, Z.1
Novikov, M.2
Chin, S.3
Ma, Y.4
Rosenzweig, A.5
Spiegelman, B.M.6
-
110
-
-
33751022208
-
Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
-
Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, et al. 2006. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4:e369
-
(2006)
PLoS Biol.
, vol.4
-
-
Lelliott, C.J.1
Medina-Gomez, G.2
Petrovic, N.3
Kis, A.4
Feldmann, H.M.5
-
111
-
-
33751400561
-
Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
-
Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, et al. 2006. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4:453-64
-
(2006)
Cell Metab.
, vol.4
, pp. 453-464
-
-
Vianna, C.R.1
Huntgeburth, M.2
Coppari, R.3
Choi, C.S.4
Lin, J.5
-
112
-
-
33646124709
-
Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation
-
Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. 2006. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3:333-41
-
(2006)
Cell Metab.
, vol.3
, pp. 333-341
-
-
Uldry, M.1
Yang, W.2
St-Pierre, J.3
Lin, J.4
Seale, P.5
Spiegelman, B.M.6
-
113
-
-
47549114849
-
Transcriptional coactivators PGC-1á and PGC-lâ control overlapping programs required for perinatal maturation of the heart
-
Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, et al. 2008. Transcriptional coactivators PGC-1á and PGC-lâ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22:1948-1961
-
(2008)
Genes Dev.
, vol.22
, pp. 1948-1961
-
-
Lai, L.1
Leone, T.C.2
Zechner, C.3
Schaeffer, P.J.4
Kelly, S.M.5
-
114
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1
-
Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8:971-982
-
(2001)
Mol. Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
Wu, Z.4
Yoon, J.C.5
-
115
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator
-
Li X, Monks B, Ge Q, Birnbaum MJ. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447:1012-1016
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
116
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
-
Lerin C, Rodgers JT, Kalume DE, Kim S-H, Pandey A, Puigserver P. 2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3:429-438
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.-H.4
Pandey, A.5
Puigserver, P.6
-
117
-
-
22344440666
-
Activation of nuclear receptor coactivator PGC-1α by arginine methylation
-
Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. 2005. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 19:1466-1473
-
(2005)
Genes Dev.
, vol.19
, pp. 1466-1473
-
-
Teyssier, C.1
Ma, H.2
Emter, R.3
Kralli, A.4
Stallcup, M.R.5
-
118
-
-
10744222588
-
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: Modulation by p38 MAPK
-
Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, et al. 2004. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. Genes Dev. 18:278-289
-
(2004)
Genes Dev.
, vol.18
, pp. 278-289
-
-
Fan, M.1
Rhee, J.2
St-Pierre, J.3
Handschin, C.4
Puigserver, P.5
-
119
-
-
33746077514
-
Metabolic regulation by the nuclear receptor corepressor RIP140
-
Christian M, White R, Parker MG. 2006. Metabolic regulation by the nuclear receptor corepressor RIP140. Trends Endocrinol. Metab. 17:243-250
-
(2006)
Trends Endocrinol. Metab.
, vol.17
, pp. 243-250
-
-
Christian, M.1
White, R.2
Parker, M.G.3
-
120
-
-
31044432605
-
Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes
-
Powelka AM, Seth A, Virbasius JV, Kiskinis E, Nicoloro SM, et al. 2006. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J. Clin. Investig. 116:125-136
-
(2006)
J. Clin. Investig.
, vol.116
, pp. 125-136
-
-
Powelka, A.M.1
Seth, A.2
Virbasius, J.V.3
Kiskinis, E.4
Nicoloro, S.M.5
-
121
-
-
2942532305
-
Nuclear receptor corepressor RIP140 regulates fat accumulation
-
Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, et al. 2004. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl. Acad. Sci. USA 101:8437-8442
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 8437-8442
-
-
Leonardsson, G.1
Steel, J.H.2
Christian, M.3
Pocock, V.4
Milligan, S.5
-
122
-
-
34548208233
-
The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle
-
Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, et al. 2007. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 6:236-245
-
(2007)
Cell Metab.
, vol.6
, pp. 236-245
-
-
Seth, A.1
Steel, J.H.2
Nichol, D.3
Pocock, V.4
Kumaran, M.K.5
-
123
-
-
33845948962
-
RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis
-
Nichol D, Christian M, Steel JH, White R, Parker MG. 2006. RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis. J. Biol. Chem. 281:32140-32147
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32140-32147
-
-
Nichol, D.1
Christian, M.2
Steel, J.H.3
White, R.4
Parker, M.G.5
-
124
-
-
45549093122
-
SUMOylation modulates the transcription repressor function of RIP140
-
Rytinki MM, Palvimo JJ. 2008. SUMOylation modulates the transcription repressor function of RIP140. J. Biol. Chem. 283:11586-11595
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 11586-11595
-
-
Rytinki, M.M.1
Palvimo, J.J.2
-
125
-
-
49549112242
-
Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation
-
Ho PC, Gupta P, Tsui YC, Ha SG, Huq M, Wei LN. 2008. Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cell Signal. 20:1911-1919
-
(2008)
Cell Signal.
, vol.20
, pp. 1911-1919
-
-
Ho, P.C.1
Gupta, P.2
Tsui, Y.C.3
Ha, S.G.4
Huq, M.5
Wei, L.N.6
-
126
-
-
33750438775
-
Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation
-
Mostaqul Huq MD, Gupta P, Tsai NP, White R, Parker MG, Wei LN. 2006. Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J. 25:5094-5104
-
(2006)
EMBO J.
, vol.25
, pp. 5094-5104
-
-
Mostaqul Huq, M.D.1
Gupta, P.2
Tsai, N.P.3
White, R.4
Parker, M.G.5
Wei, L.N.6
-
127
-
-
44049092767
-
Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise
-
Rockl KS, Witczak CA, Goodyear LJ. 2008. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145-153
-
(2008)
IUBMB Life
, vol.60
, pp. 145-153
-
-
Rockl, K.S.1
Witczak, C.A.2
Goodyear, L.J.3
-
128
-
-
0037251008
-
Cold-induced recruitment of brown adipose tissue thermogenesis
-
Klingenspor M. 2003. Cold-induced recruitment of brown adipose tissue thermogenesis. Exp. Physiol. 88:141-148
-
(2003)
Exp. Physiol.
, vol.88
, pp. 141-148
-
-
Klingenspor, M.1
-
130
-
-
34347237611
-
An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation
-
Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, et al. 2007. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation. Endocrinology 148:3441-3448
-
(2007)
Endocrinology
, vol.148
, pp. 3441-3448
-
-
Miura, S.1
Kawanaka, K.2
Kai, Y.3
Tamura, M.4
Goto, M.5
-
131
-
-
20444477952
-
Regulation of metabolic transcriptional coactivators and transcription factors with acute exercise
-
Russell AP, Hesselink MK, Lo SK, Schrauwen P. 2005. Regulation of metabolic transcriptional coactivators and transcription factors with acute exercise. FASEB J. 19:986-988
-
(2005)
FASEB J.
, vol.19
, pp. 986-988
-
-
Russell, A.P.1
Hesselink, M.K.2
Lo, S.K.3
Schrauwen, P.4
-
132
-
-
33846992686
-
Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression
-
Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. 2007. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J. Biol. Chem. 282:194-199
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 194-199
-
-
Wright, D.C.1
Han, D.H.2
Garcia-Roves, P.M.3
Geiger, P.C.4
Jones, T.E.5
Holloszy, J.O.6
-
133
-
-
42449092519
-
Gene expressionbased screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation
-
Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM. 2008. Gene expressionbased screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 105:4721-4726
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 4721-4726
-
-
Arany, Z.1
Wagner, B.K.2
Ma, Y.3
Chinsomboon, J.4
Laznik, D.5
Spiegelman, B.M.6
-
134
-
-
1342307974
-
The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption
-
Lambert AJ, Wang B, Yardley J, Edwards J, Merry BJ. 2004. The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp. Gerontol. 39:289-295
-
(2004)
Exp. Gerontol.
, vol.39
, pp. 289-295
-
-
Lambert, A.J.1
Wang, B.2
Yardley, J.3
Edwards, J.4
Merry, B.J.5
-
135
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, et al. 2005. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314-317
-
(2005)
Science
, vol.310
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
-
136
-
-
32444437067
-
Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
-
Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, et al. 2006. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. USA 103:1768-1773
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 1768-1773
-
-
Lopez-Lluch, G.1
Hunt, N.2
Jones, B.3
Zhu, M.4
Jamieson, H.5
-
137
-
-
33845670719
-
Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1á
-
Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M. 2006. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1á. FASEB J. 20:1889-1891
-
(2006)
FASEB J.
, vol.20
, pp. 1889-1891
-
-
Borniquel, S.1
Valle, I.2
Cadenas, S.3
Lamas, S.4
Monsalve, M.5
-
138
-
-
34848835736
-
Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis
-
Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS. 2007. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Investig. 117:2723-2734
-
(2007)
J. Clin. Investig.
, vol.117
, pp. 2723-2734
-
-
Eaton, J.S.1
Lin, Z.P.2
Sartorelli, A.C.3
Bonawitz, N.D.4
Shadel, G.S.5
-
139
-
-
34249941195
-
A fundamental system of cellular energy homeostasis regulated by PGC-1α
-
Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM. 2007. A fundamental system of cellular energy homeostasis regulated by PGC-1α. Proc. Natl. Acad. Sci. USA 104:7933-7938
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 7933-7938
-
-
Rohas, L.M.1
St-Pierre, J.2
Uldry, M.3
Jager, S.4
Handschin, C.5
Spiegelman, B.M.6
-
140
-
-
40449112930
-
Large-scale chemical dissection of mitochondrial function
-
Wagner BK, Kitami T, Gilbert TJ, Peck D, Ramanathan A, et al. 2008. Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 26:343-351
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 343-351
-
-
Wagner, B.K.1
Kitami, T.2
Gilbert, T.J.3
Peck, D.4
Ramanathan, A.5
-
141
-
-
0033081478
-
Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk
-
Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, et al. 1999. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 18:522-533
-
(1999)
EMBO J.
, vol.18
, pp. 522-533
-
-
Biswas, G.1
Adebanjo, O.A.2
Freedman, B.D.3
Anandatheerthavarada, H.K.4
Vijayasarathy, C.5
-
142
-
-
34547092191
-
Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
-
Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. 2007. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282:18793-18799
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 18793-18799
-
-
Wright, D.C.1
Geiger, P.C.2
Han, D.H.3
Jones, T.E.4
Holloszy, J.O.5
-
143
-
-
0034681315
-
Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo
-
Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN. 2000. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem. 275:4545-4548
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 4545-4548
-
-
Naya, F.J.1
Mercer, B.2
Shelton, J.3
Richardson, J.A.4
Williams, R.S.5
Olson, E.N.6
-
144
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, et al. 2002. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349-352
-
(2002)
Science
, vol.296
, pp. 349-352
-
-
Wu, H.1
Kanatous, S.B.2
Thurmond, F.A.3
Gallardo, T.4
Isotani, E.5
-
145
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle
-
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1 α expression in muscle. Proc. Natl. Acad. Sci. USA100:7111-7116
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
146
-
-
2342599054
-
Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle
-
McGee SL, Hargreaves M. 2004. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53:1208-1214
-
(2004)
Diabetes
, vol.53
, pp. 1208-1214
-
-
McGee, S.L.1
Hargreaves, M.2
-
147
-
-
21244477127
-
Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
-
Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, et al. 2005. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280:19587-19593
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 19587-19593
-
-
Akimoto, T.1
Pohnert, S.C.2
Li, P.3
Zhang, M.4
Gumbs, C.5
-
148
-
-
52749095883
-
Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging
-
Akimoto T, Li P, Yan Z. 2008. Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am. J. Physiol. Cell Physiol. 295:C288-92
-
(2008)
Am. J. Physiol. Cell Physiol.
, vol.295
-
-
Akimoto, T.1
Li, P.2
Yan, Z.3
-
149
-
-
0037452677
-
Regulation of peroxisome proliferator-activated receptor β coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5
-
Czubryt MP, McAnally J, Fishman GI, Olson EN. 2003. Regulation of peroxisome proliferator-activated receptor β coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. USA 100:1711-1716
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 1711-1716
-
-
Czubryt, M.P.1
McAnally, J.2
Fishman, G.I.3
Olson, E.N.4
-
150
-
-
34447511610
-
Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: Potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation
-
Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, et al. 2007. Peroxisome proliferator activator receptor γ coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282:15439-15450
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 15439-15450
-
-
Crunkhorn, S.1
Dearie, F.2
Mantzoros, C.3
Gami, H.4
Da Silva, W.S.5
-
151
-
-
0033949848
-
Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
-
Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. 2000. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88:2219-2226
-
(2000)
J. Appl. Physiol.
, vol.88
, pp. 2219-2226
-
-
Winder, W.W.1
Holmes, B.F.2
Rubink, D.S.3
Jensen, E.B.4
Chen, M.5
Holloszy, J.O.6
-
152
-
-
29244436681
-
AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1
-
Lee WJ, Kim M, Park H-S, Kim HS, Jeon MJ, et al. 2006. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochem. Biophys. Res. Commun. 340:291-295
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.340
, pp. 291-295
-
-
Lee, W.J.1
Kim, M.2
Park, H.-S.3
Kim, H.S.4
Jeon, M.J.5
-
153
-
-
42449161465
-
AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
-
McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, et al. 2008. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860-867
-
(2008)
Diabetes
, vol.57
, pp. 860-867
-
-
McGee, S.L.1
Van Denderen, B.J.2
Howlett, K.F.3
Mollica, J.4
Schertzer, J.D.5
-
154
-
-
48449094498
-
AMPK and PPARδ agonists are exercise mimetics
-
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, et al. 2008. AMPK and PPARδ agonists are exercise mimetics. Cell 134:405-415
-
(2008)
Cell
, vol.134
, pp. 405-415
-
-
Narkar, V.A.1
Downes, M.2
Yu, R.T.3
Embler, E.4
Wang, Y.X.5
-
155
-
-
0037122766
-
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase
-
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, et al. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339-343
-
(2002)
Nature
, vol.415
, pp. 339-343
-
-
Minokoshi, Y.1
Kim, Y.B.2
Peroni, O.D.3
Fryer, L.G.4
Muller, C.5
-
156
-
-
33750578279
-
Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α
-
Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. 2006. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α. Diabetes 55:2562-2570
-
(2006)
Diabetes
, vol.55
, pp. 2562-2570
-
-
Yoon, M.J.1
Lee, G.Y.2
Chung, J.J.3
Ahn, Y.H.4
Hong, S.H.5
Kim, J.B.6
-
157
-
-
38349063250
-
Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo
-
Irrcher I, Walkinshaw DR, Sheehan TE, Hood DA. 2008. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J. Appl. Physiol. 104:178-185
-
(2008)
J. Appl. Physiol.
, vol.104
, pp. 178-185
-
-
Irrcher, I.1
Walkinshaw, D.R.2
Sheehan, T.E.3
Hood, D.A.4
-
159
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109-1122
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
-
160
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B, Milbrandt J. 2007. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104:7217-7222
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
161
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, et al. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712-716
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
-
162
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
-
Nemoto S, Fergusson MM, Finkel T. 2005. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280:16456-16460
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
163
-
-
0037405153
-
Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle
-
Lebrasseur NK, Cote GM, Miller TA, Fielding RA, Sawyer DB. 2003. Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am. J. Physiol. Cell Physiol. 284:C1149-55
-
(2003)
Am. J. Physiol. Cell Physiol.
, vol.284
-
-
Lebrasseur, N.K.1
Cote, G.M.2
Miller, T.A.3
Fielding, R.A.4
Sawyer, D.B.5
-
164
-
-
33746826045
-
Neuregulins mediate calcium-induced glucose transport during muscle contraction
-
Canto C, Chibalin AV, Barnes BR, Glund S, Suarez E, et al. 2006. Neuregulins mediate calcium-induced glucose transport during muscle contraction. J. Biol. Chem. 281:21690-21697
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21690-21697
-
-
Canto, C.1
Chibalin, A.V.2
Barnes, B.R.3
Glund, S.4
Suarez, E.5
-
165
-
-
33846951523
-
Estrogen-related receptor α1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway
-
Ariazi EA, Kraus RJ, Farrell ML, Jordan VC, Mertz JE. 2007. Estrogen-related receptor α1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway. Mol. Cancer Res. 5:71-85
-
(2007)
Mol. Cancer Res.
, vol.5
, pp. 71-85
-
-
Ariazi, E.A.1
Kraus, R.J.2
Farrell, M.L.3
Jordan, V.C.4
Mertz, J.E.5
-
166
-
-
0347579845
-
Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide
-
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896-899
-
(2003)
Science
, vol.299
, pp. 896-899
-
-
Nisoli, E.1
Clementi, E.2
Paolucci, C.3
Cozzi, V.4
Tonello, C.5
-
167
-
-
33846629472
-
Ménage-à-trois 1 is critical for the transcriptional function of PPARγ coactivator 1
-
Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, et al. 2007. Ménage-à-trois 1 is critical for the transcriptional function of PPARγ coactivator 1. Cell Metab. 5:129-142
-
(2007)
Cell Metab.
, vol.5
, pp. 129-142
-
-
Sano, M.1
Izumi, Y.2
Helenius, K.3
Asakura, M.4
Rossi, D.J.5
-
168
-
-
44949147109
-
Gene set enrichment in eQTL data identifies novel annotations and pathway regulators
-
Wu C, Delano DL, Mitro N, Su SV, Janes J, et al. 2008. Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet. 4:e1000070
-
(2008)
PLoS Genet.
, vol.4
-
-
Wu, C.1
Delano, D.L.2
Mitro, N.3
Su, S.V.4
Janes, J.5
-
169
-
-
33846580517
-
Aging-associated reductions in AMPactivated protein kinase activity and mitochondrial biogenesis
-
Reznick RM, Zong H, Li J, Morino K, Moore IK, et al. 2007. Aging-associated reductions in AMPactivated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5:151-156
-
(2007)
Cell Metab.
, vol.5
, pp. 151-156
-
-
Reznick, R.M.1
Zong, H.2
Li, J.3
Morino, K.4
Moore, I.K.5
-
170
-
-
33749442351
-
TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents
-
Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. 2006. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J. Clin. Investig. 116:2791-2798
-
(2006)
J. Clin. Investig.
, vol.116
, pp. 2791-2798
-
-
Valerio, A.1
Cardile, A.2
Cozzi, V.3
Bracale, R.4
Tedesco, L.5
-
171
-
-
15444370639
-
Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle
-
Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, et al. 2005. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem. 280:10290-10297
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10290-10297
-
-
Richardson, D.K.1
Kashyap, S.2
Bajaj, M.3
Cusi, K.4
Mandarino, S.J.5
-
172
-
-
21344444333
-
A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle
-
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, et al. 2005. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926-1933
-
(2005)
Diabetes
, vol.54
, pp. 1926-1933
-
-
Sparks, L.M.1
Xie, H.2
Koza, R.A.3
Mynatt, R.4
Hulver, M.W.5
-
173
-
-
34547505089
-
Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle
-
Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, et al. 2007. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc. Natl. Acad. Sci. USA 104:10709-10713
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 10709-10713
-
-
Garcia-Roves, P.1
Huss, J.M.2
Han, D.H.3
Hancock, C.R.4
Iglesias-Gutierrez, E.5
-
174
-
-
45549089279
-
High-fat diets cause insulin resistance despite an increase in muscle mitochondria
-
Hancock CR, Han D-H, Chen M, Terada S, Yasuda T, et al. 2008. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 105:7815-7820
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 7815-7820
-
-
Hancock, C.R.1
Han, D.-H.2
Chen, M.3
Terada, S.4
Yasuda, T.5
-
175
-
-
0037342151
-
Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
-
Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-649
-
(2003)
Diabetes
, vol.52
, pp. 642-649
-
-
Daitoku, H.1
Yamagata, K.2
Matsuzaki, H.3
Hatta, M.4
Fukamizu, A.5
-
176
-
-
28744459153
-
PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle
-
doi:10.1096/fj.05-3993fje
-
Southgate RJ, Bruce CR, Carey AL, Steinberg GR, Walder K, et al. 2005. PGC-1α gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J. doi:10.1096/fj.05-3993fje
-
(2005)
FASEB J.
-
-
Southgate, R.J.1
Bruce, C.R.2
Carey, A.L.3
Steinberg, G.R.4
Walder, K.5
-
177
-
-
33846694082
-
Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways
-
Kim D, Kwon YK, Cho KH. 2007. Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. Bioessays 29:85-90
-
(2007)
Bioessays
, vol.29
, pp. 85-90
-
-
Kim, D.1
Kwon, Y.K.2
Cho, K.H.3
-
178
-
-
50449102941
-
Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise
-
Miura S, Kai Y, Kamei Y, Ezaki O. 2008. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise. Endocrinology 149:4527-4533
-
(2008)
Endocrinology
, vol.149
, pp. 4527-4533
-
-
Miura, S.1
Kai, Y.2
Kamei, Y.3
Ezaki, O.4
|