메뉴 건너뛰기




Volumn 10, Issue 4, 2004, Pages 355-361

PPARs and the complex journey to obesity

Author keywords

[No Author keywords available]

Indexed keywords

[2 METHYL 4 [4 METHYL 2 (4 TRIFLUOROMETHYLPHENYL) 5 THIAZOLYLMETHYLTHIO]PHENOXY]ACETIC ACID; ANTILIPEMIC AGENT; FIBRIC ACID DERIVATIVE; GHRELIN; INSULIN RECEPTOR; INSULIN RECEPTOR SUBSTRATE 1; INSULIN RECEPTOR SUBSTRATE 2; LEPTIN RECEPTOR; MELANOCORTIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA AGONIST; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR DELTA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA GONIST; UNCLASSIFIED DRUG; UNCOUPLING PROTEIN;

EID: 1942518840     PISSN: 10788956     EISSN: None     Source Type: Journal    
DOI: 10.1038/nm1025     Document Type: Review
Times cited : (1375)

References (105)
  • 1
    • 0022589555 scopus 로고
    • A twin study of human obesity
    • Stunkard, A., Foch, T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51-54 (1986).
    • (1986) JAMA , vol.256 , pp. 51-54
    • Stunkard, A.1    Foch, T.2    Hrubec, Z.3
  • 2
    • 0028139089 scopus 로고
    • Positional cloning of the mouse obese gene and its human homologue
    • Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432 (1994).
    • (1994) Nature , vol.372 , pp. 425-432
    • Zhang, Y.1
  • 3
    • 2442654859 scopus 로고
    • Identification and expression cloning of a leptin receptor OB-R
    • Tartaglia, L, et al. Identification and expression cloning of a leptin receptor OB-R. Cell 83, 1263-1271 (1995).
    • (1995) Cell , vol.83 , pp. 1263-1271
    • Tartaglia, L.1
  • 4
    • 0242363255 scopus 로고    scopus 로고
    • Monitoring of stored and available fuel by the CNS: Implications for obesity
    • Seeley, R. & Woods, S. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat. Rev. Neurosci. 4, 901-909 (2003).
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 901-909
    • Seeley, R.1    Woods, S.2
  • 5
    • 0035843183 scopus 로고    scopus 로고
    • A role for ghrelin in the central regulation of feeding
    • Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194-198 (2001).
    • (2001) Nature , vol.409 , pp. 194-198
    • Nakazato, M.1
  • 6
    • 1342317555 scopus 로고    scopus 로고
    • Peripheral signals in the control of satiety and hunger
    • Drazen, D. & Woods, S. Peripheral signals in the control of satiety and hunger. Curr. Opin. Clin. Nutr. Metab. Care 6, 621-629 (2003).
    • (2003) Curr. Opin. Clin. Nutr. Metab. Care , vol.6 , pp. 621-629
    • Drazen, D.1    Woods, S.2
  • 7
    • 0037043704 scopus 로고    scopus 로고
    • Gut hormone PYY3-36 physiologically inhibits food intake
    • Batterham, R. et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418, 650-654 (2002).
    • (2002) Nature , vol.418 , pp. 650-654
    • Batterham, R.1
  • 8
    • 13344282056 scopus 로고    scopus 로고
    • A role for glucagon-like peptide-1 in the central regulation of feeding
    • Turton, M. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69-72 (1996).
    • (1996) Nature , vol.379 , pp. 69-72
    • Turton, M.1
  • 9
    • 0037008157 scopus 로고    scopus 로고
    • βAR signaling required for diet-induced thermogenesis and obesity resistance
    • Bachman, E. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843-845 (2002).
    • (2002) Science , vol.297 , pp. 843-845
    • Bachman, E.1
  • 10
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124 (1999).
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 11
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
    • Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 12
    • 0034611678 scopus 로고    scopus 로고
    • Towards a molecular understanding of adaptive thermogenesis
    • Lowell, B. & Spiegelman, B. Towards a molecular understanding of adaptive thermogenesis, Nature 404, 652-660 (2000).
    • (2000) Nature , vol.404 , pp. 652-660
    • Lowell, B.1    Spiegelman, B.2
  • 13
    • 1842409029 scopus 로고    scopus 로고
    • Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
    • Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90-94 (1997).
    • (1997) Nature , vol.387 , pp. 90-94
    • Enerback, S.1
  • 14
    • 0031019249 scopus 로고    scopus 로고
    • Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia
    • Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269-272 (1997).
    • (1997) Nat. Genet. , vol.15 , pp. 269-272
    • Fleury, C.1
  • 15
    • 15144356206 scopus 로고    scopus 로고
    • Cloning and characterization of an uncoupling protein homolog: A potential molecular mediator of human thermogenesis
    • Gimeno, R.E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900-906 (1997).
    • (1997) Diabetes , vol.46 , pp. 900-906
    • Gimeno, R.E.1
  • 16
    • 0030988140 scopus 로고    scopus 로고
    • Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression
    • Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39-42 (1997).
    • (1997) FEBS Lett. , vol.408 , pp. 39-42
    • Boss, O.1
  • 17
    • 0031560941 scopus 로고    scopus 로고
    • UCP3: An uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue
    • Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J.S. & Lowell, B.B. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235, 79-82 (1997).
    • (1997) Biochem. Biophys. Res. Commun. , vol.235 , pp. 79-82
    • Vidal-Puig, A.1    Solanes, G.2    Grujic, D.3    Flier, J.S.4    Lowell, B.B.5
  • 18
    • 0028865142 scopus 로고
    • Expression of the mitochondrial uncoupling protein gene from the aP 2 gene promoter prevents genetic obesity
    • Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B., & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914-2923 (1995).
    • (1995) J. Clin. Invest. , vol.96 , pp. 2914-2923
    • Kopecky, J.1    Clarke, G.2    Enerback, S.3    Spiegelman, B.4    Kozak, L.P.5
  • 19
    • 0006877856 scopus 로고    scopus 로고
    • Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean
    • Clapham, J.C. et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415-418 (2000).
    • (2000) Nature , vol.406 , pp. 415-418
    • Clapham, J.C.1
  • 20
    • 0033787068 scopus 로고    scopus 로고
    • Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice
    • Li, B. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115-1120 (2000).
    • (2000) Nat. Med. , vol.6 , pp. 1115-1120
    • Li, B.1
  • 21
    • 1842409029 scopus 로고    scopus 로고
    • Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
    • Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90-94 (1997).
    • (1997) Nature , vol.387 , pp. 90-94
    • Enerback, S.1
  • 22
    • 0033667705 scopus 로고    scopus 로고
    • Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production
    • Arsenijevic, D. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435-439 (2000).
    • (2000) Nat. Genet. , vol.26 , pp. 435-439
    • Arsenijevic, D.1
  • 23
    • 0034717015 scopus 로고    scopus 로고
    • Energy metabolism in uncoupling protein 3 gene knockout mice
    • Vidal-Puig, A.J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275, 16258-16266 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 16258-16266
    • Vidal-Puig, A.J.1
  • 24
    • 0033534524 scopus 로고    scopus 로고
    • Role of nonexercise activity thermogenesis in resistance to fat gain in humans
    • Levine, J., Eberhardt, N. & Jensen, M. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212-214 (1999).
    • (1999) Science , vol.283 , pp. 212-214
    • Levine, J.1    Eberhardt, N.2    Jensen, M.3
  • 25
    • 0021985413 scopus 로고
    • Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes
    • Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756-761 (1985).
    • (1985) Nature , vol.313 , pp. 756-761
    • Ullrich, A.1
  • 26
    • 0021924895 scopus 로고
    • The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signaling
    • Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling. Cell 40, 747-758 (1985).
    • (1985) Cell , vol.40 , pp. 747-758
    • Ebina, Y.1
  • 27
    • 0025813375 scopus 로고
    • Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein
    • Sun, X.J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73-77 (1991).
    • (1991) Nature , vol.352 , pp. 73-77
    • Sun, X.J.1
  • 28
    • 0029148591 scopus 로고
    • Role of IRS-2 in insulin and cytokine signaling
    • Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signaling. Nature 377, 173-177 (1995).
    • (1995) Nature , vol.377 , pp. 173-177
    • Sun, X.J.1
  • 29
    • 13344277357 scopus 로고    scopus 로고
    • Early neonatal death in mice homozygous for a null allele of the insulin receptor gene
    • Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106-109 (1996).
    • (1996) Nature Genet. , vol.12 , pp. 106-109
    • Accili, D.1
  • 30
    • 0033636523 scopus 로고    scopus 로고
    • Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
    • Michael, M. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87-97 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 87-97
    • Michael, M.1
  • 31
    • 0033524937 scopus 로고    scopus 로고
    • Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes
    • Kulkarni, R. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329-339 (1999).
    • (1999) Cell , vol.96 , pp. 329-339
    • Kulkarni, R.1
  • 32
    • 0032214652 scopus 로고    scopus 로고
    • A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance
    • Bruning, J. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559-569 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 559-569
    • Bruning, J.1
  • 33
    • 0035425234 scopus 로고    scopus 로고
    • Functional inactivation of the IGF-1 and insulin receptors in skeletal muscle causes type 2 diabetes
    • Fernandez, A. et al. Functional inactivation of the IGF-1 and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 15, 1926-1934 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 1926-1934
    • Fernandez, A.1
  • 34
    • 0035947235 scopus 로고    scopus 로고
    • A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle
    • Mu, J., Brozinick, J., Valladares, 0., Bucan, M. & Birnbaum, M. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085-1094 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 1085-1094
    • Mu, J.1    Brozinick, J.2    Valladares, O.3    Bucan, M.4    Birnbaum, M.5
  • 35
    • 0037942739 scopus 로고    scopus 로고
    • Extended longevity in mice lacking the insulin receptor in adipose tissue
    • Bluher, M., Kahn, B. & Kahn, R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572-574 (2003).
    • (2003) Science , vol.299 , pp. 572-574
    • Bluher, M.1    Kahn, B.2    Kahn, R.3
  • 36
    • 0031792118 scopus 로고    scopus 로고
    • Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue
    • Lauro, D. et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat. Genet. 20, 294-298 (1998).
    • (1998) Nat. Genet. , vol.20 , pp. 294-298
    • Lauro, D.1
  • 37
    • 0034783580 scopus 로고    scopus 로고
    • Brown adipose tissue-specific insulin receptor knockout shows a diabetic phenotype without insulin resistance
    • Guerra, C. et al. Brown adipose tissue-specific insulin receptor knockout shows a diabetic phenotype without insulin resistance. J. Clin. Invest. 108, 1205-1213 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1205-1213
    • Guerra, C.1
  • 38
    • 0028032894 scopus 로고
    • Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
    • Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182-186 (1994).
    • (1994) Nature , vol.372 , pp. 182-186
    • Tamemoto, H.1
  • 39
    • 0032567937 scopus 로고    scopus 로고
    • Disruption of IRS-2 causes type 2 diabetes in mice
    • Withers, D. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900-904 (1998).
    • (1998) Nature , vol.391 , pp. 900-904
    • Withers, D.1
  • 40
    • 0033927667 scopus 로고    scopus 로고
    • Cellular mechanisms of insulin resistance
    • Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171-176 (2000).
    • (2000) J. Clin. Invest. , vol.106 , pp. 171-176
    • Shulman, G.I.1
  • 41
    • 0032954778 scopus 로고    scopus 로고
    • Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity
    • Dresner A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253-259 (1999).
    • (1999) J. Clin. Invest. , vol.103 , pp. 253-259
    • Dresner, A.1
  • 42
    • 0032764784 scopus 로고    scopus 로고
    • Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents
    • Perseghin, G. et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48, 1600-1606 (1999).
    • (1999) Diabetes , vol.48 , pp. 1600-1606
    • Perseghin, G.1
  • 43
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
    • Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140-1142 (2003).
    • (2003) Science , vol.300 , pp. 1140-1142
    • Petersen, K.F.1
  • 44
    • 0035912744 scopus 로고    scopus 로고
    • Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
    • Kim, J.K. et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl. Acad. Sci. USA 98, 7522-7527 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 7522-7527
    • Kim, J.K.1
  • 45
    • 0037184925 scopus 로고    scopus 로고
    • Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
    • Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230-50236 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 50230-50236
    • Yu, C.1
  • 46
    • 0025132245 scopus 로고
    • Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators
    • Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650 (1990).
    • (1990) Nature , vol.347 , pp. 645-650
    • Issemann, I.1    Green, S.2
  • 47
    • 0026517010 scopus 로고
    • Control of the peroxisomal P-oxidation pathway by a novel family of nuclear hormone receptors
    • Dreyer, C. et al. Control of the peroxisomal P-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879-887 (1992).
    • (1992) Cell , vol.68 , pp. 879-887
    • Dreyer, C.1
  • 48
    • 0028321529 scopus 로고
    • Differential expression and activation of a family of murine peroxisome proliferator-activated receptors
    • Kliewer, S.A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci USA 91, 7355-7359 (1994).
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 7355-7359
    • Kliewer, S.A.1
  • 49
    • 0035976638 scopus 로고    scopus 로고
    • Nuclear receptors and lipid physiology: Opening the X-files
    • Chawla, A., Repa, J.J., Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866-1870 (2001).
    • (2001) Science , vol.294 , pp. 1866-1870
    • Chawla, A.1    Repa, J.J.2    Evans, R.M.3    Mangelsdorf, D.J.4
  • 51
    • 0028641559 scopus 로고
    • Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor
    • Tontonoz, P., Hu, E. & Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147-1156 (1994).
    • (1994) Cell , vol.79 , pp. 1147-1156
    • Tontonoz, P.1    Hu, E.2    Spiegelman, B.M.3
  • 52
    • 0033213637 scopus 로고    scopus 로고
    • PPARγ is required for placental, cardiac, and adipose tissue development
    • Barak, Y. et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585-595 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 585-595
    • Barak, Y.1
  • 53
    • 0033213631 scopus 로고    scopus 로고
    • PPARγ is required for the differentiation of adipose tissue in vivo and in vitro
    • Rosen, E.D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 611-617
    • Rosen, E.D.1
  • 54
    • 0033212964 scopus 로고    scopus 로고
    • PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance
    • Kubota, N. et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597-609 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 597-609
    • Kubota, N.1
  • 55
    • 0036146384 scopus 로고    scopus 로고
    • A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy
    • Agarwal, A.K. & Garg, A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 87, 408-411 (2002).
    • (2002) J. Clin. Endocrinol. Metab. , vol.87 , pp. 408-411
    • Agarwal, A.K.1    Garg, A.2
  • 56
    • 0036894397 scopus 로고    scopus 로고
    • PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy
    • Hegele, R.A., Cao, H., Frankowski, C., Mathews, S.T. & Leff, T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51, 3586-3590 (2002).
    • (2002) Diabetes , vol.51 , pp. 3586-3590
    • Hegele, R.A.1    Cao, H.2    Frankowski, C.3    Mathews, S.T.4    Leff, T.5
  • 57
    • 0344375097 scopus 로고    scopus 로고
    • Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ
    • Savage, D.B. et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes 52, 910-917 (2003).
    • (2003) Diabetes , vol.52 , pp. 910-917
    • Savage, D.B.1
  • 58
    • 0033083803 scopus 로고    scopus 로고
    • Cross-regulation of C/EBP and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity
    • Wu, Z. et al. Cross-regulation of C/EBP and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151-158 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 151-158
    • Wu, Z.1
  • 59
    • 0036007024 scopus 로고    scopus 로고
    • C/EBPalpha induces adipogenesis through PPARγ: A unified pathway
    • Rosen, E.D. et al. C/EBPalpha induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16, 22-26 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 22-26
    • Rosen, E.D.1
  • 60
    • 0028972025 scopus 로고
    • Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ
    • Forman, B.M. et al. Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803-812 (1995).
    • (1995) Cell , vol.83 , pp. 803-812
    • Forman, B.M.1
  • 61
    • 0029016829 scopus 로고
    • An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARy)
    • Lehmann, J.M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARy). J. Biol. Chem. 270, 12953-12956 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 12953-12956
    • Lehmann, J.M.1
  • 62
    • 0035798713 scopus 로고    scopus 로고
    • The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance
    • Yamauchi, T. et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J. Biol. Chem. 276, 41245-41254 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 41245-41254
    • Yamauchi, T.1
  • 63
    • 0036797450 scopus 로고    scopus 로고
    • A futile metabolic cycle activated in adipocytes by antidiabetic agents
    • Guan, H.-P., et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122-1128 (2002).
    • (2002) Nat. Med. , vol.8 , pp. 1122-1128
    • Guan, H.-P.1
  • 64
    • 0030885575 scopus 로고    scopus 로고
    • Thiazolidinediones block tumor necrosis factor-α-induced inhibition of insulin signaling
    • Peraldi P., Xu, M. & Spiegelman, B.M. Thiazolidinediones block tumor necrosis factor-α-induced inhibition of insulin signaling. J. Clin. Invest. 100, 1863-1869 (1997).
    • (1997) J. Clin. Invest. , vol.100 , pp. 1863-1869
    • Peraldi, P.1    Xu, M.2    Spiegelman, B.M.3
  • 65
    • 0035905758 scopus 로고    scopus 로고
    • The hormone resistin links obesity to diabetes
    • Steppan, C.M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307-312 (2001).
    • (2001) Nature , vol.409 , pp. 307-312
    • Steppan, C.M.1
  • 66
    • 0037241112 scopus 로고    scopus 로고
    • Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production
    • Rajala, M.W., Obici, S., Scherer, P.E. & Rossetti, L. Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production. J. Clin. Invest. 111, 225-300 (2003).
    • (2003) J. Clin. Invest. , vol.111 , pp. 225-300
    • Rajala, M.W.1    Obici, S.2    Scherer, P.E.3    Rossetti, L.4
  • 67
    • 0035663963 scopus 로고    scopus 로고
    • Endogenous glucose production is inhibited by the adipose-derived protein Acrp30
    • Combs T.P., Berg A.H., Obici S., Scherer P.E. & Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875-1881 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1875-1881
    • Combs, T.P.1    Berg, A.H.2    Obici, S.3    Scherer, P.E.4    Rossetti, L.5
  • 68
    • 0034881391 scopus 로고    scopus 로고
    • The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
    • Berg, A.H., Combs, T.P., Du, X., Brownlee, M. & Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947-953 (2001).
    • (2001) Nat. Med. , vol.7 , pp. 947-953
    • Berg, A.H.1    Combs, T.P.2    Du, X.3    Brownlee, M.4    Scherer, P.E.5
  • 69
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
    • Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941-946 (2001).
    • (2001) Nat. Med. , vol.7 , pp. 941-946
    • Yamauchi, T.1
  • 70
    • 0036851817 scopus 로고    scopus 로고
    • Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
    • Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295 (2002).
    • (2002) Nat. Med. , vol.8 , pp. 1288-1295
    • Yamauchi, T.1
  • 71
    • 0037494960 scopus 로고    scopus 로고
    • Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
    • Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769 (2003).
    • (2003) Nature , vol.423 , pp. 762-769
    • Yamauchi, T.1
  • 72
    • 0032409985 scopus 로고    scopus 로고
    • Thiazolidinediones and insulin resistance: Peroxisome proliferator activated receptor γ activation stimulates expression of the CAP gene
    • Ribon, V., Johnson, J.H., Camp, H.S. & Saltiel, A.R. Thiazolidinediones and insulin resistance: peroxisome proliferator activated receptor γ activation stimulates expression of the CAP gene. Proc. Natl. Acad. Sci. USA 95, 14751-14756 (1998).
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14751-14756
    • Ribon, V.1    Johnson, J.H.2    Camp, H.S.3    Saltiel, A.R.4
  • 73
    • 0031441286 scopus 로고    scopus 로고
    • Troglitazone action is independent of adipose tissue
    • Burant, C.F. et al. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 100, 2900-2908 (1997).
    • (1997) J. Clin. Invest. , vol.100 , pp. 2900-2908
    • Burant, C.F.1
  • 74
    • 0033708410 scopus 로고    scopus 로고
    • Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones
    • Chao, L. et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221-1228 (2000).
    • (2000) J. Clin. Invest. , vol.106 , pp. 1221-1228
    • Chao, L.1
  • 75
    • 0141446024 scopus 로고    scopus 로고
    • Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass
    • Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278, 34268-34276 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 34268-34276
    • Gavrilova, O.1
  • 76
    • 0038549106 scopus 로고    scopus 로고
    • Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice
    • Kim, J.K. et al. Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice. Diabetes 52, 1311-1318 (2003).
    • (2003) Diabetes , vol.52 , pp. 1311-1318
    • Kim, J.K.1
  • 77
    • 0033973843 scopus 로고    scopus 로고
    • Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency
    • Miles, P.D., Barak, Y., He, W., Evans, R.M. & Olefsky, J.M. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J. Clin. Invest. 105, 287-292 (2000).
    • (2000) J. Clin. Invest. , vol.105 , pp. 287-292
    • Miles, P.D.1    Barak, Y.2    He, W.3    Evans, R.M.4    Olefsky, J.M.5
  • 78
    • 12444273748 scopus 로고    scopus 로고
    • Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator
    • Berger, J.P. et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 17, 662-676 (2003).
    • (2003) Mol. Endocrinol. , vol.17 , pp. 662-676
    • Berger, J.P.1
  • 79
    • 0141920726 scopus 로고    scopus 로고
    • Genetic modulation of PPARg phosphorylation regulates insulin sensitivity
    • Rangwala, S.M. et al. Genetic modulation of PPARg phosphorylation regulates insulin sensitivity. Dev. Cell 5, 657-663 (2003).
    • (2003) Dev. Cell , vol.5 , pp. 657-663
    • Rangwala, S.M.1
  • 80
    • 0032189782 scopus 로고    scopus 로고
    • Obesity associated with a mutation in a genetic regulator of adipocyte differentiation
    • Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 339, 953-959 (1998).
    • (1998) N. Engl. J. Med. , vol.339 , pp. 953-959
    • Ristow, M.1    Muller-Wieland, D.2    Pfeiffer, A.3    Krone, W.4    Kahn, R.5
  • 81
    • 0037373008 scopus 로고    scopus 로고
    • Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes
    • Matsusue, K, et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737-747 (2003).
    • (2003) J. Clin. Invest. , vol.111 , pp. 737-747
    • Matsusue, K.1
  • 82
    • 9144229185 scopus 로고    scopus 로고
    • Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle
    • He, W. et al. Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA 100, 15712-15717 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 15712-15717
    • He, W.1
  • 83
    • 0344630205 scopus 로고    scopus 로고
    • Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR γ hypomorphic mice
    • Koutnikova, H. et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR γ hypomorphic mice. Proc. Natl. Acad. Sci. USA 100, 14457-14462 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 14457-14462
    • Koutnikova, H.1
  • 84
    • 0346027235 scopus 로고    scopus 로고
    • Muscle-specific Pparg deletion causes insulin resistance
    • Hevener, A.L. et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med. 9, 1491-1497 (2003).
    • (2003) Nat Med. , vol.9 , pp. 1491-1497
    • Hevener, A.L.1
  • 85
    • 85047693638 scopus 로고    scopus 로고
    • Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
    • Norris, A.W. et al. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 112, 608-618 (2003).
    • (2003) J. Clin. Invest. , vol.112 , pp. 608-618
    • Norris, A.W.1
  • 86
    • 0034939632 scopus 로고    scopus 로고
    • Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: An adaptive metabolic system
    • Reddy, J.K. & Hashimoto, T. Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu. Rev. Nutr. 21, 193-230 (2001).
    • (2001) Annu. Rev. Nutr. , vol.21 , pp. 193-230
    • Reddy, J.K.1    Hashimoto, T.2
  • 87
    • 0032699670 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting
    • Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489-1498 (1999).
    • (1999) J. Clin. Invest. , vol.103 , pp. 1489-1498
    • Kersten, S.1
  • 88
    • 0034595980 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity
    • Guerre-Millo, M, et al. Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638-16642 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 16638-16642
    • Guerre-Millo, M.1
  • 89
    • 0037025390 scopus 로고    scopus 로고
    • WY14,643, a peroxisome proliferator-activated receptor α (PPARα) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice
    • Chou, C.J. et al. WY14,643, a peroxisome proliferator-activated receptor α (PPARα) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J. Biol. Chem. 277, 24484-24489 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 24484-24489
    • Chou, C.J.1
  • 90
    • 0038353634 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-α agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis
    • Kim, H. et al. Peroxisome proliferator-activated receptor-α agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes 52, 1770-1778 (2003).
    • (2003) Diabetes , vol.52 , pp. 1770-1778
    • Kim, H.1
  • 91
    • 0033625677 scopus 로고    scopus 로고
    • Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ)
    • Peters, J.M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol. 20, 5119-5128 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5119-5128
    • Peters, J.M.1
  • 92
    • 0037039374 scopus 로고    scopus 로고
    • Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer
    • Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA 99, 303-308 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 303-308
    • Barak, Y.1
  • 93
    • 0035942162 scopus 로고    scopus 로고
    • A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport
    • Oliver, W.R. et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA 98, 5306-5311 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5306-5311
    • Oliver, W.R.1
  • 94
    • 0037453718 scopus 로고    scopus 로고
    • Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity
    • Wang, Y.-X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159-170 (2003).
    • (2003) Cell , vol.113 , pp. 159-170
    • Wang, Y.-X.1
  • 95
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 96
    • 0037135623 scopus 로고    scopus 로고
    • Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPAR δ
    • Muoio, D.M. et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPAR δ. J. Biol. Chem. 277, 26089-26097 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 26089-26097
    • Muoio, D.M.1
  • 97
    • 0346849699 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells
    • Dressel, U. et al. The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17, 2477-2493 (2003).
    • (2003) Mol. Endocrinol. , vol.17 , pp. 2477-2493
    • Dressel, U.1
  • 98
    • 0642303113 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability
    • Luquet, S. et al. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 17, 2299-2301 (2003).
    • (2003) FASEB J. , vol.17 , pp. 2299-2301
    • Luquet, S.1
  • 99
    • 9144271149 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor β induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome
    • Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor β induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100, 15924-15929 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 15924-15929
    • Tanaka, T.1
  • 100
    • 1942470331 scopus 로고    scopus 로고
    • Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth
    • Gupta, R. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nat. Med. 10, 245-247 (2004).
    • (2004) Nat. Med. , vol.10 , pp. 245-247
    • Gupta, R.1
  • 101
    • 0031667938 scopus 로고    scopus 로고
    • Activators of the nuclear receptor PPARγ enhance colon polyp formation
    • Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat. Med. 4, 1058-1061 (1998).
    • (1998) Nat. Med. , vol.4 , pp. 1058-1061
    • Saez, E.1
  • 102
    • 0031671246 scopus 로고    scopus 로고
    • Differentiation and reversal of malignant changes in colon cancer through PPARγ
    • Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat. Med. 4, 1046-1052 (1998).
    • (1998) Nat. Med. , vol.4 , pp. 1046-1052
    • Sarraf, P.1
  • 104
    • 0142116239 scopus 로고    scopus 로고
    • Transcriptional repression of atherogenic inflammation: Modulation by PPARδ
    • Lee, C.H. et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302, 453-457 (2003).
    • (2003) Science , vol.302 , pp. 453-457
    • Lee, C.H.1
  • 105
    • 1042286477 scopus 로고    scopus 로고
    • Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: Effects on lipid homeostasis, inflammation, and atherosclerosis
    • Ricote, M., Valledor, A.F. & Glass, C.K. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 230-239 (2004).
    • (2004) Arterioscler. Thromb. Vasc. Biol. , vol.24 , pp. 230-239
    • Ricote, M.1    Valledor, A.F.2    Glass, C.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.