메뉴 건너뛰기




Volumn 25, Issue , 2007, Pages 697-743

The host defense of Drosophila melanogaster

Author keywords

Imd; Insect immunity; Pathogens; Recognition; Toll

Indexed keywords

ADENOSINE PHOSPHATE; JANUS KINASE; PROTEIN DERIVATIVE; RNA; ROS PROTEIN; SERINE PROTEINASE; STAT PROTEIN; TOLL LIKE RECEPTOR; UNCLASSIFIED DRUG;

EID: 34047268684     PISSN: 07320582     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.immunol.25.022106.141615     Document Type: Review
Times cited : (2740)

References (291)
  • 1
    • 0036160153 scopus 로고    scopus 로고
    • How Drosophila combats microbial infection: A model to study innate immunity and host-pathogen interactions
    • Tzou P, De Gregorio E, Lemaitre B. 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5:102-10
    • (2002) Curr. Opin. Microbiol , vol.5 , pp. 102-110
    • Tzou, P.1    De Gregorio, E.2    Lemaitre, B.3
  • 2
    • 0037290892 scopus 로고    scopus 로고
    • Drosophila immunity: Paths and patterns
    • Hultmark D. 2003. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15:12-19
    • (2003) Curr. Opin. Immunol , vol.15 , pp. 12-19
    • Hultmark, D.1
  • 3
    • 0242581687 scopus 로고    scopus 로고
    • The immune response of Drosophila
    • Hoffmann JA. 2003. The immune response of Drosophila. Nature 426:33-38
    • (2003) Nature , vol.426 , pp. 33-38
    • Hoffmann, J.A.1
  • 4
    • 2442715852 scopus 로고    scopus 로고
    • Drosophila: The genetics of innate immune recognition and response
    • Brennan CA, Anderson KV. 2004. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22:457-83
    • (2004) Annu. Rev. Immunol , vol.22 , pp. 457-483
    • Brennan, C.A.1    Anderson, K.V.2
  • 5
    • 3142691844 scopus 로고    scopus 로고
    • The road to Toll
    • Lemaitre B. 2004. The road to Toll. Nat. Rev. Immunol. 4:521-27
    • (2004) Nat. Rev. Immunol , vol.4 , pp. 521-527
    • Lemaitre, B.1
  • 7
    • 0015524896 scopus 로고
    • Inducible antibacterial defense system in Drosophila
    • Boman HG, Nilsson I, Rasmuson B. 1972. Inducible antibacterial defense system in Drosophila. Nature 237:232-35
    • (1972) Nature , vol.237 , pp. 232-235
    • Boman, H.G.1    Nilsson, I.2    Rasmuson, B.3
  • 8
    • 21344463378 scopus 로고    scopus 로고
    • Antimicrobial peptides in Drosophila: Structures, activities and gene regulation
    • Imler JL, Bulet P. 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86:1-21
    • (2005) Chem. Immunol. Allergy , vol.86 , pp. 1-21
    • Imler, J.L.1    Bulet, P.2
  • 9
    • 0025642716 scopus 로고
    • Insect immunity: Characterization of a Drosophila cDNA encoding a novel member ofthe diptericin family of immune peptides
    • Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA. 1990. Insect immunity: characterization of a Drosophila cDNA encoding a novel member ofthe diptericin family of immune peptides. J. Biol. Chem. 265:22493-98
    • (1990) J. Biol. Chem , vol.265 , pp. 22493-22498
    • Wicker, C.1    Reichhart, J.M.2    Hoffmann, D.3    Hultmark, D.4    Samakovlis, C.5    Hoffmann, J.A.6
  • 10
    • 0029278804 scopus 로고
    • Identification of early genes in the Drosophila immune response by PCR-based differential display: The Attacin A gene and the evolution of attacin-like proteins
    • Asling B, Dushay MS, Hultmark D. 1995. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect. Biochem. Mol. Biol. 25:511-18
    • (1995) Insect. Biochem. Mol. Biol , vol.25 , pp. 511-518
    • Asling, B.1    Dushay, M.S.2    Hultmark, D.3
  • 11
    • 0027201086 scopus 로고
    • A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution
    • Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, et al. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268:14893-97
    • (1993) J. Biol. Chem , vol.268 , pp. 14893-14897
    • Bulet, P.1    Dimarcq, J.L.2    Hetru, C.3    Lagueux, M.4    Charlet, M.5
  • 12
    • 0028208333 scopus 로고
    • Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity
    • Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, et al. 1994. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur. J. Biochem. 221:201-9
    • (1994) Eur. J. Biochem , vol.221 , pp. 201-209
    • Dimarcq, J.L.1    Hoffmann, D.2    Meister, M.3    Bulet, P.4    Lanot, R.5
  • 13
    • 0028587829 scopus 로고
    • Insect immunity: Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides
    • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broeckaert W, et al. 1994. Insect immunity: Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269:33159-63
    • (1994) J. Biol. Chem , vol.269 , pp. 33159-33163
    • Fehlbaum, P.1    Bulet, P.2    Michaut, L.3    Lagueux, M.4    Broeckaert, W.5
  • 14
    • 0028884812 scopus 로고
    • Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties
    • Levashina E, Ohresser S, Bulet P, Reichhart J, Hetru C, Hoffmann J. 1995. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233:694-700
    • (1995) Eur. J. Biochem , vol.233 , pp. 694-700
    • Levashina, E.1    Ohresser, S.2    Bulet, P.3    Reichhart, J.4    Hetru, C.5    Hoffmann, J.6
  • 15
    • 0025190557 scopus 로고
    • The cecropin locus in Drosophila: A compact gene cluster involved in the response to infection
    • Kylsten P, Samakovlis C, Hultmark D. 1990. The cecropin locus in Drosophila: a compact gene cluster involved in the response to infection. EMBO J. 9:217-24
    • (1990) EMBO J , vol.9 , pp. 217-224
    • Kylsten, P.1    Samakovlis, C.2    Hultmark, D.3
  • 17
    • 0032530593 scopus 로고    scopus 로고
    • Differential display of peptides induced during the immune response of Drosophila: A matrix-assisted laser desorption ionization time-of-flight mass spectrometry study
    • Uttenweiler-Joseph S, Moniatte M, Lagueux M, Van Dorsselaer A, Hoffmann JA, Bulet P. 1998. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc. Natl. Acad. Sci. USA 95:11342-47
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 11342-11347
    • Uttenweiler-Joseph, S.1    Moniatte, M.2    Lagueux, M.3    Van Dorsselaer, A.4    Hoffmann, J.A.5    Bulet, P.6
  • 18
    • 0037133259 scopus 로고    scopus 로고
    • Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immuno-deficient Drosophila mutants
    • Tzou P, Reichhart JM, Lemaitre B. 2002. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immuno-deficient Drosophila mutants. Proc. Natl. Acad. Sci. USA 99:2152-57
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 2152-2157
    • Tzou, P.1    Reichhart, J.M.2    Lemaitre, B.3
  • 19
    • 0035940514 scopus 로고    scopus 로고
    • Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays
    • De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. 2001. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98:12590-95
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 12590-12595
    • De Gregorio, E.1    Spellman, P.T.2    Rubin, G.M.3    Lemaitre, B.4
  • 21
    • 0036848010 scopus 로고    scopus 로고
    • Sequential activation of signaling pathways during innate immune responses in Drosophila
    • Boutros M, Agaisse H, Perrimon N. 2002. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3:711-22
    • (2002) Dev. Cell , vol.3 , pp. 711-722
    • Boutros, M.1    Agaisse, H.2    Perrimon, N.3
  • 23
    • 0347635519 scopus 로고    scopus 로고
    • A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph
    • Vierstraete E, Verleyen P, Baggerman G, D'Hertog W, Van den Bergh G, et al. 2004. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc. Natl. Acad. Sci. USA 101:470-75
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 470-475
    • Vierstraete, E.1    Verleyen, P.2    Baggerman, G.3    D'Hertog, W.4    Van den Bergh, G.5
  • 24
    • 1842800034 scopus 로고    scopus 로고
    • Proteomic analysis of the systemic immune response of Drosophila
    • Levy F, Bulet P, Ehret-Sabatier L. 2004. Proteomic analysis of the systemic immune response of Drosophila. Mol. Cell. Proteomics 3:156-66
    • (2004) Mol. Cell. Proteomics , vol.3 , pp. 156-166
    • Levy, F.1    Bulet, P.2    Ehret-Sabatier, L.3
  • 27
    • 0034817068 scopus 로고    scopus 로고
    • A family of Turandot-related genes in the humoral stress response of Drosophila
    • Ekengren S, Hultmark D. 2001. A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem. Biophys. Res. Commun. 284:998-1003
    • (2001) Biochem. Biophys. Res. Commun , vol.284 , pp. 998-1003
    • Ekengren, S.1    Hultmark, D.2
  • 28
    • 0033106306 scopus 로고    scopus 로고
    • Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection
    • Yoshiga T, Georgieva T, Dunkov BC, Harizanova N, Ralchev K, Law JH. 1999. Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260:414-20
    • (1999) Eur. J. Biochem , vol.260 , pp. 414-420
    • Yoshiga, T.1    Georgieva, T.2    Dunkov, B.C.3    Harizanova, N.4    Ralchev, K.5    Law, J.H.6
  • 29
    • 0030861832 scopus 로고    scopus 로고
    • Adjacent GATA and κB-like motifs regulate the expression of a Drosophila immune gene
    • Kadalayil L, Petersen UM, Engstrom Y. 1997. Adjacent GATA and κB-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res. 25:1233-39
    • (1997) Nucleic Acids Res , vol.25 , pp. 1233-1239
    • Kadalayil, L.1    Petersen, U.M.2    Engstrom, Y.3
  • 30
    • 0033565677 scopus 로고    scopus 로고
    • Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif
    • Petersen UM, Kadalayil L, Rehorn KP, Hoshizaki DK, Reuter R, Engstrom Y. 1999. Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J. 18:4013-22
    • (1999) EMBO J , vol.18 , pp. 4013-4022
    • Petersen, U.M.1    Kadalayil, L.2    Rehorn, K.P.3    Hoshizaki, D.K.4    Reuter, R.5    Engstrom, Y.6
  • 31
    • 0035957424 scopus 로고    scopus 로고
    • The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos
    • Tingvall TO, Roos E, Engstrom Y. 2001. The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc. Natl. Acad. Sci. USA 98:3884-88
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 3884-3888
    • Tingvall, T.O.1    Roos, E.2    Engstrom, Y.3
  • 32
    • 0242663984 scopus 로고    scopus 로고
    • Functional characterization of a novel promoter element required for an innate immune response in Drosophila
    • Uvell H, Engstrom Y. 2003. Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol. Cell. Biol. 23:8272-81
    • (2003) Mol. Cell. Biol , vol.23 , pp. 8272-8281
    • Uvell, H.1    Engstrom, Y.2
  • 34
    • 0027402290 scopus 로고
    • Insect immunity. Two 17bp repeats nesting a κB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila
    • Kappler C, Meister M, Lagueux M, Gateff E, Hoffmann JA, Reichhart JM. 1993. Insect immunity. Two 17bp repeats nesting a κB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12:1561-68
    • (1993) EMBO J , vol.12 , pp. 1561-1568
    • Kappler, C.1    Meister, M.2    Lagueux, M.3    Gateff, E.4    Hoffmann, J.A.5    Reichhart, J.M.6
  • 36
    • 0028559509 scopus 로고
    • Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter
    • Meister M, Braun A, Kappler C, Reichhart JM, Hoffmann JA. 1994. Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J. 13:5958-66
    • (1994) EMBO J , vol.13 , pp. 5958-5966
    • Meister, M.1    Braun, A.2    Kappler, C.3    Reichhart, J.M.4    Hoffmann, J.A.5
  • 37
    • 0027443688 scopus 로고
    • Dif, a dorsal-related gene that mediates an immune response in Drosophila
    • Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, et al. 1993. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75:753-63
    • (1993) Cell , vol.75 , pp. 753-763
    • Ip, Y.T.1    Reach, M.2    Engstrom, Y.3    Kadalayil, L.4    Cai, H.5
  • 38
    • 0027368433 scopus 로고
    • Expression and nuclear translocation ofthe rel/NF-kB-related morphogen dorsal during the immune response of Drosophila
    • Reichhart JM, Georgel P, Meister M, Lemaitre B, Kappler C, Hoffmann JA. 1993. Expression and nuclear translocation ofthe rel/NF-kB-related morphogen dorsal during the immune response of Drosophila. C.R. Acad. Sci. III 316:1218-24
    • (1993) C.R. Acad. Sci. III , vol.316 , pp. 1218-1224
    • Reichhart, J.M.1    Georgel, P.2    Meister, M.3    Lemaitre, B.4    Kappler, C.5    Hoffmann, J.A.6
  • 39
    • 0029840669 scopus 로고    scopus 로고
    • Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila
    • Dushay MS, Asling B, Hultmark D. 1996. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA 93:10343-47
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 10343-10347
    • Dushay, M.S.1    Asling, B.2    Hultmark, D.3
  • 40
    • 0023619362 scopus 로고
    • Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene c-rel
    • Steward R. 1987. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene c-rel. Science 238:692-94
    • (1987) Science , vol.238 , pp. 692-694
    • Steward, R.1
  • 41
    • 0029000671 scopus 로고
    • The dorsal related immunity factor, Dif, is a sequence specific trans-activator of Drosophila cecropin gene expression
    • Petersen UM, Bjorklund G, Ip YT, Engstrom Y. 1995. The dorsal related immunity factor, Dif, is a sequence specific trans-activator of Drosophila cecropin gene expression. EMBO J. 14:3146-58
    • (1995) EMBO J , vol.14 , pp. 3146-3158
    • Petersen, U.M.1    Bjorklund, G.2    Ip, Y.T.3    Engstrom, Y.4
  • 42
    • 0029897990 scopus 로고    scopus 로고
    • Drosophila immunity: A comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin
    • Gross I, Georgel P, Kappler C, Reichhart JM, Hoffmann JA. 1996. Drosophila immunity: a comparative analysis of the Rel proteins dorsal and Dif in the induction of the genes encoding diptericin and cecropin. Nucleic Acids Res. 24:1238-45
    • (1996) Nucleic Acids Res , vol.24 , pp. 1238-1245
    • Gross, I.1    Georgel, P.2    Kappler, C.3    Reichhart, J.M.4    Hoffmann, J.A.5
  • 43
    • 0029730738 scopus 로고    scopus 로고
    • A conserved signaling pathway: The Drosophila Toll-dorsal pathway
    • Belvin MP, Anderson KV. 1996. A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12:393-416
    • (1996) Annu. Rev. Cell Dev. Biol , vol.12 , pp. 393-416
    • Belvin, M.P.1    Anderson, K.V.2
  • 44
    • 0036141954 scopus 로고    scopus 로고
    • Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections
    • Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL. 2002. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat. Immunol. 3:91-97
    • (2002) Nat. Immunol , vol.3 , pp. 91-97
    • Tauszig-Delamasure, S.1    Bilak, H.2    Capovilla, M.3    Hoffmann, J.A.4    Imler, J.L.5
  • 45
    • 0030595339 scopus 로고    scopus 로고
    • The dorsoventral regulatory gene cassette Spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults
    • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. 1996. The dorsoventral regulatory gene cassette Spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-83
    • (1996) Cell , vol.86 , pp. 973-983
    • Lemaitre, B.1    Nicolas, E.2    Michaut, L.3    Reichhart, J.M.4    Hoffmann, J.A.5
  • 46
    • 0037083557 scopus 로고    scopus 로고
    • Cutting edge: The Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila
    • Rutschmann S, Kilinc A, Ferrandon D. 2002. Cutting edge: The Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J. Immunol. 168:1542-46
    • (2002) J. Immunol , vol.168 , pp. 1542-1546
    • Rutschmann, S.1    Kilinc, A.2    Ferrandon, D.3
  • 47
    • 0033118490 scopus 로고    scopus 로고
    • Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor
    • Meng X, Khanuja BS, Ip YT. 1999. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13:792-97
    • (1999) Genes Dev , vol.13 , pp. 792-797
    • Meng, X.1    Khanuja, B.S.2    Ip, Y.T.3
  • 48
    • 0033564614 scopus 로고    scopus 로고
    • A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF
    • Manfruelli P, Reichhart JM, Steward R, Hoffmann JA, Lemaitre B. 1999. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18:3380-91
    • (1999) EMBO J , vol.18 , pp. 3380-3391
    • Manfruelli, P.1    Reichhart, J.M.2    Steward, R.3    Hoffmann, J.A.4    Lemaitre, B.5
  • 49
    • 0033711445 scopus 로고    scopus 로고
    • The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila
    • Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D. 2000. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569-80
    • (2000) Immunity , vol.12 , pp. 569-580
    • Rutschmann, S.1    Jung, A.C.2    Hetru, C.3    Reichhart, J.M.4    Hoffmann, J.A.5    Ferrandon, D.6
  • 50
    • 8344277723 scopus 로고    scopus 로고
    • Hemolymph-dependent and -independent responses in Drosophila immune tissue
    • Bettencourt R, Asha H, Dearolf C, Ip YT. 2004. Hemolymph-dependent and -independent responses in Drosophila immune tissue. J. Cell. Biochem. 92:849-63
    • (2004) J. Cell. Biochem , vol.92 , pp. 849-863
    • Bettencourt, R.1    Asha, H.2    Dearolf, C.3    Ip, Y.T.4
  • 51
    • 0037013856 scopus 로고    scopus 로고
    • The Toll and Imd pathways are the major regulators of the immune response in Drosophila
    • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21:2568-79
    • (2002) EMBO J , vol.21 , pp. 2568-2579
    • De Gregorio, E.1    Spellman, P.T.2    Tzou, P.3    Rubin, G.M.4    Lemaitre, B.5
  • 52
    • 0032562285 scopus 로고    scopus 로고
    • In vivo regulation of the IκB homologue cactus during the immune response of Drosophila
    • Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B. 1998. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273:10463-69
    • (1998) J. Biol. Chem , vol.273 , pp. 10463-10469
    • Nicolas, E.1    Reichhart, J.M.2    Hoffmann, J.A.3    Lemaitre, B.4
  • 53
    • 0041989575 scopus 로고    scopus 로고
    • Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling
    • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, et al. 2003. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nat. Immunol. 4:794-800
    • (2003) Nat. Immunol , vol.4 , pp. 794-800
    • Weber, A.N.1    Tauszig-Delamasure, S.2    Hoffmann, J.A.3    Lelievre, E.4    Gascan, H.5
  • 54
    • 3042645409 scopus 로고    scopus 로고
    • Multimerization and interaction of Toll and Spätzle in Drosophila
    • Hu X, Yagi Y, Tanji T, Zhou S, Ip YT. 2004. Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl. Acad. Sci. USA 101:9369-74
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 9369-9374
    • Hu, X.1    Yagi, Y.2    Tanji, T.3    Zhou, S.4    Ip, Y.T.5
  • 55
    • 0034641738 scopus 로고    scopus 로고
    • Toll-related receptors and the control of antimicrobial peptide expression in Drosophila
    • Tauszig S, Jouanguy E, Hoffmann JA, Imler JL. 2000. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. USA 97:10520-25
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10520-10525
    • Tauszig, S.1    Jouanguy, E.2    Hoffmann, J.A.3    Imler, J.L.4
  • 56
    • 0036166242 scopus 로고    scopus 로고
    • Ooi JY, Yagi Y, Hu X, Ip YT. 2002. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3:82-87
    • Ooi JY, Yagi Y, Hu X, Ip YT. 2002. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 3:82-87
  • 57
    • 0028865526 scopus 로고
    • A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense
    • Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, et al. 1995. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA 92:9365-469
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 9365-9469
    • Lemaitre, B.1    Kromer-Metzger, E.2    Michaut, L.3    Nicolas, E.4    Meister, M.5
  • 58
    • 0029926724 scopus 로고    scopus 로고
    • Characterization of an immunodeficiency mutant in Drosophila
    • Corbo JC, Levine M. 1996. Characterization of an immunodeficiency mutant in Drosophila. Mech. Dev. 55:211-20
    • (1996) Mech. Dev , vol.55 , pp. 211-220
    • Corbo, J.C.1    Levine, M.2
  • 59
    • 0032496389 scopus 로고    scopus 로고
    • Two distinct pathways can control expression of the Drosophila antimicrobial peptide metchnikowin
    • Levashina E, Ohresser S, Lemaitre B, Imler J. 1998. Two distinct pathways can control expression of the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol. 278:515-27
    • (1998) J. Mol. Biol , vol.278 , pp. 515-527
    • Levashina, E.1    Ohresser, S.2    Lemaitre, B.3    Imler, J.4
  • 60
    • 18044400563 scopus 로고    scopus 로고
    • 2 001. Drosophila immune deficiency (TMD) is a death domain protein that activates antibacterial defense and can promote apoptosis
    • Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, et al. 2 001. Drosophila immune deficiency (TMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1:503-14
    • Dev. Cell , vol.1 , pp. 503-514
    • Georgel, P.1    Naitza, S.2    Kappler, C.3    Ferrandon, D.4    Zachary, D.5
  • 61
    • 0037061450 scopus 로고    scopus 로고
    • 2 002. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein
    • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, et al. 2 002. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640-44
    • Nature , vol.416 , pp. 640-644
    • Gottar, M.1    Gobert, V.2    Michel, T.3    Belvin, M.4    Duyk, G.5
  • 62
    • 0037066464 scopus 로고    scopus 로고
    • Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila
    • Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV. 2002. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296:359-62
    • (2002) Science , vol.296 , pp. 359-362
    • Choe, K.M.1    Werner, T.2    Stoven, S.3    Hultmark, D.4    Anderson, K.V.5
  • 63
    • 0037061482 scopus 로고    scopus 로고
    • Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli
    • Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. 2002. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644-48
    • (2002) Nature , vol.416 , pp. 644-648
    • Ramet, M.1    Manfruelli, P.2    Pearson, A.3    Mathey-Prevot, B.4    Ezekowitz, R.A.5
  • 64
    • 0035423794 scopus 로고    scopus 로고
    • Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses
    • Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre B. 2001. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15:1900-12
    • (2001) Genes Dev , vol.15 , pp. 1900-1912
    • Vidal, S.1    Khush, R.S.2    Leulier, F.3    Tzou, P.4    Nakamura, M.5    Lemaitre, B.6
  • 66
    • 27344453240 scopus 로고    scopus 로고
    • Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M. 2005. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signaling in Drosophila. EMBO Rep. 6:979-84
    • Gesellchen V, Kuttenkeuler D, Steckel M, Pelte N, Boutros M. 2005. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signaling in Drosophila. EMBO Rep. 6:979-84
  • 67
    • 27144475536 scopus 로고    scopus 로고
    • Inhibitor of apoptosis 2 and TAK1-binding protein are components ofthe Drosophila Imd pathway
    • Kleino A, Valanne S, Ubila J, Kallio J, Myllymaki H, et al. 2005. Inhibitor of apoptosis 2 and TAK1-binding protein are components ofthe Drosophila Imd pathway. EMBO J. 24:3423-34
    • (2005) EMBO J , vol.24 , pp. 3423-3434
    • Kleino, A.1    Valanne, S.2    Ubila, J.3    Kallio, J.4    Myllymaki, H.5
  • 68
    • 33645099737 scopus 로고    scopus 로고
    • Drosophila TAB2 is required for the immune activation of JNK and NF-κB
    • Zhuang ZH, Sun L, Kong L, Hu JH, Yu MC, et al. 2006. Drosophila TAB2 is required for the immune activation of JNK and NF-κB. Cell. Signal. 18:964-70
    • (2006) Cell. Signal , vol.18 , pp. 964-970
    • Zhuang, Z.H.1    Sun, L.2    Kong, L.3    Hu, J.H.4    Yu, M.C.5
  • 69
    • 33750330952 scopus 로고    scopus 로고
    • The Drosophila IAP DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection
    • Leulier F, Lhocine N, Lemaitre B, Meier P. 2006. The Drosophila IAP DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell. Biol. 26:7821-31
    • (2006) Mol. Cell. Biol , vol.26 , pp. 7821-7831
    • Leulier, F.1    Lhocine, N.2    Lemaitre, B.3    Meier, P.4
  • 70
    • 0034287444 scopus 로고    scopus 로고
    • A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity
    • Silverman N, Zhou R, Stoven S, Pandey N, Hultmark D, Maniatis T. 2000. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14:2461-71
    • (2000) Genes Dev , vol.14 , pp. 2461-2471
    • Silverman, N.1    Zhou, R.2    Stoven, S.3    Pandey, N.4    Hultmark, D.5    Maniatis, T.6
  • 72
    • 0035187882 scopus 로고    scopus 로고
    • The antibacterial arm of the Drosophila innate immune response requires an IκB kinase
    • Lu Y, Wu LP, Anderson KV. 2001. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15:104-10
    • (2001) Genes Dev , vol.15 , pp. 104-110
    • Lu, Y.1    Wu, L.P.2    Anderson, K.V.3
  • 73
    • 0037172656 scopus 로고    scopus 로고
    • Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults
    • Leulier F, Vidal S, Saigo K, Ueda R, Lemaitre B. 2002. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12:996-1000
    • (2002) Curr. Biol , vol.12 , pp. 996-1000
    • Leulier, F.1    Vidal, S.2    Saigo, K.3    Ueda, R.4    Lemaitre, B.5
  • 74
    • 0036850985 scopus 로고    scopus 로고
    • The Drosophila immune defense against gram-negative infection requires the death protein dFADD
    • Naitza S, Rosse C, Kappler C, Georgel P, Belvin M, et al. 2002. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17:575-81
    • (2002) Immunity , vol.17 , pp. 575-581
    • Naitza, S.1    Rosse, C.2    Kappler, C.3    Georgel, P.4    Belvin, M.5
  • 75
    • 0034305744 scopus 로고    scopus 로고
    • Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. 2000. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1:353-58
    • Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. 2000. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1:353-58
  • 76
    • 0033231556 scopus 로고    scopus 로고
    • Relish, a central factor in the control of humoral but not cellular immunity in Drosophila
    • Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, et al. 1999. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4:827-37
    • (1999) Mol. Cell , vol.4 , pp. 827-837
    • Hedengren, M.1    Asling, B.2    Dushay, M.S.3    Ando, I.4    Ekengren, S.5
  • 77
    • 0037108474 scopus 로고    scopus 로고
    • Aubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade
    • Khush RS, Cornwell WD, Uram JN, Lemaitre B. 2002. Aubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12:1728-37
    • (2002) Curr. Biol , vol.12 , pp. 1728-1737
    • Khush, R.S.1    Cornwell, W.D.2    Uram, J.N.3    Lemaitre, B.4
  • 78
    • 0242664187 scopus 로고    scopus 로고
    • Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-κB-dependent signaling pathways
    • Cha GH, Cho KS, Lee JH, Kim M, Kim E, et al. 2003. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-κB-dependent signaling pathways. Mol. Cell. Biol. 23:7982-91
    • (2003) Mol. Cell. Biol , vol.23 , pp. 7982-7991
    • Cha, G.H.1    Cho, K.S.2    Lee, J.H.3    Kim, M.4    Kim, E.5
  • 79
    • 19344370696 scopus 로고    scopus 로고
    • Functional dissection of an innate immune response by a genome-wide RNAi screen
    • Foley E, O'Farrell PH. 2004. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol. 2:e203
    • (2004) PLoS Biol , vol.2
    • Foley, E.1    O'Farrell, P.H.2
  • 80
    • 26644432726 scopus 로고    scopus 로고
    • The role of ubiquitination in Drosophila innate immunity
    • Zhou R, Silverman N, Hong M, Liao DS, Chung Y, et al. 2005. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280:34048-55
    • (2005) J. Biol. Chem , vol.280 , pp. 34048-34055
    • Zhou, R.1    Silverman, N.2    Hong, M.3    Liao, D.S.4    Chung, Y.5
  • 81
    • 27844493287 scopus 로고    scopus 로고
    • Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in
    • Yagi Y, Ip YT. 2005. Helicase89B is a Mot1p/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Rep. 6:1088-94
    • (2005) Drosophila. EMBO Rep , vol.6 , pp. 1088-1094
    • Yagi, Y.1    Ip, Y.T.2
  • 82
    • 27844475685 scopus 로고    scopus 로고
    • The RING-finger scaffold protein plenty of SH3s targets TAK1 to control immunity signaling in
    • Tsuda M, Langmann C, Harden N, Aigaki T. 2005. The RING-finger scaffold protein plenty of SH3s targets TAK1 to control immunity signaling in Drosophila. EMBO Rep. 6:1082-87
    • (2005) Drosophila. EMBO Rep , vol.6 , pp. 1082-1087
    • Tsuda, M.1    Langmann, C.2    Harden, N.3    Aigaki, T.4
  • 84
    • 33746191692 scopus 로고    scopus 로고
    • Insect immunity: The postgenomic era
    • Bangham J, Jiggins F, Lemaitre B. 2006. Insect immunity: the postgenomic era. Immunity 25:1-5
    • (2006) Immunity , vol.25 , pp. 1-5
    • Bangham, J.1    Jiggins, F.2    Lemaitre, B.3
  • 85
    • 0033638404 scopus 로고    scopus 로고
    • Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
    • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, et al. 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737-48
    • (2000) Immunity , vol.13 , pp. 737-748
    • Tzou, P.1    Ohresser, S.2    Ferrandon, D.3    Capovilla, M.4    Reichhart, J.M.5
  • 86
    • 0031446642 scopus 로고    scopus 로고
    • Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms
    • Lemaitre B, Reichhart J, Hoffmann J. 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94:14614-19
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 14614-14619
    • Lemaitre, B.1    Reichhart, J.2    Hoffmann, J.3
  • 87
    • 0030088122 scopus 로고    scopus 로고
    • Ecdysone and insect immunity: The maturation of the inducibility of the diptericin gene in Drosophila larvae
    • Meister M, Richards G. 1996. Ecdysone and insect immunity: the maturation of the inducibility of the diptericin gene in Drosophila larvae. Insect. Biochem. Mol. Biol. 26:155-60
    • (1996) Insect. Biochem. Mol. Biol , vol.26 , pp. 155-160
    • Meister, M.1    Richards, G.2
  • 88
    • 0036023960 scopus 로고    scopus 로고
    • Critical evaluation of the role of the Toll-like receptor 18-Wheeler in the host defense of Drosophila. EMBO Rep
    • Ligoxygakis P, Bulet P, Reichhart JM. 2002. Critical evaluation of the role of the Toll-like receptor 18-Wheeler in the host defense of Drosophila. EMBO Rep. 3:666-73
    • (2002) , vol.3 , pp. 666-673
    • Ligoxygakis, P.1    Bulet, P.2    Reichhart, J.M.3
  • 89
    • 1642463842 scopus 로고    scopus 로고
    • The roles of JAK/STAT signaling in Drosophila immune responses
    • Agaisse H, Perrimon N. 2004. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198:72-82
    • (2004) Immunol. Rev , vol.198 , pp. 72-82
    • Agaisse, H.1    Perrimon, N.2
  • 90
    • 0033557744 scopus 로고    scopus 로고
    • Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection
    • Barillas-Mury C, Han YS, Seeley D, Kafatos FC. 1999. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J. 18:959-67
    • (1999) EMBO J , vol.18 , pp. 959-967
    • Barillas-Mury, C.1    Han, Y.S.2    Seeley, D.3    Kafatos, F.C.4
  • 91
    • 0034633786 scopus 로고    scopus 로고
    • Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila
    • Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. 2000. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. USA 97:11427-32
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 11427-11432
    • Lagueux, M.1    Perrodou, E.2    Levashina, E.A.3    Capovilla, M.4    Hoffmann, J.A.5
  • 92
    • 0042697323 scopus 로고    scopus 로고
    • Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury
    • Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. 2003. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5:441-50
    • (2003) Dev. Cell , vol.5 , pp. 441-450
    • Agaisse, H.1    Petersen, U.M.2    Boutros, M.3    Mathey-Prevot, B.4    Perrimon, N.5
  • 93
    • 33645135075 scopus 로고    scopus 로고
    • Brun S, Vidal S, Spellman P.TakahashiK, Tricoire H, Lemaitre B. 2006. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11:397-407
    • Brun S, Vidal S, Spellman P.TakahashiK, Tricoire H, Lemaitre B. 2006. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11:397-407
  • 94
    • 24944485547 scopus 로고    scopus 로고
    • The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila
    • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, et al. 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol. 6:946-53
    • (2005) Nat. Immunol , vol.6 , pp. 946-953
    • Dostert, C.1    Jouanguy, E.2    Irving, P.3    Troxler, L.4    Galiana-Arnoux, D.5
  • 95
    • 0036149337 scopus 로고    scopus 로고
    • JNK signaling pathway is required for efficient wound healing in Drosophila
    • Rämet M, Lanot R, Zachary D, Manfruelli P. 2001. JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol. 241:145-56
    • (2001) Dev. Biol , vol.241 , pp. 145-156
    • Rämet, M.1    Lanot, R.2    Zachary, D.3    Manfruelli, P.4
  • 96
    • 19344365657 scopus 로고    scopus 로고
    • Cellular and genetic analysis of wound healing in Drosophila larvae
    • Galko MJ, Krasnow MA. 2004. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2:e239
    • (2004) PLoS Biol , vol.2
    • Galko, M.J.1    Krasnow, M.A.2
  • 97
    • 12144288602 scopus 로고    scopus 로고
    • Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila
    • Park JM, Brady H, Ruocco MG, Sun H, Williams D, et al. 2004. Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18:584-94
    • (2004) Genes Dev , vol.18 , pp. 584-594
    • Park, J.M.1    Brady, H.2    Ruocco, M.G.3    Sun, H.4    Williams, D.5
  • 98
    • 13944272315 scopus 로고    scopus 로고
    • Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules
    • Kim T, Yoon J, Cho H, Lee WB, Kim J, et al. 2005. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nat. Immunol. 6:211-18
    • (2005) Nat. Immunol , vol.6 , pp. 211-218
    • Kim, T.1    Yoon, J.2    Cho, H.3    Lee, W.B.4    Kim, J.5
  • 99
    • 20444506693 scopus 로고    scopus 로고
    • Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells
    • Kallio J, Leinonen A, Ulvila J, Valanne S, Ezekowitz RA, Ramet M. 2005. Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells. Microbes Infect. 7:811-19
    • (2005) Microbes Infect , vol.7 , pp. 811-819
    • Kallio, J.1    Leinonen, A.2    Ulvila, J.3    Valanne, S.4    Ezekowitz, R.A.5    Ramet, M.6
  • 100
    • 33746319307 scopus 로고    scopus 로고
    • Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways
    • Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, Mlodzik M. 2006. Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO J. 25:3068-77
    • (2006) EMBO J , vol.25 , pp. 3068-3077
    • Delaney, J.R.1    Stoven, S.2    Uvell, H.3    Anderson, K.V.4    Engstrom, Y.5    Mlodzik, M.6
  • 101
    • 0037186599 scopus 로고    scopus 로고
    • MAP kinase signaling cascade in Arabidopsis innate immunity
    • Asai T, Tena G, Plotnikova J, Willmann M, Chiu W, et al. 2002. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977-83
    • (2002) Nature , vol.415 , pp. 977-983
    • Asai, T.1    Tena, G.2    Plotnikova, J.3    Willmann, M.4    Chiu, W.5
  • 102
    • 0037178731 scopus 로고    scopus 로고
    • A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity
    • Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, et al. 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:977-83
    • (2002) Science , vol.297 , pp. 977-983
    • Kim, D.H.1    Feinbaum, R.2    Alloing, G.3    Emerson, F.E.4    Garsin, D.A.5
  • 103
    • 10044243508 scopus 로고    scopus 로고
    • Craig CR, Fink JL, Yagi Y, Ip YT, Cagan RL. 2004. A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep. 5:1058-63
    • Craig CR, Fink JL, Yagi Y, Ip YT, Cagan RL. 2004. A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep. 5:1058-63
  • 104
    • 29144535648 scopus 로고    scopus 로고
    • Regulation of Drosophila p38 activation by specific MAP2 kinase and MAP3 kinase in response to different stimuli
    • Zhuang ZH, Zhou Y, Yu MC, Silverman N, Ge BX. 2005. Regulation of Drosophila p38 activation by specific MAP2 kinase and MAP3 kinase in response to different stimuli. Cell. Signal. 18:441-48
    • (2005) Cell. Signal , vol.18 , pp. 441-448
    • Zhuang, Z.H.1    Zhou, Y.2    Yu, M.C.3    Silverman, N.4    Ge, B.X.5
  • 105
    • 0037124314 scopus 로고    scopus 로고
    • Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway
    • Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, et al. 2002. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 21:3009-18
    • (2002) EMBO J , vol.21 , pp. 3009-3018
    • Igaki, T.1    Kanda, H.2    Yamamoto-Goto, Y.3    Kanuka, H.4    Kuranaga, E.5
  • 106
    • 0037162294 scopus 로고    scopus 로고
    • Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog ofthe TNF superfamily
    • Moreno E, Yan M, Basler K. 2002. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog ofthe TNF superfamily. Curr. Biol. 12:1263-68
    • (2002) Curr. Biol , vol.12 , pp. 1263-1268
    • Moreno, E.1    Yan, M.2    Basler, K.3
  • 107
    • 0029884417 scopus 로고    scopus 로고
    • Purification of a peptidoglycan recognition protein from hemolymph ofthe silkworm
    • Yoshida H, Kinoshita K, Ashida M. 1996. Purification of a peptidoglycan recognition protein from hemolymph ofthe silkworm, Bombyx mori. J. Biol. Chem. 271:13854-60
    • (1996) Bombyx mori. J. Biol. Chem , vol.271 , pp. 13854-13860
    • Yoshida, H.1    Kinoshita, K.2    Ashida, M.3
  • 109
    • 0032544089 scopus 로고    scopus 로고
    • A peptidoglycan recognition protein in innate immunity conserved from insects to humans
    • Kang D, Liu G, Lundstrom A, Gelius E, Steiner H. 1998. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. USA 95:10078-82
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 10078-10082
    • Kang, D.1    Liu, G.2    Lundstrom, A.3    Gelius, E.4    Steiner, H.5
  • 110
    • 19044388766 scopus 로고    scopus 로고
    • Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system
    • Mengin-Lecreulx D, Lemaitre B. 2005. Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J. Endotoxin Res. 11:105-11
    • (2005) J. Endotoxin Res , vol.11 , pp. 105-111
    • Mengin-Lecreulx, D.1    Lemaitre, B.2
  • 111
    • 0038664357 scopus 로고    scopus 로고
    • The Drosophila immune system detects bacteria through specific peptidoglycan recognition
    • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, et al. 2003. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4:478-84
    • (2003) Nat. Immunol , vol.4 , pp. 478-484
    • Leulier, F.1    Parquet, C.2    Pili-Floury, S.3    Ryu, J.H.4    Caroff, M.5
  • 112
    • 2442456719 scopus 로고    scopus 로고
    • Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway
    • Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, et al. 2004. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637-49
    • (2004) Immunity , vol.20 , pp. 637-649
    • Kaneko, T.1    Goldman, W.E.2    Mellroth, P.3    Steiner, H.4    Fukase, K.5
  • 113
    • 10344251507 scopus 로고    scopus 로고
    • Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway
    • Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, et al. 2004. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173:7339-48
    • (2004) J. Immunol , vol.173 , pp. 7339-7348
    • Stenbak, C.R.1    Ryu, J.H.2    Leulier, F.3    Pili-Floury, S.4    Parquet, C.5
  • 114
    • 17644405130 scopus 로고    scopus 로고
    • Filipe SR, Tomasz A, Ligoxygakis P. 2005. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6:327-33
    • Filipe SR, Tomasz A, Ligoxygakis P. 2005. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6:327-33
  • 116
    • 1642545509 scopus 로고    scopus 로고
    • Peptidoglycan recognition proteins: On and off switches for innate immunity
    • Steiner H. 2004. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198:83-96
    • (2004) Immunol. Rev , vol.198 , pp. 83-96
    • Steiner, H.1
  • 118
    • 0037470091 scopus 로고    scopus 로고
    • A scavenger function for a Drosophila peptidoglycan recognition protein
    • Mellroth P, Karlsson J, Steiner H. 2003. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278:7059-64
    • (2003) J. Biol. Chem , vol.278 , pp. 7059-7064
    • Mellroth, P.1    Karlsson, J.2    Steiner, H.3
  • 119
    • 33645994799 scopus 로고    scopus 로고
    • The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
    • Zaidman-Remy A, Herve M, Poidevin M, Pili-Floury S, Kim MS, et al. 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463-73
    • (2006) Immunity , vol.24 , pp. 463-473
    • Zaidman-Remy, A.1    Herve, M.2    Poidevin, M.3    Pili-Floury, S.4    Kim, M.S.5
  • 120
    • 33750091050 scopus 로고    scopus 로고
    • PGRP-SB1: An N-acetylmuramoyl L-alanine amidase with antibacterial activity
    • Mellroth P, Steiner H. 2006. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350:994-99
    • (2006) Biochem. Biophys. Res. Commun , vol.350 , pp. 994-999
    • Mellroth, P.1    Steiner, H.2
  • 121
    • 33645770760 scopus 로고    scopus 로고
    • Downregulation of the Drosophila immune response by peptidoglycan- recognition proteins SC1 and SC2
    • Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J. 2006. Downregulation of the Drosophila immune response by peptidoglycan- recognition proteins SC1 and SC2. PLoS Pathog. 2:e14
    • (2006) PLoS Pathog , vol.2
    • Bischoff, V.1    Vignal, C.2    Duvic, B.3    Boneca, I.G.4    Hoffmann, J.A.5    Royet, J.6
  • 122
    • 0042195829 scopus 로고    scopus 로고
    • Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster
    • Kim MS, Byun M, Oh BH. 2003. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat. Immunol. 4:787-93
    • (2003) Nat. Immunol , vol.4 , pp. 787-793
    • Kim, M.S.1    Byun, M.2    Oh, B.H.3
  • 123
    • 19344363377 scopus 로고    scopus 로고
    • A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity
    • Chang CI, Pili-Floury S, Herve M, Parquet C, Chelliah Y, et al. 2004. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity. PLoS Biol. 2:e277
    • (2004) PLoS Biol , vol.2
    • Chang, C.I.1    Pili-Floury, S.2    Herve, M.3    Parquet, C.4    Chelliah, Y.5
  • 124
    • 33646378677 scopus 로고    scopus 로고
    • Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins
    • Lim JH, Kim MS, Kim HE, Yano T, Oshima Y, et al. 2006. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281:8286-95
    • (2006) J. Biol. Chem , vol.281 , pp. 8286-8295
    • Lim, J.H.1    Kim, M.S.2    Kim, H.E.3    Yano, T.4    Oshima, Y.5
  • 125
    • 22544477068 scopus 로고    scopus 로고
    • Structure ofthe ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition
    • Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J. 2005. Structure ofthe ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl. Acad. Sci. USA 102:10279-84
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 10279-10284
    • Chang, C.I.1    Ihara, K.2    Chelliah, Y.3    Mengin-Lecreulx, D.4    Wakatsuki, S.5    Deisenhofer, J.6
  • 126
    • 33645236166 scopus 로고    scopus 로고
    • Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor
    • Chang CI, Chelliah Y, Borek D, Mengin-Lecreulx D, Deisenhofer J. 2006. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311:1761-64
    • (2006) Science , vol.311 , pp. 1761-1764
    • Chang, C.I.1    Chelliah, Y.2    Borek, D.3    Mengin-Lecreulx, D.4    Deisenhofer, J.5
  • 127
    • 3042613815 scopus 로고    scopus 로고
    • Crystal structure ofthe Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 Å resolution
    • Reiser JB, Teyton L, Wilson IA. 2004. Crystal structure ofthe Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 Å resolution. J. Mol. Biol. 340:909-17
    • (2004) J. Mol. Biol , vol.340 , pp. 909-917
    • Reiser, J.B.1    Teyton, L.2    Wilson, I.A.3
  • 129
    • 0037108754 scopus 로고    scopus 로고
    • Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae
    • Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, et al. 2002. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99:13705-10
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 13705-13710
    • Takehana, A.1    Katsuyama, T.2    Yano, T.3    Oshima, Y.4    Takada, H.5
  • 130
    • 10644267665 scopus 로고    scopus 로고
    • Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity
    • Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S. 2004. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23:4690-700
    • (2004) EMBO J , vol.23 , pp. 4690-4700
    • Takehana, A.1    Yano, T.2    Mita, S.3    Kotani, A.4    Oshima, Y.5    Kurata, S.6
  • 131
    • 33745225236 scopus 로고    scopus 로고
    • 2 006. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan
    • Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, et al. 2 006. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 7:715-23
    • Nat. Immunol , vol.7 , pp. 715-723
    • Kaneko, T.1    Yano, T.2    Aggarwal, K.3    Lim, J.H.4    Ueda, K.5
  • 132
    • 0035856990 scopus 로고    scopus 로고
    • Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein
    • Michel T, Reichhart JM, Hoffmann JA, Royet J. 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756-59
    • (2001) Nature , vol.414 , pp. 756-759
    • Michel, T.1    Reichhart, J.M.2    Hoffmann, J.A.3    Royet, J.4
  • 133
    • 0345731463 scopus 로고    scopus 로고
    • Dual activation ofthe Drosophila Toll pathway by two pattern recognition receptors
    • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, et al. 2003. Dual activation ofthe Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126-30
    • (2003) Science , vol.302 , pp. 2126-2130
    • Gobert, V.1    Gottar, M.2    Matskevich, A.A.3    Rutschmann, S.4    Royet, J.5
  • 134
    • 1842529395 scopus 로고    scopus 로고
    • In vivo RNAi analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults
    • Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, et al. 2004. In vivo RNAi analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J. Biol. Chem. 279:12848-53
    • (2004) J. Biol. Chem , vol.279 , pp. 12848-12853
    • Pili-Floury, S.1    Leulier, F.2    Takahashi, K.3    Saigo, K.4    Samain, E.5
  • 135
    • 33750218690 scopus 로고    scopus 로고
    • Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA
    • Wang L, Weber AN, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P. 2006. Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J 25:5005-14
    • (2006) EMBO J , vol.25 , pp. 5005-5014
    • Wang, L.1    Weber, A.N.2    Atilano, M.L.3    Filipe, S.R.4    Gay, N.J.5    Ligoxygakis, P.6
  • 136
    • 9244251126 scopus 로고    scopus 로고
    • Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria
    • Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J. 2004. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5:1175-80
    • (2004) Nat. Immunol , vol.5 , pp. 1175-1180
    • Bischoff, V.1    Vignal, C.2    Boneca, I.G.3    Michel, T.4    Hoffmann, J.A.5    Royet, J.6
  • 137
    • 0034693324 scopus 로고    scopus 로고
    • Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells
    • Kim YS, Ryu JH, Han SJ, Choi KH, Nam KB, et al. 2000. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275:32721-72
    • (2000) J. Biol. Chem , vol.275 , pp. 32721-32772
    • Kim, Y.S.1    Ryu, J.H.2    Han, S.J.3    Choi, K.H.4    Nam, K.B.5
  • 138
    • 0024297132 scopus 로고
    • Purification of a β-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm
    • Ochiai M, Ashida M. 1988. Purification of a β-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 263:12056-62
    • (1988) Bombyx mori. J. Biol. Chem , vol.263 , pp. 12056-12062
    • Ochiai, M.1    Ashida, M.2
  • 139
    • 33845666959 scopus 로고    scopus 로고
    • Dual detection of fungal infections in Drosophila by recognition of glucans and sensing of virulence factors
    • Gottar M, Gobert V, Matskevich A, Reichhart JM, Wang C, et al. 2006. Dual detection of fungal infections in Drosophila by recognition of glucans and sensing of virulence factors. Cell 127:1425-37
    • (2006) Cell , vol.127 , pp. 1425-1437
    • Gottar, M.1    Gobert, V.2    Matskevich, A.3    Reichhart, J.M.4    Wang, C.5
  • 140
    • 0036470428 scopus 로고    scopus 로고
    • Evolution of enzyme cascades from embryonic development to blood coagulation
    • Krem MM, Cera ED. 2002. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 27:67-74
    • (2002) Trends Biochem. Sci , vol.27 , pp. 67-74
    • Krem, M.M.1    Cera, E.D.2
  • 141
    • 28244470961 scopus 로고    scopus 로고
    • Tip of another iceberg: Drosophila serpins
    • Reichhart JM. 2005. Tip of another iceberg: Drosophila serpins. Trends Cell Biol. 15:659-65
    • (2005) Trends Cell Biol , vol.15 , pp. 659-665
    • Reichhart, J.M.1
  • 142
    • 0037472685 scopus 로고    scopus 로고
    • Serine proteases and their homologs in the Drosophila melanogaster genome: An initial analysis of sequence conservation and phylogenetic relationships
    • Ross J, Jiang H, Kanost MR, Wang Y. 2003. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304:117-31
    • (2003) Gene , vol.304 , pp. 117-131
    • Ross, J.1    Jiang, H.2    Kanost, M.R.3    Wang, Y.4
  • 144
    • 0037311545 scopus 로고    scopus 로고
    • Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm
    • Yu XQ, Jiang H, Wang Y, Kanost MR. 2003. Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect. Biochem. Mol. Biol. 33:197-208
    • (2003) Manduca sexta. Insect. Biochem. Mol. Biol , vol.33 , pp. 197-208
    • Yu, X.Q.1    Jiang, H.2    Wang, Y.3    Kanost, M.R.4
  • 145
    • 29244478349 scopus 로고    scopus 로고
    • Crystal structure of a clip-domain serine protease and functional roles of the clip domains
    • Piao S, Song YL, Kim JH, Park SY, Park JW, et al. 2005. Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J. 24:4404-14
    • (2005) EMBO J , vol.24 , pp. 4404-4414
    • Piao, S.1    Song, Y.L.2    Kim, J.H.3    Park, S.Y.4    Park, J.W.5
  • 146
    • 33646037067 scopus 로고    scopus 로고
    • Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation
    • Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, et al. 2006. Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16:808-13
    • (2006) Curr. Biol , vol.16 , pp. 808-813
    • Kambris, Z.1    Brun, S.2    Jang, I.H.3    Nam, H.J.4    Romeo, Y.5
  • 147
    • 29744438644 scopus 로고    scopus 로고
    • A Spätzle-processing enzyme required for Toll signaling activation in Drosophila innate immunity
    • Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, et al. 2006. A Spätzle-processing enzyme required for Toll signaling activation in Drosophila innate immunity. Dev. Cell 10:45-55
    • (2006) Dev. Cell , vol.10 , pp. 45-55
    • Jang, I.H.1    Chosa, N.2    Kim, S.H.3    Nam, H.J.4    Lemaitre, B.5
  • 148
    • 0037025213 scopus 로고    scopus 로고
    • Activation of Drosophila Toll during fungal infection by a blood serine protease
    • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM. 2002. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114-16
    • (2002) Science , vol.297 , pp. 114-116
    • Ligoxygakis, P.1    Pelte, N.2    Hoffmann, J.A.3    Reichhart, J.M.4
  • 149
    • 0033578917 scopus 로고    scopus 로고
    • Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila
    • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, et al. 1999. Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917-19
    • (1999) Science , vol.285 , pp. 1917-1919
    • Levashina, E.A.1    Langley, E.2    Green, C.3    Gubb, D.4    Ashburner, M.5
  • 150
    • 0028877993 scopus 로고
    • Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila
    • Lemaitre B, Meister M, Govind S, Georgel P, Steward R, et al. 1995. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 14:536-45
    • (1995) EMBO J , vol.14 , pp. 536-545
    • Lemaitre, B.1    Meister, M.2    Govind, S.3    Georgel, P.4    Steward, R.5
  • 151
    • 0037011189 scopus 로고    scopus 로고
    • A serpin mutant links Toll activation to melanization in the host defense of Drosophila
    • Ligoxygakis P, Pelte N, Ji C, Leclerc V, Duvic B, et al. 2002. A serpin mutant links Toll activation to melanization in the host defense of Drosophila. EMBO J. 21:6330-37
    • (2002) EMBO J , vol.21 , pp. 6330-6337
    • Ligoxygakis, P.1    Pelte, N.2    Ji, C.3    Leclerc, V.4    Duvic, B.5
  • 152
    • 33745973003 scopus 로고    scopus 로고
    • The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation
    • Scherfer C, Qazi MR, Takahashi K, Ueda R, Dushay MS, et al. 2006. The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Dev. Biol. 295:156-63
    • (2006) Dev. Biol , vol.295 , pp. 156-163
    • Scherfer, C.1    Qazi, M.R.2    Takahashi, K.3    Ueda, R.4    Dushay, M.S.5
  • 153
    • 0037108246 scopus 로고    scopus 로고
    • Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation
    • Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S. 2002. Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev. 16:2662-71
    • (2002) Genes Dev , vol.16 , pp. 2662-2671
    • Mukae, N.1    Yokoyama, H.2    Yokokura, T.3    Sakoyama, Y.4    Nagata, S.5
  • 154
    • 0028057562 scopus 로고
    • The lysozyme locus in Drosophila melanogaster: An expanded gene family adapted for expression in the digestive tract
    • Daffre S, Kylsten P, Samakovlis C, Hultmark D. 1994. The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol. Gen. Genet. 242:152-62
    • (1994) Mol. Gen. Genet , vol.242 , pp. 152-162
    • Daffre, S.1    Kylsten, P.2    Samakovlis, C.3    Hultmark, D.4
  • 155
    • 0029689192 scopus 로고    scopus 로고
    • Insect lysozymes
    • Hultmark D. 1996. Insect lysozymes. EXS 75:87-102
    • (1996) EXS , vol.75 , pp. 87-102
    • Hultmark, D.1
  • 156
    • 0027311062 scopus 로고
    • Role of the integument in insect immunity: Epicuticular abrasion and induction of cecropin synthesis in articular epithelial cells
    • Brey PT, Lee WJ, Yamakawa M, Koizumi Y, Perrot S, et al. 1993. Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in articular epithelial cells. Proc. Natl. Acad. Sci. USA 90:6275-79
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 6275-6279
    • Brey, P.T.1    Lee, W.J.2    Yamakawa, M.3    Koizumi, Y.4    Perrot, S.5
  • 157
    • 0032473360 scopus 로고    scopus 로고
    • A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway
    • Ferrandon D, Jung AC, Criqui M, Lemaitre B, Uttenweiler-Joseph S, et al. 1998. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17:1217-27
    • (1998) EMBO J , vol.17 , pp. 1217-1227
    • Ferrandon, D.1    Jung, A.C.2    Criqui, M.3    Lemaitre, B.4    Uttenweiler-Joseph, S.5
  • 158
    • 10744230355 scopus 로고    scopus 로고
    • The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia
    • Ryu JH, Nam KB, Oh CT, Nam HJ, Kim SH, et al. 2004. The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol. Cell. Biol. 24:172-85
    • (2004) Mol. Cell. Biol , vol.24 , pp. 172-185
    • Ryu, J.H.1    Nam, K.B.2    Oh, C.T.3    Nam, H.J.4    Kim, S.H.5
  • 159
    • 2942708039 scopus 로고    scopus 로고
    • The moleskin gene product is essential for Caudal-mediated constitutive antifungal Drosomycin gene expression in Drosophila epithelia
    • Han SH, Ryu JH, Oh CT, Nam KB, Nam HJ, et al. 2004. The moleskin gene product is essential for Caudal-mediated constitutive antifungal Drosomycin gene expression in Drosophila epithelia. Insect. Mol. Biol. 13:323-27
    • (2004) Insect. Mol. Biol , vol.13 , pp. 323-327
    • Han, S.H.1    Ryu, J.H.2    Oh, C.T.3    Nam, K.B.4    Nam, H.J.5
  • 160
    • 24944516187 scopus 로고    scopus 로고
    • Drosophila sex peptide stimulates female innate immune system after mating via the Toll and Imd pathways
    • Peng J, Zipperlen P, Kubli E. 2005. Drosophila sex peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr: Biol. 15:1690-94
    • (2005) Curr: Biol , vol.15 , pp. 1690-1694
    • Peng, J.1    Zipperlen, P.2    Kubli, E.3
  • 161
    • 0035065782 scopus 로고    scopus 로고
    • Önfelt Tingvall T, Roos E, Engstrom Y. 2001. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2:239-43
    • Önfelt Tingvall T, Roos E, Engstrom Y. 2001. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2:239-43
  • 162
    • 0034724440 scopus 로고    scopus 로고
    • The phytopathogenic bacteria, Erminia carotovora, infects Drosophila and activates an immune response
    • Basset A, Khush RS, Braun A, Gardan L, Boccard F, et al. 2000. The phytopathogenic bacteria, Erminia carotovora, infects Drosophila and activates an immune response. Proc. Natl. Acad. Sci. USA 97:3376-81
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 3376-3381
    • Basset, A.1    Khush, R.S.2    Braun, A.3    Gardan, L.4    Boccard, F.5
  • 163
    • 16244373376 scopus 로고    scopus 로고
    • The use of model systems to study biological functions of Nox/Duox enzymes
    • Ritsick DR, Edens WA, McCoy JW, Lambeth JD. 2004. The use of model systems to study biological functions of Nox/Duox enzymes. Biochem. Soc. Symp. 2004:85-96
    • (2004) Biochem. Soc. Symp , vol.2004 , pp. 85-96
    • Ritsick, D.R.1    Edens, W.A.2    McCoy, J.W.3    Lambeth, J.D.4
  • 164
    • 27644498442 scopus 로고    scopus 로고
    • A direct role for dual oxidase in Drosophila gut immunity
    • Ha EM, Oh CT, Bae YS, Lee WJ. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science 310:847-50
    • (2005) Science , vol.310 , pp. 847-850
    • Ha, E.M.1    Oh, C.T.2    Bae, Y.S.3    Lee, W.J.4
  • 165
    • 11244343895 scopus 로고    scopus 로고
    • An antioxidant system required for host protection against gut infection in Drosophila
    • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, et al. 2005. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8:125-32
    • (2005) Dev. Cell , vol.8 , pp. 125-132
    • Ha, E.M.1    Oh, C.T.2    Ryu, J.H.3    Bae, Y.S.4    Kang, S.W.5
  • 166
    • 33747586778 scopus 로고    scopus 로고
    • An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity
    • Ryu JH, Ha EM, Oh CT, Seol JH, Brey PT, et al. 2006. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25:3693-701
    • (2006) EMBO J , vol.25 , pp. 3693-3701
    • Ryu, J.H.1    Ha, E.M.2    Oh, C.T.3    Seol, J.H.4    Brey, P.T.5
  • 167
    • 0000826497 scopus 로고
    • The circulatory system and associated cells and tissues
    • ed. M Ashburner, TRF Wright, pp, New York: Academic
    • Rizki TM. 1978. The circulatory system and associated cells and tissues. In The Genetics and Biology of Drosophila, ed. M Ashburner, TRF Wright, pp. 397-452. New York: Academic
    • (1978) The Genetics and Biology of Drosophila , pp. 397-452
    • Rizki, T.M.1
  • 168
  • 169
    • 0018959836 scopus 로고
    • A mutant affecting the crystal cells in Drosophila melanogaster
    • Rizki T, Rizki R, Grell E. 1980. A mutant affecting the crystal cells in Drosophila melanogaster. Roux's Arch. Dev. Biol. 188:91-99
    • (1980) Roux's Arch. Dev. Biol , vol.188 , pp. 91-99
    • Rizki, T.1    Rizki, R.2    Grell, E.3
  • 170
    • 0028365963 scopus 로고
    • Embryonic origin of hemocytes and their relationship to cell death in Drosophila
    • Tepass U, Fessler LI, Aziz A, Hartenstein V. 1994. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829-37
    • (1994) Development , vol.120 , pp. 1829-1837
    • Tepass, U.1    Fessler, L.I.2    Aziz, A.3    Hartenstein, V.4
  • 172
    • 0242362740 scopus 로고    scopus 로고
    • Thicker than blood: Conserved mechanisms in Drosophila and vertebrate hematopoiesis
    • Evans CJ, Hartenstein V, Banerjee U. 2003. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5:673-90
    • (2003) Dev. Cell , vol.5 , pp. 673-690
    • Evans, C.J.1    Hartenstein, V.2    Banerjee, U.3
  • 173
    • 1042302152 scopus 로고    scopus 로고
    • Blood cells of Drosophila: Cell lineages and role in host defense
    • Meister M. 2004. Blood cells of Drosophila: cell lineages and role in host defense. Curr. Opin. Immunol. 16:10-15
    • (2004) Curr. Opin. Immunol , vol.16 , pp. 10-15
    • Meister, M.1
  • 174
    • 0011945884 scopus 로고
    • Ultrastructure and cytochemistry of the cell-types in the tumorous hematopoietic organs and the hemolymph of the mutant lethal (1) malign blood neoplasm (l(1)mbn) of Drosophila melanogaster
    • Shresta R, Gateff E. 1982. Ultrastructure and cytochemistry of the cell-types in the tumorous hematopoietic organs and the hemolymph of the mutant lethal (1) malign blood neoplasm (l(1)mbn) of Drosophila melanogaster. Dev. Growth Differ. 24:83-98
    • (1982) Dev. Growth Differ , vol.24 , pp. 83-98
    • Shresta, R.1    Gateff, E.2
  • 175
    • 0037316602 scopus 로고    scopus 로고
    • A Serrate-expressing signaling center controls Drosophila hematopoiesis
    • Lebestky T, Jung SH, Banerjee U. 2003. A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17:348-53
    • (2003) Genes Dev , vol.17 , pp. 348-353
    • Lebestky, T.1    Jung, S.H.2    Banerjee, U.3
  • 176
    • 21244501788 scopus 로고    scopus 로고
    • The Drosophila lymph gland as a developmental model of hematopoiesis
    • Jung SH, Evans CJ, Uemura C, Banerjee U. 2005. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132:2521-33
    • (2005) Development , vol.132 , pp. 2521-2533
    • Jung, S.H.1    Evans, C.J.2    Uemura, C.3    Banerjee, U.4
  • 177
    • 0035690765 scopus 로고    scopus 로고
    • Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria
    • Ramet M, Pearson A, Manfruelli P, Li X, Koziel H, et al. 2001. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15:1027-38
    • (2001) Immunity , vol.15 , pp. 1027-1038
    • Ramet, M.1    Pearson, A.2    Manfruelli, P.3    Li, X.4    Koziel, H.5
  • 178
    • 0029038694 scopus 로고
    • Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster
    • Pearson A, Lux A, Krieger M. 1995. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92:4056-60
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 4056-4060
    • Pearson, A.1    Lux, A.2    Krieger, M.3
  • 179
    • 26844466658 scopus 로고    scopus 로고
    • Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila
    • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, et al. 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335-46
    • (2005) Cell , vol.123 , pp. 335-346
    • Kocks, C.1    Cho, J.H.2    Nehme, N.3    Ulvila, J.4    Pearson, A.M.5
  • 180
    • 24944454976 scopus 로고    scopus 로고
    • Extensive diversity of Ig-superfamily proteins in the immune system of insects
    • Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, et al. 2005. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874-78
    • (2005) Science , vol.309 , pp. 1874-1878
    • Watson, F.L.1    Puttmann-Holgado, R.2    Thomas, F.3    Lamar, D.L.4    Hughes, M.5
  • 181
    • 0030152160 scopus 로고    scopus 로고
    • Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells
    • Franc N, Dimarcq J, Lagueux M, Hoffmann J, Ezekowitz R. 1996. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431-43
    • (1996) Immunity , vol.4 , pp. 431-443
    • Franc, N.1    Dimarcq, J.2    Lagueux, M.3    Hoffmann, J.4    Ezekowitz, R.5
  • 182
    • 31444440362 scopus 로고    scopus 로고
    • The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila
    • Garver LS, Wu J, Wu LP. 2006. The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. USA 103:660-65
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 660-665
    • Garver, L.S.1    Wu, J.2    Wu, L.P.3
  • 183
    • 33746190785 scopus 로고    scopus 로고
    • A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide
    • Ju JS, Cho MH, Brade L, Kim JH, Park JW, et al. 2006. A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide. J. Immunol. 177:1838-45
    • (2006) J. Immunol , vol.177 , pp. 1838-1845
    • Ju, J.S.1    Cho, M.H.2    Brade, L.3    Kim, J.H.4    Park, J.W.5
  • 184
    • 23844531867 scopus 로고    scopus 로고
    • Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection
    • Philips JA, Rubin EJ, Perrimon N. 2005. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251-53
    • (2005) Science , vol.309 , pp. 1251-1253
    • Philips, J.A.1    Rubin, E.J.2    Perrimon, N.3
  • 185
    • 23844442475 scopus 로고    scopus 로고
    • Genomewide RNAi screen for host factors required for intracellular bacterial infection
    • Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE. 2005. Genomewide RNAi screen for host factors required for intracellular bacterial infection. Science 309:1248-51
    • (2005) Science , vol.309 , pp. 1248-1251
    • Agaisse, H.1    Burrack, L.S.2    Philips, J.A.3    Rubin, E.J.4    Perrimon, N.5    Higgins, D.E.6
  • 186
    • 31144437860 scopus 로고    scopus 로고
    • Identification of Drosophila gene products required for phagocytosis of Candida albicans
    • Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD. 2006. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4:e4
    • (2006) PLoS Biol , vol.4
    • Stroschein-Stevenson, S.L.1    Foley, E.2    O'Farrell, P.H.3    Johnson, A.D.4
  • 188
    • 0042564535 scopus 로고    scopus 로고
    • Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila
    • Pearson AM, Baksa K, Ramet M, Protas M, McKee M, et al. 2003. Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect. 5:815-24
    • (2003) Microbes Infect , vol.5 , pp. 815-824
    • Pearson, A.M.1    Baksa, K.2    Ramet, M.3    Protas, M.4    McKee, M.5
  • 189
    • 33747827303 scopus 로고    scopus 로고
    • DNase II deficiency impairs innate immune function in Drosophila
    • Seong CS, Varela-Ramirez A, Aguilera RJ. 2006. DNase II deficiency impairs innate immune function in Drosophila. Cell. Immunol. 240:5-13
    • (2006) Cell. Immunol , vol.240 , pp. 5-13
    • Seong, C.S.1    Varela-Ramirez, A.2    Aguilera, R.J.3
  • 190
    • 1542328964 scopus 로고    scopus 로고
    • Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae
    • Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, et al. 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661-70
    • (2004) Cell , vol.116 , pp. 661-670
    • Blandin, S.1    Shiao, S.H.2    Moita, L.F.3    Janse, C.J.4    Waters, A.P.5
  • 191
    • 33746269395 scopus 로고    scopus 로고
    • The fly Drosophila subobscura: A natural case of innate immunity deficiency
    • Eslin P, Doury G. 2006. The fly Drosophila subobscura: a natural case of innate immunity deficiency. Dev. Comp. Immunol. 30:977-83
    • (2006) Dev. Comp. Immunol , vol.30 , pp. 977-983
    • Eslin, P.1    Doury, G.2
  • 192
    • 0030057057 scopus 로고    scopus 로고
    • Insect immunity: Early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila
    • Russo J, Dupas S, Frey F, Carton Y, Brehelin M. 1996. Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112:135-42
    • (1996) Parasitology , vol.112 , pp. 135-142
    • Russo, J.1    Dupas, S.2    Frey, F.3    Carton, Y.4    Brehelin, M.5
  • 193
    • 0029582852 scopus 로고
    • Superoxide anion generation in Drosophila during melanotic encapsulation of parasites
    • Nappi AJ, Vass E, Frey F, Carton Y. 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol. 68:450-56
    • (1995) Eur. J. Cell Biol , vol.68 , pp. 450-456
    • Nappi, A.J.1    Vass, E.2    Frey, F.3    Carton, Y.4
  • 194
    • 14044272776 scopus 로고    scopus 로고
    • New insights into Drosophila larval haemocyte functions through genome-wide analysis
    • Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, et al. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7:335-50
    • (2005) Cell. Microbiol , vol.7 , pp. 335-350
    • Irving, P.1    Ubeda, J.M.2    Doucet, D.3    Troxler, L.4    Lagueux, M.5
  • 195
    • 0141651715 scopus 로고    scopus 로고
    • Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits
    • Lavine MD, Strand MR. 2003. Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits. Insect. Mol. Biol. 12:441-52
    • (2003) Insect. Mol. Biol , vol.12 , pp. 441-452
    • Lavine, M.D.1    Strand, M.R.2
  • 196
    • 23844435317 scopus 로고    scopus 로고
    • Drosophila melanogaster Rac2 is necessary for a proper cellular immune response
    • Williams MJ, Ando I, Hultmark D. 2005. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes Cells 10:813-23
    • (2005) Genes Cells , vol.10 , pp. 813-823
    • Williams, M.J.1    Ando, I.2    Hultmark, D.3
  • 197
    • 33745205862 scopus 로고    scopus 로고
    • Rac1 signaling in the Drosophila larval cellular immune response
    • Williams MJ, Wiklund ML, Wikman S, Hultmark D. 2006. Rac1 signaling in the Drosophila larval cellular immune response. J. Cell Sci. 119:2015-24
    • (2006) J. Cell Sci , vol.119 , pp. 2015-2024
    • Williams, M.J.1    Wiklund, M.L.2    Wikman, S.3    Hultmark, D.4
  • 198
    • 0345269793 scopus 로고    scopus 로고
    • Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila
    • Kurucz E, Zettervall C, Sinka R, Vilmos P, Pivarcsi A, et al. 2003. Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc. Natl. Acad. Sci. USA 100:2622-27
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 2622-2627
    • Kurucz, E.1    Zettervall, C.2    Sinka, R.3    Vilmos, P.4    Pivarcsi, A.5
  • 200
    • 0001788246 scopus 로고
    • Hemocyte responses to implanted tissues in Drosophila melanogaster larvae
    • Rizki RM, Rizki TM. 1980. Hemocyte responses to implanted tissues in Drosophila melanogaster larvae. Roux Arch. Dev. Biol. 189:207-13
    • (1980) Roux Arch. Dev. Biol , vol.189 , pp. 207-213
    • Rizki, R.M.1    Rizki, T.M.2
  • 201
    • 19344375661 scopus 로고    scopus 로고
    • Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier
    • Crozatier M, Ubeda JM, Vincent A, Meister M. 2004. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2:e196
    • (2004) PLoS Biol , vol.2
    • Crozatier, M.1    Ubeda, J.M.2    Vincent, A.3    Meister, M.4
  • 202
    • 0001482335 scopus 로고
    • Melanotic tumours
    • ed. M Ashburner, TRF Wright, London: Academic
    • Sparrow JC. 1978. Melanotic "tumours." In The Genetics and Biology of Drosophila, ed. M Ashburner, TRF Wright, 2B:277-313. London: Academic
    • (1978) The Genetics and Biology of Drosophila , vol.2 B , pp. 277-313
    • Sparrow, J.C.1
  • 203
    • 33748912954 scopus 로고    scopus 로고
    • Melanotic mutants in Drosophila: Pathways and phenotypes
    • Minakhina S, Steward R. 2006. Melanotic mutants in Drosophila: pathways and phenotypes. Genetics 174:253-63
    • (2006) Genetics , vol.174 , pp. 253-263
    • Minakhina, S.1    Steward, R.2
  • 204
    • 0026350755 scopus 로고
    • Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster
    • Watson KL, Johnson TK, Denell RE. 1991. Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev. Genet. 12:173-87
    • (1991) Dev. Genet , vol.12 , pp. 173-187
    • Watson, K.L.1    Johnson, T.K.2    Denell, R.E.3
  • 205
    • 0027253701 scopus 로고
    • The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus
    • Hanratty WP, Dearolf CR. 1993. The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol. Gen. Genet. 238:33-37
    • (1993) Mol. Gen. Genet , vol.238 , pp. 33-37
    • Hanratty, W.P.1    Dearolf, C.R.2
  • 206
    • 0344925804 scopus 로고    scopus 로고
    • Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects
    • Goto A, Kadowaki T, Kitagawa Y. 2003. Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects. Dev. Biol. 264:582-91
    • (2003) Dev. Biol , vol.264 , pp. 582-591
    • Goto, A.1    Kadowaki, T.2    Kitagawa, Y.3
  • 208
    • 0026557911 scopus 로고
    • Insect immunity: Developmental and inducible activity of the Drosophila diptericin promoter
    • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, et al. 1992. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J. 11:1469-77
    • (1992) EMBO J , vol.11 , pp. 1469-1477
    • Reichhart, J.M.1    Meister, M.2    Dimarcq, J.L.3    Zachary, D.4    Hoffmann, D.5
  • 210
    • 0029928757 scopus 로고    scopus 로고
    • The role of hemolymph coagulation in innate immunity
    • Muta T, Iwanaga S. 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8:41-47
    • (1996) Curr. Opin. Immunol , vol.8 , pp. 41-47
    • Muta, T.1    Iwanaga, S.2
  • 211
    • 0002749939 scopus 로고    scopus 로고
    • The prophenoloxidase activating system in invertebrates
    • ed. K Söderhäll, S Iwanaga, GR Vasta, pp, Fair Haven, NJ: SOS Publ
    • Söderhäll K, Cerenius L, Johansson MW. 1996. The prophenoloxidase activating system in invertebrates. In New Directions in Invertebrate Immunology, ed. K Söderhäll, S Iwanaga, GR Vasta, pp. 229-53. Fair Haven, NJ: SOS Publ.
    • (1996) New Directions in Invertebrate Immunology , pp. 229-253
    • Söderhäll, K.1    Cerenius, L.2    Johansson, M.W.3
  • 212
    • 1842665810 scopus 로고    scopus 로고
    • Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a pullout method
    • Scherfer C, Karlsson C, Loseva O, Bidla G, Goto A, et al. 2004. Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a pullout method. Curr. Biol. 14:625-29
    • (2004) Curr. Biol , vol.14 , pp. 625-629
    • Scherfer, C.1    Karlsson, C.2    Loseva, O.3    Bidla, G.4    Goto, A.5
  • 215
    • 0027620526 scopus 로고
    • Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions
    • Nappi AJ, Vass E. 1993. Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res. 6:117-26
    • (1993) Pigment Cell Res , vol.6 , pp. 117-126
    • Nappi, A.J.1    Vass, E.2
  • 216
    • 0025652684 scopus 로고
    • The prophenoloxidase cascade in insect immunity
    • Ashida M. 1990. The prophenoloxidase cascade in insect immunity. Res. Immunol. 141:908-10
    • (1990) Res. Immunol , vol.141 , pp. 908-910
    • Ashida, M.1
  • 217
    • 0032005367 scopus 로고    scopus 로고
    • Role of prophenoloxidase- activating system in invertebrate immunity
    • Söderhäll K, Cerenius L. 1998. Role of prophenoloxidase- activating system in invertebrate immunity. Curr. Opin. Immunol. 10:23-28
    • (1998) Curr. Opin. Immunol , vol.10 , pp. 23-28
    • Söderhäll, K.1    Cerenius, L.2
  • 218
    • 0033597134 scopus 로고    scopus 로고
    • A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm
    • Ochiai M, Ashida M. 1999. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274:11854-58
    • (1999) Bombyx mori. J. Biol. Chem , vol.274 , pp. 11854-11858
    • Ochiai, M.1    Ashida, M.2
  • 219
    • 0034681346 scopus 로고    scopus 로고
    • A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm
    • Ochiai M, Ashida M. 2000. A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275:4995-5002
    • (2000) Bombyx mori. J. Biol. Chem , vol.275 , pp. 4995-5002
    • Ochiai, M.1    Ashida, M.2
  • 220
    • 0034677596 scopus 로고    scopus 로고
    • A β1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade
    • Ma C, Kanost MR. 2000. A β1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J. Biol. Chem. 275:7505-14
    • (2000) J. Biol. Chem , vol.275 , pp. 7505-7514
    • Ma, C.1    Kanost, M.R.2
  • 221
    • 0942265564 scopus 로고    scopus 로고
    • Peptidoglycan recognition proteins involved in 1,3-β-D-glucan-dependent prophenoloxidase activation system of insect
    • Lee MH, Osaki T, Lee JY, Baek MJ, Zhang R, et al. 2003. Peptidoglycan recognition proteins involved in 1,3-β-D-glucan-dependent prophenoloxidase activation system of insect. J. Biol. Chem. 279:3218-27
    • (2003) J. Biol. Chem , vol.279 , pp. 3218-3227
    • Lee, M.H.1    Osaki, T.2    Lee, J.Y.3    Baek, M.J.4    Zhang, R.5
  • 222
    • 0032564398 scopus 로고    scopus 로고
    • Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes
    • Braun A, Hoffmann JA, Meister M. 1998. Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc. Natl. Acad. Sci. USA 95:14337-42
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14337-14342
    • Braun, A.1    Hoffmann, J.A.2    Meister, M.3
  • 223
    • 18644376155 scopus 로고    scopus 로고
    • An immune-responsive Serpin regulates the melanization cascade in Drosophila
    • De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, et al. 2002. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3:581-92
    • (2002) Dev. Cell , vol.3 , pp. 581-592
    • De Gregorio, E.1    Han, S.J.2    Lee, W.J.3    Baek, M.J.4    Osaki, T.5
  • 224
    • 27744431570 scopus 로고    scopus 로고
    • The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila
    • Castillejo-Lopez C, Hacker U. 2005. The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila. Biochem. Biophys. Res. Commun. 338:1075-82
    • (2005) Biochem. Biophys. Res. Commun , vol.338 , pp. 1075-1082
    • Castillejo-Lopez, C.1    Hacker, U.2
  • 226
    • 33748795547 scopus 로고    scopus 로고
    • Two proteases defining a melanization cascade in the immune system of Drosophila
    • Tang H, Kambris Z, Lemaitre B, Hashimoto C. 2006. Two proteases defining a melanization cascade in the immune system of Drosophila. J. Biol. Chem. 281:28097-104
    • (2006) J. Biol. Chem , vol.281 , pp. 28097-28104
    • Tang, H.1    Kambris, Z.2    Lemaitre, B.3    Hashimoto, C.4
  • 227
    • 34247871654 scopus 로고    scopus 로고
    • Parasites, pests, and diseases
    • ed. M Ashburner, pp, New York: Cold Spring Harbor Lab. Press. 2nd ed
    • Ashburner M, Golic KG, Hawley RS. 2005. Parasites, pests, and diseases. In Drosophila, A Laboratory Handbook, ed. M Ashburner, pp. 1285-333. New York: Cold Spring Harbor Lab. Press. 2nd ed.
    • (2005) Drosophila, A Laboratory Handbook , pp. 1285-1333
    • Ashburner, M.1    Golic, K.G.2    Hawley, R.S.3
  • 228
    • 2042511045 scopus 로고    scopus 로고
    • Drosophila: A polyvalent model to decipher host-pathogen interactions
    • Vodovar N, Acosta C, Lemaitre B, Boccard F. 2004. Drosophila: a polyvalent model to decipher host-pathogen interactions. Trends Microbiol. 12:235-42
    • (2004) Trends Microbiol , vol.12 , pp. 235-242
    • Vodovar, N.1    Acosta, C.2    Lemaitre, B.3    Boccard, F.4
  • 229
    • 0034729655 scopus 로고    scopus 로고
    • Interactions between the cellular and humoral immune responses in Drosophila
    • Elrod-Erickson M, Mishra S, Schneider D. 2000. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10:781-84
    • (2000) Curr. Biol , vol.10 , pp. 781-784
    • Elrod-Erickson, M.1    Mishra, S.2    Schneider, D.3
  • 230
    • 0035140125 scopus 로고    scopus 로고
    • Drosophila as a model host for Pseudomonas aeruginosa infection
    • D'Argenio DA, Gallagher LA, Berg CA, Manoil C. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183:1466-71
    • (2001) J. Bacteriol , vol.183 , pp. 1466-1471
    • D'Argenio, D.A.1    Gallagher, L.A.2    Berg, C.A.3    Manoil, C.4
  • 231
    • 0019191699 scopus 로고
    • Insect pathogenic properties of Serratia marcescens: Phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila
    • Flyg C, Kenne K, Boman HG. 1980. Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. J. Gen. Microbiol. 120:173-81
    • (1980) J. Gen. Microbiol , vol.120 , pp. 173-181
    • Flyg, C.1    Kenne, K.2    Boman, H.G.3
  • 232
    • 0344091555 scopus 로고    scopus 로고
    • Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening
    • Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, et al. 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22:1451-60
    • (2003) EMBO J , vol.22 , pp. 1451-1460
    • Kurz, C.L.1    Chauvet, S.2    Andres, E.3    Aurouze, M.4    Vallet, I.5
  • 233
    • 0037972466 scopus 로고    scopus 로고
    • The Drosophila melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa
    • Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, et al. 2003. The Drosophila melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71:4059-66
    • (2003) Infect. Immun , vol.71 , pp. 4059-4066
    • Lau, G.W.1    Goumnerov, B.C.2    Walendziewicz, C.L.3    Hewitson, J.4    Xiao, W.5
  • 234
    • 14044277610 scopus 로고    scopus 로고
    • Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression
    • Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, et al. 2005. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl. Acad. Sci. USA 102:2573-78
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 2573-2578
    • Apidianakis, Y.1    Mindrinos, M.N.2    Xiao, W.3    Lau, G.W.4    Baldini, R.L.5
  • 236
    • 0036025005 scopus 로고    scopus 로고
    • Role and activation of type III secretion system genes in Pseudomonas aeruginosa - induced Drosophila killing
    • Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I. 2002. Role and activation of type III secretion system genes in Pseudomonas aeruginosa - induced Drosophila killing. Microb. Pathog. 32:287-95
    • (2002) Microb. Pathog , vol.32 , pp. 287-295
    • Fauvarque, M.O.1    Bergeret, E.2    Chabert, J.3    Dacheux, D.4    Satre, M.5    Attree, I.6
  • 237
    • 19644366731 scopus 로고    scopus 로고
    • Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa
    • Avet-Rochex A, Bergeret E, Attree I, Meister M, Fauvarque MO. 2005. Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa. Cell. Microbiol. 7:799-810
    • (2005) Cell. Microbiol , vol.7 , pp. 799-810
    • Avet-Rochex, A.1    Bergeret, E.2    Attree, I.3    Meister, M.4    Fauvarque, M.O.5
  • 238
    • 0038443820 scopus 로고    scopus 로고
    • Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum
    • Dionne MS, Ghori N, Schneider DS. 2003. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 71:3540-50
    • (2003) Infect. Immun , vol.71 , pp. 3540-3550
    • Dionne, M.S.1    Ghori, N.2    Schneider, D.S.3
  • 239
    • 33750023633 scopus 로고    scopus 로고
    • Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila
    • Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. 2006. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 16:1977-85
    • (2006) Curr. Biol , vol.16 , pp. 1977-1985
    • Dionne, M.S.1    Pham, L.N.2    Shirasu-Hiza, M.3    Schneider, D.S.4
  • 240
    • 14044261186 scopus 로고    scopus 로고
    • 2 004. Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly
    • Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ, Schneider DS. 2 004. Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol. 2:e418
    • PLoS Biol , vol.2
    • Brandt, S.M.1    Dionne, M.S.2    Khush, R.S.3    Pham, L.N.4    Vigdal, T.J.5    Schneider, D.S.6
  • 242
    • 0036185610 scopus 로고    scopus 로고
    • Tackling both sides ofthe host-pathogen equation with Caenorhabditis elegans
    • Ewbank JJ. 2002. Tackling both sides ofthe host-pathogen equation with Caenorhabditis elegans. Microbes Infect. 4:247-56
    • (2002) Microbes Infect , vol.4 , pp. 247-256
    • Ewbank, J.J.1
  • 243
    • 0345170718 scopus 로고    scopus 로고
    • Drosophila S2 cells: An alternative infection model for Listeria monocytogenes
    • Cheng LW, Portnoy DA. 2003. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell. Microbiol. 5:875-85
    • (2003) Cell. Microbiol , vol.5 , pp. 875-885
    • Cheng, L.W.1    Portnoy, D.A.2
  • 244
    • 17844409356 scopus 로고    scopus 로고
    • Drosophila melanogaster S2 cells: A model system to study Chlamydia interaction with host cells
    • Elwell C, Engel JN. 2005. Drosophila melanogaster S2 cells: a model system to study Chlamydia interaction with host cells. Cell. Microbiol. 7:725-39
    • (2005) Cell. Microbiol , vol.7 , pp. 725-739
    • Elwell, C.1    Engel, J.N.2
  • 245
    • 0037295801 scopus 로고    scopus 로고
    • A single gene that promotes interactions of a phytopathogenic bacterium with its insect vector
    • Basset A, Tzou P, Lemaitre B, Boccard F. 2003. A single gene that promotes interactions of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep. 4:205-9
    • (2003) Drosophila melanogaster. EMBO Rep , vol.4 , pp. 205-209
    • Basset, A.1    Tzou, P.2    Lemaitre, B.3    Boccard, F.4
  • 246
    • 33845496790 scopus 로고    scopus 로고
    • Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae
    • Muniz CA, Jaillard D, Lemaitre B, Boccard F. 2007. Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell. Microbiol. 9:106-19
    • (2007) Cell. Microbiol , vol.9 , pp. 106-119
    • Muniz, C.A.1    Jaillard, D.2    Lemaitre, B.3    Boccard, F.4
  • 247
    • 23844452699 scopus 로고    scopus 로고
    • Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species
    • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, et al. 2005. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. USA 102:11414-19
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 11414-11419
    • Vodovar, N.1    Vinals, M.2    Liehl, P.3    Basset, A.4    Degrouard, J.5
  • 248
    • 33745712561 scopus 로고    scopus 로고
    • Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model
    • Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. 2006. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2:e56
    • (2006) PLoS Pathog , vol.2
    • Liehl, P.1    Blight, M.2    Vodovar, N.3    Boccard, F.4    Lemaitre, B.5
  • 249
    • 33745087804 scopus 로고    scopus 로고
    • Complete genome sequence ofthe entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila
    • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, et al. 2006. Complete genome sequence ofthe entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 24:673-79
    • (2006) Nat. Biotechnol , vol.24 , pp. 673-679
    • Vodovar, N.1    Vallenet, D.2    Cruveiller, S.3    Rouy, Z.4    Barbe, V.5
  • 250
    • 0033838191 scopus 로고    scopus 로고
    • Nitric oxide involvement in Drosophila immunity
    • Nappi AJ, Vass E, Frey F, Carton Y. 2000. Nitric oxide involvement in Drosophila immunity. Nitric Oxide 4:423-30
    • (2000) Nitric Oxide , vol.4 , pp. 423-430
    • Nappi, A.J.1    Vass, E.2    Frey, F.3    Carton, Y.4
  • 251
    • 0037227097 scopus 로고    scopus 로고
    • Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila
    • Foley E, O'Farrell PH. 2003. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev. 17:115-25
    • (2003) Genes Dev , vol.17 , pp. 115-125
    • Foley, E.1    O'Farrell, P.H.2
  • 252
    • 0029906384 scopus 로고    scopus 로고
    • New insights into the mechanisms of fungal pathogenesis in insects
    • Clarkson JM, Charnley AK. 1996. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4:197-203
    • (1996) Trends Microbiol , vol.4 , pp. 197-203
    • Clarkson, J.M.1    Charnley, A.K.2
  • 253
    • 2142820096 scopus 로고    scopus 로고
    • Immune-deficient Drosophila melanogaster: A model for the innate immune response to human fungal pathogens
    • Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. 2004. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J. Immunol. 172:5622-28
    • (2004) J. Immunol , vol.172 , pp. 5622-5628
    • Alarco, A.M.1    Marcil, A.2    Chen, J.3    Suter, B.4    Thomas, D.5    Whiteway, M.6
  • 255
    • 33751420275 scopus 로고    scopus 로고
    • Mapping candidate genes for Drosophila melanogaster resistance to the parasitoid wasp Leptopilina boulardi
    • Hita M, Espagne E, Lemeunier F, Pascual L, Carton Y, et al. 2006. Mapping candidate genes for Drosophila melanogaster resistance to the parasitoid wasp Leptopilina boulardi. Genet. Res. 88:81-91
    • (2006) Genet. Res , vol.88 , pp. 81-91
    • Hita, M.1    Espagne, E.2    Lemeunier, F.3    Pascual, L.4    Carton, Y.5
  • 256
    • 33845785906 scopus 로고    scopus 로고
    • Genetic interactions between the parasitoid wasp Leptopilina boulardi and its Drosophila hosts
    • Dubuffet A, Dupas S, Frey F, Drezen JM, Poirie M, Carton Y. 2007. Genetic interactions between the parasitoid wasp Leptopilina boulardi and its Drosophila hosts. Heredity. 98:21-27
    • (2007) Heredity , vol.98 , pp. 21-27
    • Dubuffet, A.1    Dupas, S.2    Frey, F.3    Drezen, J.M.4    Poirie, M.5    Carton, Y.6
  • 257
    • 0028165757 scopus 로고
    • Geographical variation in resistance of the parasitoids Asobara tabida against encapsulation by Drosophila melanogaster larvae: The mechanisms explored
    • Kraaijeveld AR, van Alphen JJM. 1994. Geographical variation in resistance of the parasitoids Asobara tabida against encapsulation by Drosophila melanogaster larvae: the mechanisms explored. Physiol. Entomol. 19:9-14
    • (1994) Physiol. Entomol , vol.19 , pp. 9-14
    • Kraaijeveld, A.R.1    van Alphen, J.J.M.2
  • 258
    • 14644393082 scopus 로고    scopus 로고
    • Asobara, braconid parasitoids of Drosophila larvae: Unusual strategies to avoid encapsulation without VLPs
    • Prevost G, Eslin P, Doury G, Moreau SJ, Guillot S. 2005. Asobara, braconid parasitoids of Drosophila larvae: unusual strategies to avoid encapsulation without VLPs. J. Insect. Physiol. 51:171-79
    • (2005) J. Insect. Physiol , vol.51 , pp. 171-179
    • Prevost, G.1    Eslin, P.2    Doury, G.3    Moreau, S.J.4    Guillot, S.5
  • 259
    • 0343962177 scopus 로고    scopus 로고
    • Racing against host's immunity defenses: A likely strategy for passive evasion of encapsulation in Asobara tabida parasitoids
    • Eslin P, Prevost G. 2000. Racing against host's immunity defenses: a likely strategy for passive evasion of encapsulation in Asobara tabida parasitoids. J. Insect. Physiol. 46:1161-67
    • (2000) J. Insect. Physiol , vol.46 , pp. 1161-1167
    • Eslin, P.1    Prevost, G.2
  • 260
    • 0038948913 scopus 로고
    • Selective destruction of a host blood cell type by a parasitoid wasp
    • Rizki RM, Rizki TM. 1984. Selective destruction of a host blood cell type by a parasitoid wasp. Proc. Natl. Acad. Sci. USA 81:6154-58
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 6154-6158
    • Rizki, R.M.1    Rizki, T.M.2
  • 261
    • 0025000740 scopus 로고
    • Parasitoid virus-like particles destroy Drosophila cellular immunity
    • Rizki RM, Rizki TM. 1990. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc. Natl. Acad. Sci. USA 87:8388-92
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 8388-8392
    • Rizki, R.M.1    Rizki, T.M.2
  • 262
    • 0025299794 scopus 로고
    • Leptopilina heterotoma and L. boulardi: Strategies to avoid cellular defense responses of Drosophila melanogaster
    • Rizki TM, Rizki RM, Carton Y. 1990. Leptopilina heterotoma and L. boulardi: strategies to avoid cellular defense responses of Drosophila melanogaster. Exp. Parasitol. 70:466-75
    • (1990) Exp. Parasitol , vol.70 , pp. 466-475
    • Rizki, T.M.1    Rizki, R.M.2    Carton, Y.3
  • 263
    • 12544254678 scopus 로고    scopus 로고
    • Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: A Rho-GAP protein as an important factor
    • Labrosse C, Eslin P, Doury G, Drezen JM, Poirié M. 2005. Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor. J. Insect. Physiol. 51:161-70
    • (2005) J. Insect. Physiol , vol.51 , pp. 161-170
    • Labrosse, C.1    Eslin, P.2    Doury, G.3    Drezen, J.M.4    Poirié, M.5
  • 264
    • 12544257572 scopus 로고    scopus 로고
    • A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae) - Drosophila melanogaster interaction
    • Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, et al. 2005. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae) - Drosophila melanogaster interaction. Insect. Biochem. Mol. Biol. 35:93-103
    • (2005) Insect. Biochem. Mol. Biol , vol.35 , pp. 93-103
    • Labrosse, C.1    Stasiak, K.2    Lesobre, J.3    Grangeia, A.4    Huguet, E.5
  • 265
    • 31644450518 scopus 로고    scopus 로고
    • Identification and immuno-electron microscopy localization of p40, a protein component of immunosuppressive virus-like particles from Leptopilina heterotoma, a virulent parasitoid wasp of Drosophila
    • Chiu H, Morales J, Govind S. 2006. Identification and immuno-electron microscopy localization of p40, a protein component of immunosuppressive virus-like particles from Leptopilina heterotoma, a virulent parasitoid wasp of Drosophila. J. Gen. Virol. 87:461-70
    • (2006) J. Gen. Virol , vol.87 , pp. 461-470
    • Chiu, H.1    Morales, J.2    Govind, S.3
  • 267
    • 0037391647 scopus 로고    scopus 로고
    • Comparative study ofthe strategies evolved by two parasitoids of the genus Asobara to avoid the immune response of the host
    • Moreau SJ, Eslin P, Giordanengo P, Doury G. 2003. Comparative study ofthe strategies evolved by two parasitoids of the genus Asobara to avoid the immune response of the host, Drosophila melanogaster. Dev. Comp. Immunol. 27:273-82
    • (2003) Drosophila melanogaster. Dev. Comp. Immunol , vol.27 , pp. 273-282
    • Moreau, S.J.1    Eslin, P.2    Giordanengo, P.3    Doury, G.4
  • 268
    • 0010423933 scopus 로고
    • The viruses of Drosophila
    • ed. M Ashburner, TRF Wright, pp, New York: Academic
    • Brun G, Plus N. 1980. The viruses of Drosophila. In The Genetics and Biology of Drosophila, ed. M Ashburner, TRF Wright, pp. 625-702. New York: Academic
    • (1980) The Genetics and Biology of Drosophila , pp. 625-702
    • Brun, G.1    Plus, N.2
  • 269
    • 33749055940 scopus 로고    scopus 로고
    • Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family
    • Habayeb MS, Ekengren SK, Hultmark D. 2006. Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. J. Gen. Virol. 87:3045-51
    • (2006) J. Gen. Virol , vol.87 , pp. 3045-3051
    • Habayeb, M.S.1    Ekengren, S.K.2    Hultmark, D.3
  • 270
    • 0024367002 scopus 로고
    • Genetic resistance to viral infection: The molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma
    • Contamine D, Petitjean AM, Ashburner M. 1989. Genetic resistance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123:525-33
    • (1989) Genetics , vol.123 , pp. 525-533
    • Contamine, D.1    Petitjean, A.M.2    Ashburner, M.3
  • 271
    • 0030034586 scopus 로고    scopus 로고
    • Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila
    • Wayne ML, Contamine D, Kreitman M. 1996. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol. Biol. Evol. 13:191-99
    • (1996) Mol. Biol. Evol , vol.13 , pp. 191-199
    • Wayne, M.L.1    Contamine, D.2    Kreitman, M.3
  • 272
    • 0029014415 scopus 로고
    • Localization of domains within the Drosophila Ref(2)P protein involved in the intracellular control of sigma rhabdovirus multiplication
    • Wyers F, Petitjean AM, Dru P, Gay P, Contamine D. 1995. Localization of domains within the Drosophila Ref(2)P protein involved in the intracellular control of sigma rhabdovirus multiplication. J. Virol. 69:4463-70
    • (1995) J. Virol , vol.69 , pp. 4463-4470
    • Wyers, F.1    Petitjean, A.M.2    Dru, P.3    Gay, P.4    Contamine, D.5
  • 273
    • 0347756721 scopus 로고    scopus 로고
    • Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis
    • Cherry S, Perrimon N. 2004. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5:81-87
    • (2004) Nat. Immunol , vol.5 , pp. 81-87
    • Cherry, S.1    Perrimon, N.2
  • 274
    • 13844250535 scopus 로고    scopus 로고
    • Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition
    • Cherry S, Doukas T, Armknecht S, Whelan S, Wang H, et al. 2005. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19:445-52
    • (2005) Genes Dev , vol.19 , pp. 445-452
    • Cherry, S.1    Doukas, T.2    Armknecht, S.3    Whelan, S.4    Wang, H.5
  • 275
    • 33750459353 scopus 로고    scopus 로고
    • COPI activity coupled with fatty acid biosynthesis is required for viral replication
    • Cherry S, Kunte A, Wang H, Coyne C, Rawson RB, Perrimon N. 2006. COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog. 2:e102
    • (2006) PLoS Pathog , vol.2
    • Cherry, S.1    Kunte, A.2    Wang, H.3    Coyne, C.4    Rawson, R.B.5    Perrimon, N.6
  • 278
    • 33747595430 scopus 로고    scopus 로고
    • Host-pathogen interactions in Drosophila: New tricks from an old friend
    • Cherry S, Silverman N. 2006. Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat. Immunol. 7:911-17
    • (2006) Nat. Immunol , vol.7 , pp. 911-917
    • Cherry, S.1    Silverman, N.2
  • 279
    • 1642446004 scopus 로고    scopus 로고
    • Roxstrom-Lindquist K, Terenius O, Fave I. 2004. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 5:207-12
    • Roxstrom-Lindquist K, Terenius O, Fave I. 2004. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 5:207-12
  • 280
    • 33645979325 scopus 로고    scopus 로고
    • RNA interference directs innate immunity against viruses in adult Drosophila
    • Wang XH, Aliyari R, Li WX, Li HW, Kim K, et al. 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452-54
    • (2006) Science , vol.312 , pp. 452-454
    • Wang, X.H.1    Aliyari, R.2    Li, W.X.3    Li, H.W.4    Kim, K.5
  • 281
  • 282
    • 33645537549 scopus 로고    scopus 로고
    • RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster
    • Zambon RA, Vakharia VN, Wu LP. 2006. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell. Microbiol. 8:880-89
    • (2006) Cell. Microbiol , vol.8 , pp. 880-889
    • Zambon, R.A.1    Vakharia, V.N.2    Wu, L.P.3
  • 283
    • 33751120715 scopus 로고    scopus 로고
    • The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster
    • van Ri; RP, Saleh MC, Berry B, Foo C, Houk A, et al. 2006. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20:2985-95
    • (2006) Genes Dev , vol.20 , pp. 2985-2995
    • van Ri, R.P.1    Saleh, M.C.2    Berry, B.3    Foo, C.4    Houk, A.5
  • 284
    • 33644996948 scopus 로고    scopus 로고
    • Natural selection drives extremely rapid evolution in antiviral RNAi genes
    • Obbard DJ, Jiggins FM, Halligan DL, Little TJ. 2006. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16:580-85
    • (2006) Curr. Biol , vol.16 , pp. 580-585
    • Obbard, D.J.1    Jiggins, F.M.2    Halligan, D.L.3    Little, T.J.4
  • 285
    • 33645004318 scopus 로고    scopus 로고
    • The evolution of antifungal peptides in Drosophila
    • Jiggins FM, Kim KW. 2005. The evolution of antifungal peptides in Drosophila. Genetics 171:1847-59
    • (2005) Genetics , vol.171 , pp. 1847-1859
    • Jiggins, F.M.1    Kim, K.W.2
  • 286
    • 12844279852 scopus 로고    scopus 로고
    • Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor
    • Choe KM, Lee H, Anderson KV. 2005. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl. Acad. Sci. USA 102:1122-26
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 1122-1126
    • Choe, K.M.1    Lee, H.2    Anderson, K.V.3
  • 287
    • 0034613376 scopus 로고    scopus 로고
    • dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD
    • Hu S, Yang X. 2000. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275:30761-64
    • (2000) J. Biol. Chem , vol.275 , pp. 30761-30764
    • Hu, S.1    Yang, X.2
  • 288
    • 0034303480 scopus 로고    scopus 로고
    • Stoven S, Ando I, Kadalayil L, Engström Y, Hultmark D. 2000. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1:347-52
    • Stoven S, Ando I, Kadalayil L, Engström Y, Hultmark D. 2000. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1:347-52
  • 290
    • 1942485935 scopus 로고    scopus 로고
    • Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila
    • Sorrentino RP, MeIkJP, Govind S. 2004. Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila. Genetics 166:1343-56
    • (2004) Genetics , vol.166 , pp. 1343-1356
    • Sorrentino, R.P.1    MeIk, J.P.2    Govind, S.3
  • 291
    • 18844414816 scopus 로고    scopus 로고
    • The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster
    • Huang L, Ohsako S, Tanda S. 2005. The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev. Biol. 280:407-20
    • (2005) Dev. Biol , vol.280 , pp. 407-420
    • Huang, L.1    Ohsako, S.2    Tanda, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.