메뉴 건너뛰기




Volumn 3, Issue 11, 2005, Pages 870-881

The bacterial ribosome as a target for antibiotics

Author keywords

[No Author keywords available]

Indexed keywords

ANTIBIOTIC AGENT; ANTIBIOTIC G 418; ANTIINFECTIVE AGENT; APRAMYCIN; AVILAMYCIN; CAPREOMYCIN; CHLORAMPHENICOL; CLINDAMYCIN; DALFOPRISTIN; EDEINE; ERYTHROMYCIN; HYDROMYCIN B; LINCOMYCIN; LINCOSAMIDE; MACROLIDE; MESSENGER RNA; MIKAMYCIN B; PACTAMYCIN; PAROMOMYCIN; PUROMYCIN; QUINUPRISTIN; RIBOSOME PROTEIN; SPECTINOMYCIN; STREPTOMYCIN; TELITHROMYCIN; TETRACYCLINE; THIOSTREPTON; TOBRAMYCIN; UNCLASSIFIED DRUG; UNINDEXED DRUG; VIOMYCIN;

EID: 28144441826     PISSN: 17401526     EISSN: None     Source Type: Journal    
DOI: 10.1038/nrmicro1265     Document Type: Review
Times cited : (448)

References (123)
  • 3
    • 0029745623 scopus 로고    scopus 로고
    • Throwing a spanner in the works: Antibiotics and the translation apparatus
    • Spahn, C. M. & Prescott, C. D. Throwing a spanner in the works: antibiotics and the translation apparatus. J. Mol. Med. 74, 423-439 (1996).
    • (1996) J. Mol. Med. , vol.74 , pp. 423-439
    • Spahn, C.M.1    Prescott, C.D.2
  • 4
    • 0035385073 scopus 로고    scopus 로고
    • Ribosomal antibiotics
    • Mankin, A. S. Ribosomal antibiotics. Mol. Biol. 35, 509-520 (2001).
    • (2001) Mol. Biol. , vol.35 , pp. 509-520
    • Mankin, A.S.1
  • 5
    • 0017127543 scopus 로고
    • Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes
    • Lake, J. A. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105, 131-139 (1976).
    • (1976) J. Mol. Biol. , vol.105 , pp. 131-139
    • Lake, J.A.1
  • 6
    • 0016620165 scopus 로고
    • Architecture of the Escherichia coli ribosome as determined by immune electron microscopy
    • Tischendorf, G. W., Zeichhardt, H. & Stoffler, G. Architecture of the Escherichia coli ribosome as determined by immune electron microscopy. Proc. Natl Acad. Sci. USA 72, 4820-4824 (1975).
    • (1975) Proc. Natl. Acad. Sci. USA , vol.72 , pp. 4820-4824
    • Tischendorf, G.W.1    Zeichhardt, H.2    Stoffler, G.3
  • 7
    • 0017595211 scopus 로고
    • Size and structure of Escherichia coli ribosomes by electron microscopy
    • Boublik, M., Hellmann, W. & Kleinschmidt, A. K. Size and structure of Escherichia coli ribosomes by electron microscopy. Cytobiologie 14, 293-300 (1977).
    • (1977) Cytobiologie , vol.14 , pp. 293-300
    • Boublik, M.1    Hellmann, W.2    Kleinschmidt, A.K.3
  • 9
    • 0033117764 scopus 로고    scopus 로고
    • Structural studies of the translational apparatus
    • Agrawal, R. K. & Frank, J. Structural studies of the translational apparatus. Curr. Opin. Struct Biol. 9, 215-221 (1999).
    • (1999) Curr. Opin. Struct. Biol. , vol.9 , pp. 215-221
    • Agrawal, R.K.1    Frank, J.2
  • 10
    • 14544282086 scopus 로고    scopus 로고
    • The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer
    • Frank, J. et al. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEES Lett. 579, 959-962 (2005).
    • (2005) FEES Lett. , vol.579 , pp. 959-962
    • Frank, J.1
  • 11
    • 0242515749 scopus 로고    scopus 로고
    • Visualizing tmRNA entry into a stalled ribosome
    • Valle, M. et al. Visualizing tmRNA entry into a stalled ribosome. Science 300, 127-130 (2003).
    • (2003) Science , vol.300 , pp. 127-130
    • Valle, M.1
  • 12
    • 0242407184 scopus 로고    scopus 로고
    • Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy
    • Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol. 10, 899-906 (2003).
    • (2003) Nature Struct. Biol. , vol.10 , pp. 899-906
    • Valle, M.1
  • 13
    • 0026639881 scopus 로고
    • Unusual resistance of peptidyl transferase to protein extraction procedures
    • Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. 256, 1416-1419 (1992).
    • (1992) , vol.256 , pp. 1416-1419
    • Noller, H.F.1    Hoffarth, V.2    Zimniak, L.3
  • 14
    • 0032502997 scopus 로고    scopus 로고
    • Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA
    • Green, R., Switzer, C. & Noller, H. F. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science 280, 286-289 (1998).
    • (1998) Science , vol.280 , pp. 286-289
    • Green, R.1    Switzer, C.2    Noller, H.F.3
  • 15
    • 0030688863 scopus 로고    scopus 로고
    • Peptide bond formation by in vitro selected ribozymes
    • Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96-100 (1997).
    • (1997) Nature , vol.390 , pp. 96-100
    • Zhang, B.1    Cech, T.R.2
  • 16
    • 0034637161 scopus 로고    scopus 로고
    • The structural basis of ribosome activity in peptide bond synthesis
    • Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930 (2000).
    • (2000) Science , vol.289 , pp. 920-930
    • Nissen, P.1    Hansen, J.2    Ban, N.3    Moore, P.B.4    Steitz, T.A.5
  • 17
    • 0037249473 scopus 로고    scopus 로고
    • Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression
    • Bashan, A. et al. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol. Cell 11, 91-102 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 91-102
    • Bashan, A.1
  • 18
    • 0043268903 scopus 로고    scopus 로고
    • The structural basis of large ribosomal subunit function
    • Moore, P. B. & Steitz, T. A. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 72, 813-850 (2003).
    • (2003) Annu. Rev. Biochem. , vol.72 , pp. 813-850
    • Moore, P.B.1    Steitz, T.A.2
  • 20
    • 2542470615 scopus 로고    scopus 로고
    • The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release
    • Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589-599 (2004).
    • (2004) Cell , vol.117 , pp. 589-599
    • Youngman, E.M.1    Brunelle, J.L.2    Kochaniak, A.B.3    Green, R.4
  • 21
    • 15044352268 scopus 로고    scopus 로고
    • Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451
    • Erlacher, M. D. et al. Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res. 33, 1618-1627 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1618-1627
    • Erlacher, M.D.1
  • 22
    • 0020449148 scopus 로고
    • Parameters for crystal growth of ribosomal subunits
    • Yonath, A., Mussig, J. & Wittmann, H. G. Parameters for crystal growth of ribosomal subunits. J. Cell. Biochem. 19, 145-155 (1982).
    • (1982) J. Cell. Biochem. , vol.19 , pp. 145-155
    • Yonath, A.1    Mussig, J.2    Wittmann, H.G.3
  • 23
    • 0024975106 scopus 로고
    • Preliminary X-ray investigation of 70 S ribosome crystals from Thermus thermophilus
    • Trakhanov, S. et al. Preliminary X-ray investigation of 70 S ribosome crystals from Thermus thermophilus. J. Mol. Biol. 209, 327-328 (1989).
    • (1989) J. Mol. Biol. , vol.209 , pp. 327-328
    • Trakhanov, S.1
  • 24
    • 0026043697 scopus 로고
    • Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution
    • van Bohlen, K. et al. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222, 11-15 (1991).
    • (1991) J. Mol. Biol. , vol.222 , pp. 11-15
    • van Bohlen, K.1
  • 25
    • 0026045723 scopus 로고
    • Thermus thermophilus ribosomes for crystallographic studies
    • Yusupov, M. M., Garber, M. B., Vasiliev, V. D. & Spirin, A. S. Thermus thermophilus ribosomes for crystallographic studies. Biochimie 73, 887-897 (1991).
    • (1991) Biochimie , vol.73 , pp. 887-897
    • Yusupov, M.M.1    Garber, M.B.2    Vasiliev, V.D.3    Spirin, A.S.4
  • 27
    • 0034699518 scopus 로고    scopus 로고
    • Structure of the 30S ribosomal subunit
    • Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327-339 (2000).
    • (2000) Nature , vol.407 , pp. 327-339
    • Wimberly, B.T.1
  • 28
    • 0034268836 scopus 로고    scopus 로고
    • Structure of functionally activated small ribosomal subunit at 3.3 Å resolution
    • Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615-623 (2000).
    • (2000) Cell , vol.102 , pp. 615-623
    • Schluenzen, F.1
  • 29
    • 0035805213 scopus 로고    scopus 로고
    • Crystal structure of the ribosome at 5.5 Å resolution
    • Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883-896 (2001).
    • (2001) Science , vol.292 , pp. 883-896
    • Yusupov, M.M.1
  • 30
    • 0035958587 scopus 로고    scopus 로고
    • The path of messenger RNA through the ribosome
    • Yusupova, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. The path of messenger RNA through the ribosome. Cell 106, 233-241 (2001).
    • (2001) Cell , vol.106 , pp. 233-241
    • Yusupova, G.Z.1    Yusupov, M.M.2    Cate, J.H.3    Noller, H.F.4
  • 31
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905-920 (2000).
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3    Moore, P.B.4    Steitz, T.A.5
  • 32
    • 0035977093 scopus 로고    scopus 로고
    • High resolution structure of the large ribosomal subunit from a mesophilic eubacterium
    • Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679-688 (2001).
    • (2001) Cell , vol.107 , pp. 679-688
    • Harms, J.1
  • 33
    • 0042307441 scopus 로고    scopus 로고
    • X-ray crystal structures of the WT and a hyper accurate ribosome from Escherichia coli
    • Vila-Sanjurjo, A. et al. X-ray crystal structures of the WT and a hyper accurate ribosome from Escherichia coli. Proc. Natl Acad. Sci. USA 100, 8682-8687 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8682-8687
    • Vila-Sanjurjo, A.1
  • 34
    • 2942615089 scopus 로고    scopus 로고
    • The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit
    • Klein, D. J., Moore, P. B. & Steitz, T. A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141-177 (2004).
    • (2004) J. Mol. Biol. , vol.340 , pp. 141-177
    • Klein, D.J.1    Moore, P.B.2    Steitz, T.A.3
  • 35
    • 9344260242 scopus 로고    scopus 로고
    • RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli
    • Semrad, K., Green, R. & Schroeder, R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA 10, 1855-1860 (2004).
    • (2004) RNA , vol.10 , pp. 1855-1860
    • Semrad, K.1    Green, R.2    Schroeder, R.3
  • 36
    • 9344271130 scopus 로고    scopus 로고
    • The driving force for molecular evolution of translation
    • Noller, H. F. The driving force for molecular evolution of translation. RNA 10, 1833-1837 (2004).
    • (2004) RNA , vol.10 , pp. 1833-1837
    • Noller, H.F.1
  • 37
    • 11844292767 scopus 로고    scopus 로고
    • mRNA helicase activity of the ribosome
    • Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49-58 (2005).
    • (2005) Cell , vol.120 , pp. 49-58
    • Takyar, S.1    Hickerson, R.P.2    Noller, H.F.3
  • 38
    • 0034885664 scopus 로고    scopus 로고
    • The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22
    • Gabashvili, I. S. et al. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol. Cell 8, 181-188 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 181-188
    • Gabashvili, I.S.1
  • 39
    • 0037040406 scopus 로고    scopus 로고
    • Regulatory nascent peptides in the ribosomal tunnel
    • Tenson, T. & Ehrenberg, M. Regulatory nascent peptides in the ribosomal tunnel. Cell 108, 591-594 (2002).
    • (2002) Cell , vol.108 , pp. 591-594
    • Tenson, T.1    Ehrenberg, M.2
  • 40
    • 0037407668 scopus 로고    scopus 로고
    • Structural insight into the role of the ribosomal tunnel in cellular regulation
    • Berisio, R. et al. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nature Struct. Biol. 10, 366-370 (2003).
    • (2003) Nature Struct. Biol. , vol.10 , pp. 366-370
    • Berisio, R.1
  • 41
    • 1842506046 scopus 로고    scopus 로고
    • Control of SecA and SecM translation by protein secretion
    • Nakatogawa, H., Murakami, A. & Ito, K. Control of SecA and SecM translation by protein secretion. Curr. Opin. Microbiol. 7, 145-150 (2004).
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 145-150
    • Nakatogawa, H.1    Murakami, A.2    Ito, K.3
  • 42
    • 17444421169 scopus 로고    scopus 로고
    • B K antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance
    • B K antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257-270 (2005).
    • (2005) Cell , vol.121 , pp. 257-270
    • Tu, D.1    Blaha, G.2    Moore, P.B.3    Steitz, T.A.4
  • 43
    • 4944246094 scopus 로고    scopus 로고
    • Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins
    • Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590-596 (2004).
    • (2004) Nature , vol.431 , pp. 590-596
    • Ferbitz, L.1
  • 44
    • 0029825658 scopus 로고    scopus 로고
    • Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic
    • Fourmy, D., Recht, M. I., Blanchard, S. C. & Puglisi, J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367-1371 (1996).
    • (1996) Science , vol.274 , pp. 1367-1371
    • Fourmy, D.1    Recht, M.I.2    Blanchard, S.C.3    Puglisi, J.D.4
  • 45
    • 0032538956 scopus 로고    scopus 로고
    • Structural origins of gentamicin antibiotic action
    • Yoshizawa, S., Fourmy, D. & Puglisi, J. D. Structural origins of gentamicin antibiotic action. EMBO J. 17, 6437-6448 (1998).
    • (1998) EMBO J. , vol.17 , pp. 6437-6448
    • Yoshizawa, S.1    Fourmy, D.2    Puglisi, J.D.3
  • 46
    • 0034699519 scopus 로고    scopus 로고
    • Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics
    • Carter, A. P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348 (2000).
    • (2000) Nature , vol.407 , pp. 340-348
    • Carter, A.P.1
  • 47
    • 0034886697 scopus 로고    scopus 로고
    • Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site
    • Vicens, Q. & Westhof, E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure (Camb.) 9, 647-658 (2001).
    • (2001) Structure (Camb.) , vol.9 , pp. 647-658
    • Vicens, Q.1    Westhof, E.2
  • 48
    • 0037470560 scopus 로고    scopus 로고
    • Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide
    • Vicens, Q. & Westhof, E. Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J. Mol. Biol. 326, 1175-1188 (2003).
    • (2003) J. Mol. Biol. , vol.326 , pp. 1175-1188
    • Vicens, Q.1    Westhof, E.2
  • 49
    • 20444495201 scopus 로고    scopus 로고
    • Drugs targeting the ribosome
    • Hermann, T. Drugs targeting the ribosome. Curr. Opin. Struct. Biol. 15, 355-366 (2005).
    • (2005) Curr. Opin. Struct. Biol. , vol.15 , pp. 355-366
    • Hermann, T.1
  • 50
    • 0033578321 scopus 로고    scopus 로고
    • Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome
    • Rodnina, M. V. et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl Acad. Sci. USA 96, 9586-9590 (1999).
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 9586-9590
    • Rodnina, M.V.1
  • 51
    • 0346493093 scopus 로고    scopus 로고
    • The translation initiation functions of IF2: Targets for thiostrepton inhibition
    • Brandi, L. et al. The translation initiation functions of IF2: Targets for thiostrepton inhibition. J. Mol. Biol. 335, 881-894 (2004).
    • (2004) J. Mol. Biol. , vol.335 , pp. 881-894
    • Brandi, L.1
  • 52
    • 13244251235 scopus 로고    scopus 로고
    • Interaction of thiostrepton and elongation factor-G with the ribosomal protein L11-binding domain
    • Bowen, W. S., Van Dyke, N., Murgola, E. J., Lodmell, J. S. & Hill, W. E. Interaction of thiostrepton and elongation factor-G with the ribosomal protein L11-binding domain. J. Biol. Chem. 280, 2934-2943 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 2934-2943
    • Bowen, W.S.1    Van Dyke, N.2    Murgola, E.J.3    Lodmell, J.S.4    Hill, W.E.5
  • 53
    • 0034052755 scopus 로고    scopus 로고
    • Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram-positive and Gram-negative bacteria Antimicrob
    • McNicholas, P. M. et al. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 44, 1121-1126 (2000).
    • (2000) Agents Chemother. , vol.44 , pp. 1121-1126
    • McNicholas, P.M.1
  • 54
    • 0035957387 scopus 로고    scopus 로고
    • A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit
    • Belova, L., Tenson, T., Xiong, L., McNicholas, P. M. & Mankin, A. S. A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit. Proc. Natl Acad. Sci. USA 98, 3726-3731 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 3726-3731
    • Belova, L.1    Tenson, T.2    Xiong, L.3    McNicholas, P.M.4    Mankin, A.S.5
  • 55
    • 0036839695 scopus 로고    scopus 로고
    • Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA
    • Kofoed, C. B. & Vester, B. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob. Agents Chemother. 46, 3339-3342 (2002).
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 3339-3342
    • Kofoed, C.B.1    Vester, B.2
  • 56
    • 0038045324 scopus 로고    scopus 로고
    • The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose
    • Treede, I. et al. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol. Microbiol. 49, 309-318 (2003).
    • (2003) Mol. Microbiol. , vol.49 , pp. 309-318
    • Treede, I.1
  • 57
    • 0035950132 scopus 로고    scopus 로고
    • Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria
    • Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814-821 (2001).
    • (2001) Nature , vol.413 , pp. 814-821
    • Schlunzen, F.1
  • 58
    • 0036342198 scopus 로고    scopus 로고
    • The structures of four macrolide antibiotics bound to the large ribosomal subunit
    • Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117-128 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 117-128
    • Hansen, J.L.1
  • 59
    • 0038013670 scopus 로고    scopus 로고
    • Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit
    • Hansen, J. L., Moore, P. B. & Steitz, T. A. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330, 1061-1075 (2003).
    • (2003) J. Mol. Biol. , vol.330 , pp. 1061-1075
    • Hansen, J.L.1    Moore, P.B.2    Steitz, T.A.3
  • 60
    • 3242712966 scopus 로고    scopus 로고
    • Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin
    • Harms, J. M., Schlunzen, F., Fucini, P., Bartels, H. & Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2, 4 (2004).
    • (2004) BMC Biol. , vol.2 , pp. 4
    • Harms, J.M.1    Schlunzen, F.2    Fucini, P.3    Bartels, H.4    Yonath, A.5
  • 61
    • 9644301282 scopus 로고    scopus 로고
    • Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates
    • Pringle, M., Poehlsgaard, J., Vester, B. & Long, K. S. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol. Microbiol. 54, 1295-1306 (2004).
    • (2004) Mol. Microbiol. , vol.54 , pp. 1295-1306
    • Pringle, M.1    Poehlsgaard, J.2    Vester, B.3    Long, K.S.4
  • 62
    • 9644281855 scopus 로고    scopus 로고
    • Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin
    • Schlunzen, F., Pyetan, E., Fucini, P., Yonath, A. & Harms, J. M. Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54, 1287-1294 (2004).
    • (2004) Mol. Microbiol. , vol.54 , pp. 1287-1294
    • Schlunzen, F.1    Pyetan, E.2    Fucini, P.3    Yonath, A.4    Harms, J.M.5
  • 63
    • 0033584879 scopus 로고    scopus 로고
    • Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center
    • Kloss, P., Xiong, L., Shinabarger, D. L. & Mankin, A. S. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J. Mol. Biol. 294, 93-101 (1999).
    • (1999) J. Mol. Biol. , vol.294 , pp. 93-101
    • Kloss, P.1    Xiong, L.2    Shinabarger, D.L.3    Mankin, A.S.4
  • 64
    • 0036384314 scopus 로고    scopus 로고
    • The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo
    • Thompson, J., O'Connor, M., Mills, J. A. & Dahlberg, A. E. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J. Mol. Biol. 322, 273-279 (2002).
    • (2002) J. Mol. Biol. , vol.322 , pp. 273-279
    • Thompson, J.1    O'Connor, M.2    Mills, J.A.3    Dahlberg, A.E.4
  • 65
    • 0033543589 scopus 로고    scopus 로고
    • Recognition of the codon-anticodon helix by ribosomal RNA
    • Yoshizawa, S., Fourmy, D. & Puglisi, J. D. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 1722-1725 (1999).
    • (1999) Science , vol.285 , pp. 1722-1725
    • Yoshizawa, S.1    Fourmy, D.2    Puglisi, J.D.3
  • 66
    • 0035805229 scopus 로고    scopus 로고
    • Recognition of cognate transfer RNA by the 30S ribosomal subunit
    • Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897-902 (2001).
    • (2001) Science , vol.292 , pp. 897-902
    • Ogle, J.M.1
  • 67
    • 0038403669 scopus 로고    scopus 로고
    • Insights into the decoding mechanism from recent ribosome structures
    • Ogle, J. M., Carter, A. P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259-266 (2003).
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 259-266
    • Ogle, J.M.1    Carter, A.P.2    Ramakrishnan, V.3
  • 68
    • 0034700993 scopus 로고    scopus 로고
    • Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome
    • Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734-1738 (2000).
    • (2000) Biochemistry , vol.39 , pp. 1734-1738
    • Piepenburg, O.1
  • 69
    • 18844408328 scopus 로고    scopus 로고
    • An active role for tRNA in decoding beyond codon: Anticodon pairing
    • Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:aNticodon pairing. Science 308, 1178-1180 (2005).
    • (2005) Science , vol.308 , pp. 1178-1180
    • Cochella, L.1    Green, R.2
  • 70
    • 0023238983 scopus 로고
    • Interaction of antibiotics with functional sites in 16S ribosomal RNA
    • Moazed, D. & Noller, H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389-394 (1987).
    • (1987) Nature , vol.327 , pp. 389-394
    • Moazed, D.1    Noller, H.F.2
  • 71
    • 12544252978 scopus 로고    scopus 로고
    • 3+ aminoglycosides
    • 3+ aminoglycosides. J. Mol. Biol. 346, 467-475 (2005).
    • (2005) J. Mol. Biol. , vol.346 , pp. 467-475
    • Pfister, P.1
  • 72
    • 14644415898 scopus 로고    scopus 로고
    • A mutation in the decoding center of Thermus thermophilus 16S rRNA suggests a novel mechanism of streptomycin resistance
    • Gregory, S. T., Carr, J. F. & Dahlberg, A. E. A mutation in the decoding center of Thermus thermophilus 16S rRNA suggests a novel mechanism of streptomycin resistance. J. Bacteriol. 187, 2200-2202 (2005).
    • (2005) J. Bacteriol. , vol.187 , pp. 2200-2202
    • Gregory, S.T.1    Carr, J.F.2    Dahlberg, A.E.3
  • 73
    • 0022344252 scopus 로고
    • Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea
    • Thompson, J., Skeggs, P. A. & Cundliffe, E. Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol. Gen. Genet. 201, 168-173 (1985).
    • (1985) Mol. Gen. Genet. , vol.201 , pp. 168-173
    • Thompson, J.1    Skeggs, P.A.2    Cundliffe, E.3
  • 74
    • 0023091436 scopus 로고
    • Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides
    • Beauclerk, A. A. & Cundliffe, E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J. Mol. Biol. 193, 661-671 (1987).
    • (1987) J. Mol. Biol. , vol.193 , pp. 661-671
    • Beauclerk, A.A.1    Cundliffe, E.2
  • 76
    • 0037072627 scopus 로고    scopus 로고
    • Instruction of translating ribosome by nascent peptide
    • Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864-1867 (2002).
    • (2002) Science , vol.297 , pp. 1864-1867
    • Gong, F.1    Yanofsky, C.2
  • 77
    • 0028963496 scopus 로고
    • Erythromycin resistance by ribosome modification
    • Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585 (1995).
    • (1995) Antimicrob. Agents Chemother. , vol.39 , pp. 577-585
    • Weisblum, B.1
  • 78
    • 0003446592 scopus 로고
    • (eds Hill, W. E. et al.) (American Society for Microbiology, Washington DC)
    • Cundliffe, E. in The Ribosome: Structure, Function and Evolution (eds Hill, W. E. et al.) 479-490 (American Society for Microbiology, Washington DC, 1990).
    • (1990) The Ribosome: Structure, Function and Evolution , pp. 479-490
    • Cundliffe, E.1
  • 81
    • 0038690158 scopus 로고    scopus 로고
    • The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome
    • Tenson, T., Lovmar, M. & Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 330, 1005-1014 (2003).
    • (2003) J. Mol. Biol. , vol.330 , pp. 1005-1014
    • Tenson, T.1    Lovmar, M.2    Ehrenberg, M.3
  • 82
    • 0028914553 scopus 로고
    • Insights into erythromycin action from studies of its activity as inducer of resistance
    • Weisblum, B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39, 797-805 (1995).
    • (1995) Antimicrob. Agents Chemother. , vol.39 , pp. 797-805
    • Weisblum, B.1
  • 83
    • 0034817784 scopus 로고    scopus 로고
    • Short peptides conferring resistance to macrolide antibiotics
    • Tenson, T. & Mankin, A. S. Short peptides conferring resistance to macrolide antibiotics. Peptides 22, 1661-1668 (2001).
    • (2001) Peptides , vol.22 , pp. 1661-1668
    • Tenson, T.1    Mankin, A.S.2
  • 84
    • 0034406527 scopus 로고    scopus 로고
    • Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin
    • Poulsen, S. M., Kofoed, C. & Vester, B. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304, 471-481 (2000).
    • (2000) J. Mol. Biol. , vol.304 , pp. 471-481
    • Poulsen, S.M.1    Kofoed, C.2    Vester, B.3
  • 85
    • 0038811884 scopus 로고    scopus 로고
    • Bacterial ribosomal subunit assembly is an antibiotic target
    • Champney, W. S. Bacterial ribosomal subunit assembly is an antibiotic target. Curr. Top. Med. Chem. 3, 929-947 (2003).
    • (2003) Curr. Top. Med. Chem. , vol.3 , pp. 929-947
    • Champney, W.S.1
  • 86
    • 14844357497 scopus 로고    scopus 로고
    • Translation and protein synthesis: Macrolides
    • Katz, L. & Ashley, G. W. Translation and protein synthesis: Macrolides. Chem. Rev. 105, 499-528 (2005).
    • (2005) Chem. Rev. , vol.105 , pp. 499-528
    • Katz, L.1    Ashley, G.W.2
  • 87
    • 0034583884 scopus 로고    scopus 로고
    • Ketolides - Telithromycin, an example of a new class of antibacterial agents
    • Bryskier, A. Ketolides - telithromycin, an example of a new class of antibacterial agents. Clin. Microbial. Infect. 6, 661-669 (2000).
    • (2000) Clin. Microbial. Infect. , vol.6 , pp. 661-669
    • Bryskier, A.1
  • 88
    • 2142819984 scopus 로고    scopus 로고
    • Activities of telithromycin against 13,874 Streptococcus pneumoniae isolates collected between 1999 and 2003
    • Farrell, D. J. & Felmingham, D. Activities of telithromycin against 13,874 Streptococcus pneumoniae isolates collected between 1999 and 2003. Antimicrob. Agents Chemother. 48, 1882-1884 (2004).
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 1882-1884
    • Farrell, D.J.1    Felmingham, D.2
  • 89
    • 0037334850 scopus 로고    scopus 로고
    • Structural basis for the antibiotic activity of ketolides and azalides
    • Schlunzen, F. et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure (Camb.) 11, 329-338 (2003).
    • (2003) Structure (Camb.) , vol.11 , pp. 329-338
    • Schlunzen, F.1
  • 90
    • 0027248565 scopus 로고
    • Erythromycin binding is reduced in ribosomes with conformational alterations in the 23S rRNA peptidyl transferase loop
    • Douthwaite, S. & Aagaard, C. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23S rRNA peptidyl transferase loop. 232, 725-731 (1993).
    • (1993) , vol.232 , pp. 725-731
    • Douthwaite, S.1    Aagaard, C.2
  • 91
    • 9244243139 scopus 로고    scopus 로고
    • Ribosomal crystallography: Initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics
    • Yonath, A. & Bashan, A. Ribosomal crystallography: Initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu. Rev. Microbiol. 58, 233-251 (2004).
    • (2004) Annu. Rev. Microbiol. , vol.58 , pp. 233-251
    • Yonath, A.1    Bashan, A.2
  • 92
    • 17044425907 scopus 로고    scopus 로고
    • 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A to G
    • Pfister, P. et al. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A to G. Proc. Natl Acad. Sci. USA 102, 5180-5185 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5180-5185
    • Pfister, P.1
  • 93
    • 0034256635 scopus 로고    scopus 로고
    • The conformations of the macrolide antibiotics erythromycin A, azithromycin and clarithromycin in aqueous solution: A H-1 NMR study
    • Awan, A., Brennan, R. J., Regan, A. C. & Barber, J. The conformations of the macrolide antibiotics erythromycin A, azithromycin and clarithromycin in aqueous solution: A H-1 NMR study. J. Chem. Soc. Perkin Trans. 12, 1645-1652 (2000).
    • (2000) J. Chem. Soc. Perkin Trans. , vol.12 , pp. 1645-1652
    • Awan, A.1    Brennan, R.J.2    Regan, A.C.3    Barber, J.4
  • 94
    • 0025976391 scopus 로고
    • Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae
    • Zalacain, M. & Cundliffe, E. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142 (1991).
    • (1991) Gene , vol.97 , pp. 137-142
    • Zalacain, M.1    Cundliffe, E.2
  • 95
    • 0024361081 scopus 로고
    • Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae
    • Zalacain, M. & Cundliffe, E. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260 (1989).
    • (1989) J. Bacteriol. , vol.171 , pp. 4254-4260
    • Zalacain, M.1    Cundliffe, E.2
  • 96
    • 0037069328 scopus 로고    scopus 로고
    • Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy
    • Liu, M. & Douthwaite, S. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc. Natl Acad. Sci. USA 99, 14658-14663 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 14658-14663
    • Liu, M.1    Douthwaite, S.2
  • 98
    • 0032904341 scopus 로고    scopus 로고
    • A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre
    • Xiong, L., Shah, S., Mauvais, P. & Mankin, A. S. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31, 633-639 (1999).
    • (1999) Mol. Microbiol. , vol.31 , pp. 633-639
    • Xiong, L.1    Shah, S.2    Mauvais, P.3    Mankin, A.S.4
  • 99
    • 0032950956 scopus 로고    scopus 로고
    • The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA
    • Hansen, L. H., Mauvais, P. & Douthwaite, S. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31, 623-631 (1999).
    • (1999) Mol. Microbiol. , vol.31 , pp. 623-631
    • Hansen, L.H.1    Mauvais, P.2    Douthwaite, S.3
  • 100
    • 0035162904 scopus 로고    scopus 로고
    • Binding site of macrolide antibiotics on the ribosome: New resistance mutation identifies a specific interaction of ketolides with rRNA
    • Garza-Ramos, G., Xiong, L., Zhong, P. & Mankin, A. Binding site of macrolide antibiotics on the ribosome: New resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 183, 6898-6907 (2001).
    • (2001) J. Bacteriol. , vol.183 , pp. 6898-6907
    • Garza-Ramos, G.1    Xiong, L.2    Zhong, P.3    Mankin, A.4
  • 101
    • 11244307407 scopus 로고    scopus 로고
    • Binding site of the bridged macrolides in the Escherichia coli ribosome
    • Xiong, L., Korkhin, Y. & Mankin, A. S. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49, 281-288 (2005).
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 281-288
    • Xiong, L.1    Korkhin, Y.2    Mankin, A.S.3
  • 102
    • 0038492422 scopus 로고    scopus 로고
    • Structural insight into the antibiotic action of telithromycin against resistant mutants
    • Berisio, R. et al. Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol. 185, 4276-4279 (2003).
    • (2003) J. Bacteriol. , vol.185 , pp. 4276-4279
    • Berisio, R.1
  • 103
    • 0035160878 scopus 로고    scopus 로고
    • Macrolide resistance conferred by base substitutions in 23S rRNA
    • Vester, B. & Douthwaite, S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45, 1-12 (2001).
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 1-12
    • Vester, B.1    Douthwaite, S.2
  • 104
    • 4444300505 scopus 로고    scopus 로고
    • The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059
    • Pfister, P. et al. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J. Mol Biol. 342, 1569-1581 (2004).
    • (2004) J. Mol. Biol. , vol.342 , pp. 1569-1581
    • Pfister, P.1
  • 105
    • 0015745765 scopus 로고
    • Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins
    • Wittmann, H. G. et al. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127, 175-189 (1973).
    • (1973) Mol. Gen. Genet. , vol.127 , pp. 175-189
    • Wittmann, H.G.1
  • 106
    • 0017657612 scopus 로고
    • Properties of ribosomes from erythromycin resistant mutants of Escherichia coli
    • Pardo, D. & Rosset, R. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli. Mol. Gen. Genet. 156, 267-271 (1977).
    • (1977) Mol. Gen. Genet. , vol.156 , pp. 267-271
    • Pardo, D.1    Rosset, R.2
  • 107
    • 0028148698 scopus 로고
    • Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli
    • Chittum, H. S. & Champney, W. S. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bacteriol. 176, 6192-6198 (1994).
    • (1994) J. Bacteriol. , vol.176 , pp. 6192-6198
    • Chittum, H.S.1    Champney, W.S.2
  • 108
    • 0033914680 scopus 로고    scopus 로고
    • Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage
    • Tait-Kamradt, A. et al. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage. Antimicrob. Agents Chemother. 44, 2118-2125 (2000).
    • (2000) Antimicrob. Agents Chemother. , vol.44 , pp. 2118-2125
    • Tait-Kamradt, A.1
  • 109
    • 3342901650 scopus 로고    scopus 로고
    • In vitro activities of telithromycin, linezolid, and quinupristin-dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations
    • Farrell, D. J., Morrissey, I., Bakker, S., Buckridge, S. & Felmingham, D. In vitro activities of telithromycin, linezolid, and quinupristin-dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob. Agents Chemother. 48, 3169-3171 (2004).
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 3169-3171
    • Farrell, D.J.1    Morrissey, I.2    Bakker, S.3    Buckridge, S.4    Felmingham, D.5
  • 110
    • 0033014076 scopus 로고    scopus 로고
    • Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA
    • Gregory, S. T. & Dahlberg, A. E. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J. Mol. Biol. 289, 827-834 (1999).
    • (1999) J. Mol. Biol. , vol.289 , pp. 827-834
    • Gregory, S.T.1    Dahlberg, A.E.2
  • 111
    • 0036384268 scopus 로고    scopus 로고
    • L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin
    • Davydova, N., Streltsov, V., Wilce, M., Liljas, A. & Garber, M. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J. Mol. Biol. 322, 635-644 (2002).
    • (2002) J. Mol. Biol. , vol.322 , pp. 635-644
    • Davydova, N.1    Streltsov, V.2    Wilce, M.3    Liljas, A.4    Garber, M.5
  • 112
    • 0021064473 scopus 로고
    • Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics
    • Skinner, R., Cundliffe, E. & Schmidt, F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706 (1983).
    • (1983) J. Biol. Chem. , vol.258 , pp. 12702-12706
    • Skinner, R.1    Cundliffe, E.2    Schmidt, F.J.3
  • 113
    • 21644438529 scopus 로고    scopus 로고
    • Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics
    • Roberts, M. C. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62 (2004).
    • (2004) Mol. Biotechnol. , vol.28 , pp. 47-62
    • Roberts, M.C.1
  • 114
    • 0036096197 scopus 로고    scopus 로고
    • Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA
    • Liu, M. & Douthwaite, S. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob. Agents Chemother. 46, 1629-1633 (2002).
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 1629-1633
    • Liu, M.1    Douthwaite, S.2
  • 115
    • 0037957599 scopus 로고    scopus 로고
    • (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser, Berlin)
    • Sutcliffe, J. A. & Leclercq, R. in Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) 281-317 (Birkhäuser, Berlin, 2002).
    • (2002) Macrolide Antibiotics , pp. 281-317
    • Sutcliffe, J.A.1    Leclercq, R.2
  • 117
    • 11244293987 scopus 로고    scopus 로고
    • In vitro activities of novel 2-fluoronaphthyridine-containing ketolides
    • Abbanat, D. et al. In vitro activities of novel 2-fluoronaphthyridine-containing ketolides. Antimicrob. Agents Chemother. 49, 309-315 (2005).
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 309-315
    • Abbanat, D.1
  • 119
    • 0034704217 scopus 로고    scopus 로고
    • The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit
    • Brodersen, D. E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143-1154 (2000).
    • (2000) Cell , vol.103 , pp. 1143-1154
    • Brodersen, D.E.1
  • 120
    • 0035986708 scopus 로고    scopus 로고
    • Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site
    • Vicens, Q. & Westhof, E. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem. Biol. 9, 747-755 (2002).
    • (2002) Chem. Biol. , vol.9 , pp. 747-755
    • Vicens, Q.1    Westhof, E.2
  • 121
    • 18844413838 scopus 로고    scopus 로고
    • Molecular recognition by glycoside pseudo base pairs and triples in an apramycin-RNA complex
    • Han, Q. et al. Molecular recognition by glycoside pseudo base pairs and triples in an apramycin-RNA complex. Angew. Chem. (Int. Ed. Engl.) 44, 2694-2700 (2005).
    • (2005) Angew. Chem. (Int. Ed. Engl.) , vol.44 , pp. 2694-2700
    • Han, Q.1
  • 122
    • 17744377418 scopus 로고    scopus 로고
    • Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3
    • Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829-1839 (2001).
    • (2001) EMBO J. , vol.20 , pp. 1829-1839
    • Pioletti, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.