-
1
-
-
0035477117
-
The Sec protein-translocation pathway
-
Mori H., Ito K. The Sec protein-translocation pathway. Trends Microbiol. 9:2001;494-500.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 494-500
-
-
Mori, H.1
Ito, K.2
-
2
-
-
0034995184
-
The structural basis of protein targeting and translocation in bacteria
-
Driessen A.J., Manting E.H., van der Does C. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8:2001;492-498.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 492-498
-
-
Driessen, A.J.1
Manting, E.H.2
Van Der Does, C.3
-
3
-
-
0242439351
-
The ribosome and YidC. New insights into the biogenesis of Escherichia coli inner membrane proteins
-
de Gier J.W., Luirink J. The ribosome and YidC. New insights into the biogenesis of Escherichia coli inner membrane proteins. EMBO Rep. 4:2003;939-943.
-
(2003)
EMBO Rep.
, vol.4
, pp. 939-943
-
-
De Gier, J.W.1
Luirink, J.2
-
4
-
-
0020727607
-
A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins
-
Ito K., Wittekind M., Nomura M., Shiba K., Yura T., Miura A., Nashimoto H. A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell. 32:1983;789-797.
-
(1983)
Cell
, vol.32
, pp. 789-797
-
-
Ito, K.1
Wittekind, M.2
Nomura, M.3
Shiba, K.4
Yura, T.5
Miura, A.6
Nashimoto, H.7
-
5
-
-
0024691473
-
The secE gene encodes an integral membrane protein required for protein export in Escherichia coli
-
Schatz P.J., Riggs P.D., Jacq A., Fath M.J., Beckwith J. The secE gene encodes an integral membrane protein required for protein export in Escherichia coli. Genes Dev. 3:1989;1035-1044.
-
(1989)
Genes Dev.
, vol.3
, pp. 1035-1044
-
-
Schatz, P.J.1
Riggs, P.D.2
Jacq, A.3
Fath, M.J.4
Beckwith, J.5
-
6
-
-
0020171893
-
Regulation of a membrane component required for protein secretion in Escherichia coli
-
Oliver D.B., Beckwith J. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell. 30:1982;311-319.
-
(1982)
Cell
, vol.30
, pp. 311-319
-
-
Oliver, D.B.1
Beckwith, J.2
-
7
-
-
0023880052
-
A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene
-
Riggs P.D., Derman A.I., Beckwith J. A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene. Genetics. 118:1988;571-579.
-
(1988)
Genetics
, vol.118
, pp. 571-579
-
-
Riggs, P.D.1
Derman, A.I.2
Beckwith, J.3
-
8
-
-
0242575006
-
Secretion defects that activate the phage shock response of Escherichia coli
-
Jones S.E., Lloyd L.J., Tan K.K., Buck M. Secretion defects that activate the phage shock response of Escherichia coli. J. Bacteriol. 185:2003;6707-6711.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 6707-6711
-
-
Jones, S.E.1
Lloyd, L.J.2
Tan, K.K.3
Buck, M.4
-
9
-
-
0023678449
-
Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli
-
Schmidt M.G., Rollo E.E., Grodberg J., Oliver D.B. Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli. J. Bacteriol. 170:1988;3404-3414.
-
(1988)
J. Bacteriol.
, vol.170
, pp. 3404-3414
-
-
Schmidt, M.G.1
Rollo, E.E.2
Grodberg, J.3
Oliver, D.B.4
-
10
-
-
0033943049
-
Escherichia coli translocase: The unraveling of a molecular machine
-
Manting E.H., Driessen A.J. Escherichia coli translocase: the unraveling of a molecular machine. Mol. Microbiol. 37:2000;226-238.
-
(2000)
Mol. Microbiol.
, vol.37
, pp. 226-238
-
-
Manting, E.H.1
Driessen, A.J.2
-
11
-
-
0037144467
-
Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
-
Hunt J.F., Weinkauf S., Henry L., Fak J.J., McNicholas P., Oliver D.B., Deisenhofer J. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science. 297:2002;2018-2026 This article reports the crystal structure of SecA from Bacillus subtilis. Several domains including a pair of domains forming an ATPase active site, a long α-helical scaffold, and preprotein binding domain are noted. Questions still remain about how this ATPase undergoes the dynamic structural transitions to drive polypeptide movement across the membrane.
-
(2002)
Science
, vol.297
, pp. 2018-2026
-
-
Hunt, J.F.1
Weinkauf, S.2
Henry, L.3
Fak, J.J.4
McNicholas, P.5
Oliver, D.B.6
Deisenhofer, J.7
-
12
-
-
0344823683
-
Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase
-
Ding H., Mukerji I., Oliver D. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase. Biochemistry. 42:2003;13468-13475.
-
(2003)
Biochemistry
, vol.42
, pp. 13468-13475
-
-
Ding, H.1
Mukerji, I.2
Oliver, D.3
-
13
-
-
0028064967
-
SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
-
Economou A., Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell. 78:1994;835-843.
-
(1994)
Cell
, vol.78
, pp. 835-843
-
-
Economou, A.1
Wickner, W.2
-
14
-
-
0030922143
-
The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase
-
Eichler J., Brunner J., Wickner W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. EMBO J. 16:1997;2188-2196.
-
(1997)
EMBO J.
, vol.16
, pp. 2188-2196
-
-
Eichler, J.1
Brunner, J.2
Wickner, W.3
-
15
-
-
0030782388
-
SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane
-
Matsumoto G., Yoshihisa T., Ito K. SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane. EMBO J. 16:1997;6384-6393.
-
(1997)
EMBO J.
, vol.16
, pp. 6384-6393
-
-
Matsumoto, G.1
Yoshihisa, T.2
Ito, K.3
-
16
-
-
0026073817
-
ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase
-
Schiebel E., Driessen A.J., Hartl F.U., Wickner W. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell. 64:1991;927-939.
-
(1991)
Cell
, vol.64
, pp. 927-939
-
-
Schiebel, E.1
Driessen, A.J.2
Hartl, F.U.3
Wickner, W.4
-
17
-
-
0036129188
-
Complex behavior in solution of homodimeric SecA
-
Woodbury R.L., Hardy S.J., Randall L.L. Complex behavior in solution of homodimeric SecA. Protein Sci. 11:2002;875-882.
-
(2002)
Protein Sci.
, vol.11
, pp. 875-882
-
-
Woodbury, R.L.1
Hardy, S.J.2
Randall, L.L.3
-
18
-
-
0037009514
-
Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane
-
Or E., Navon A., Rapoport T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21:2002;4470-4479 SecA is in dynamic dimer-monomer equilibrium, which is shifted toward the monomer state when SecA encounters acidic phospholipids, a signal peptide, or some detergents. This is one of the recent studies on the dynamism of SecA, in which the authors propose that it functions in a monomeric state.
-
(2002)
EMBO J.
, vol.21
, pp. 4470-4479
-
-
Or, E.1
Navon, A.2
Rapoport, T.3
-
19
-
-
0037423278
-
Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA
-
••].
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 3628-3638
-
-
Benach, J.1
Chou, Y.T.2
Fak, J.J.3
Itkin, A.4
Nicolae, D.D.5
Smith, P.C.6
Wittrock, G.7
Floyd, D.L.8
Golsaz, C.M.9
Gierasch, L.M.10
Hunt, J.F.11
-
20
-
-
0041736710
-
Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase
-
Duong F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22:2003;4375-4384.
-
(2003)
EMBO J.
, vol.22
, pp. 4375-4384
-
-
Duong, F.1
-
21
-
-
0033801865
-
Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression
-
Sarker S., Rudd K.E., Oliver D. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182:2000;5592-5595.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 5592-5595
-
-
Sarker, S.1
Rudd, K.E.2
Oliver, D.3
-
22
-
-
0035105116
-
Secretion monitor, SecM, undergoes self-translation arrest in the cytosol
-
Nakatogawa H., Ito K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell. 7:2001;185-192.
-
(2001)
Mol. Cell.
, vol.7
, pp. 185-192
-
-
Nakatogawa, H.1
Ito, K.2
-
23
-
-
0024525814
-
Novel secA alleles improve export of maltose-binding protein synthesized with a defective signal peptide
-
Fikes J.D., Bassford P.J. Jr. Novel secA alleles improve export of maltose-binding protein synthesized with a defective signal peptide. J. Bacteriol. 171:1989;402-409.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 402-409
-
-
Fikes, J.D.1
Bassford Jr., P.J.2
-
24
-
-
0031575402
-
Dual regulation of Escherichia coli secA translation by distinct upstream elements
-
McNicholas P., Salavati R., Oliver D. Dual regulation of Escherichia coli secA translation by distinct upstream elements. J. Mol. Biol. 265:1997;128-141.
-
(1997)
J. Mol. Biol.
, vol.265
, pp. 128-141
-
-
McNicholas, P.1
Salavati, R.2
Oliver, D.3
-
25
-
-
0024618686
-
SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli
-
Schmidt M.G., Oliver D.B. SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli. J. Bacteriol. 171:1989;643-649.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 643-649
-
-
Schmidt, M.G.1
Oliver, D.B.2
-
26
-
-
0029377915
-
Competition between ribosome and SecA binding promotes Escherichia coli secA translational regulation
-
Salavati R., Oliver D. Competition between ribosome and SecA binding promotes Escherichia coli secA translational regulation. RNA. 1:1995;745-753.
-
(1995)
RNA
, vol.1
, pp. 745-753
-
-
Salavati, R.1
Oliver, D.2
-
27
-
-
0031575399
-
Identification of elements on GeneX-secA RNA of Escherichia coli required for SecA binding and secA auto-regulation
-
Salavati R., Oliver D. Identification of elements on GeneX-secA RNA of Escherichia coli required for SecA binding and secA auto-regulation. J. Mol. Biol. 265:1997;142-152.
-
(1997)
J. Mol. Biol.
, vol.265
, pp. 142-152
-
-
Salavati, R.1
Oliver, D.2
-
28
-
-
0025840280
-
The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein
-
Rajapandi T., Dolan K.M., Oliver D.B. The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein. J. Bacteriol. 173:1991;7092-7097.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 7092-7097
-
-
Rajapandi, T.1
Dolan, K.M.2
Oliver, D.B.3
-
29
-
-
0031709169
-
Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon
-
Oliver D., Norman J., Sarker S. Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon. J. Bacteriol. 180:1998;5240-5242.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 5240-5242
-
-
Oliver, D.1
Norman, J.2
Sarker, S.3
-
30
-
-
0037040411
-
The ribosomal exit tunnel functions as a discriminating gate
-
Nakatogawa H., Ito K. The ribosomal exit tunnel functions as a discriminating gate. Cell. 108:2002;629-636 This paper describes the first clear case, in which the ribosomal exit tunnel, especially its gate-like constricted part, can interact with an elongating nascent polypeptide chain. Such a property was discovered for SecM, thus revealing a novel regulatory mechanism of gene expression (see main text).
-
(2002)
Cell
, vol.108
, pp. 629-636
-
-
Nakatogawa, H.1
Ito, K.2
-
31
-
-
0036223671
-
Critical regions of secM that control its translation and secretion and promote secretion-specific secA regulation
-
Sarker S., Oliver D. Critical regions of secM that control its translation and secretion and promote secretion-specific secA regulation. J. Bacteriol. 184:2002;2360-2369.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 2360-2369
-
-
Sarker, S.1
Oliver, D.2
-
32
-
-
0034637111
-
The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
-
Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. The complete atomic structure of the large ribosomal subunit at 2.4. Å resolution Science. 289:2000;905-920.
-
(2000)
Science
, vol.289
, pp. 905-920
-
-
Ban, N.1
Nissen, P.2
Hansen, J.3
Moore, P.B.4
Steitz, T.A.5
-
33
-
-
0034637161
-
The structural basis of ribosome activity in peptide bond synthesis
-
Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. The structural basis of ribosome activity in peptide bond synthesis. Science. 289:2000;920-930.
-
(2000)
Science
, vol.289
, pp. 920-930
-
-
Nissen, P.1
Hansen, J.2
Ban, N.3
Moore, P.B.4
Steitz, T.A.5
-
34
-
-
0037407668
-
Structural insight into the role of the ribosomal tunnel in cellular regulation
-
Berisio R., Schluenzen F., Harms J., Bashan A., Auerbach T., Baram D., Yonath A. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10:2003;366-370 The authors determined the structure of a complex formed between the large ribosomal subunit and a macrolide antibiotic, Troleandomycin (TAO), which proved to bind to the RNA wall of the exit tunnel, displacing the β-hairpin region of L22 r-protein from the wall and thereby inducing its flipping across the tunnel. It is proposed that SecM acts like TAO to halt its own passage through the narrow gate of the tunnel, which is now occluded by the L22 tip.
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 366-370
-
-
Berisio, R.1
Schluenzen, F.2
Harms, J.3
Bashan, A.4
Auerbach, T.5
Baram, D.6
Yonath, A.7
-
35
-
-
0346457143
-
Intraribosomal regulation of expression and fate of proteins
-
Nakatogawa H., Ito K. Intraribosomal regulation of expression and fate of proteins. Chembiochem. 5:2004;48-51.
-
(2004)
Chembiochem
, vol.5
, pp. 48-51
-
-
Nakatogawa, H.1
Ito, K.2
-
36
-
-
0242361562
-
Cleavage of the a site mRNA codon during ribosome pausing provides a mechanism for translational quality control
-
•], this paper describes a ribosome-dependent cleavage of mRNA around an empty A-site. This and the ssrA-tagging reaction will provide a mechanism that rescues the ribosome that is facing difficulties in translation.
-
(2003)
Mol. Cell.
, vol.12
, pp. 903-911
-
-
Hayes, C.S.1
Sauer, R.T.2
-
38
-
-
0242407458
-
Translocon "pulling" of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation
-
Butkus M.E., Prundeanu L.B., Oliver D.B. Translocon "pulling" of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185:2003;6719-6722 Insertion of an artificially designed 'stop transfer' segment into the middle of SecM leads to constitutively upregulated translation of the downstream secA′-′lacZ on the same mRNA.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 6719-6722
-
-
Butkus, M.E.1
Prundeanu, L.B.2
Oliver, D.B.3
-
39
-
-
0036135526
-
Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway
-
Tian H., Beckwith J. Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway. J. Bacteriol. 184:2002;111-118 Screenings using a sensitive malF′-′lacZ reporter allowed isolation of mutants partially defective in the membrane integration of this model protein. In addition to mutations in the signal recognition particle components, several mutations in secM have been obtained.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 111-118
-
-
Tian, H.1
Beckwith, J.2
-
40
-
-
0027457371
-
The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself
-
Pogliano K.J., Beckwith J. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics. 133:1993;763-773.
-
(1993)
Genetics
, vol.133
, pp. 763-773
-
-
Pogliano, K.J.1
Beckwith, J.2
|