-
1
-
-
34547868108
-
Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae
-
Abbott DA, Knijnenburg TA, De Poorter LMI et al. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 2007;7:819–33.
-
(2007)
FEMS Yeast Res
, vol.7
, pp. 819-833
-
-
Abbott, D.A.1
Knijnenburg, T.A.2
De Poorter, L.M.I.3
-
2
-
-
0022763351
-
Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae
-
Aguilera A. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol Gen Genet 1986;204:310–6.
-
(1986)
Mol Gen Genet
, vol.204
, pp. 310-316
-
-
Aguilera, A.1
-
3
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 2007;82:340–9.
-
(2007)
J Chem Technol Biot
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
-
4
-
-
70349281876
-
Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential?
-
Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009;7:715–23.
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 715-723
-
-
Alper, H.1
Stephanopoulos, G.2
-
5
-
-
84890284546
-
Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
-
Ask M, Bettiga M, Duraiswamy VR et al. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels 2013;6:181.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 181
-
-
Ask, M.1
Bettiga, M.2
Duraiswamy, V.R.3
-
6
-
-
84881540727
-
Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
-
Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol 2013;9:215–28.
-
(2013)
Ind Biotechnol
, vol.9
, pp. 215-228
-
-
Aung, H.W.1
Henry, S.A.2
Walker, L.P.3
-
7
-
-
0035170286
-
Stoichiome-try and compartmentation of NADH metabolism in Saccharomyces cerevisiae
-
Bakker BM, Overkamp KM, van Maris AJA et al. Stoichiome-try and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001;25:15–37.
-
(2001)
FEMS Microbiol Rev
, vol.25
, pp. 15-37
-
-
Bakker, B.M.1
Overkamp, K.M.2
Van Maris, A.J.A.3
-
9
-
-
0037962155
-
A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol
-
Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microb 2003;69:4144–50.
-
(2003)
Appl Environ Microb
, vol.69
, pp. 4144-4150
-
-
Becker, J.1
Boles, E.2
-
10
-
-
34347258175
-
Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox
-
Becker SA, Feist AM, Mo ML et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007;2:727–38.
-
(2007)
Nat Protoc
, vol.2
, pp. 727-738
-
-
Becker, S.A.1
Feist, A.M.2
Mo, M.L.3
-
11
-
-
53849101838
-
Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking: Figure 1
-
Belgareh-Touzé N, Léon S, Erpapazoglou Z et al. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking: Figure 1. Biochem Soc Trans 2008;36:791–6.
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 791-796
-
-
Belgareh-Touzé, N.1
Léon, S.2
Erpapazoglou, Z.3
-
12
-
-
64549126134
-
Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
-
Bellissimi E, Van Dijken JP, Pronk JT et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009;9:358–64.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 358-364
-
-
Bellissimi, E.1
Van Dijken, J.P.2
Pronk, J.T.3
-
13
-
-
69449091591
-
Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates
-
Boender LGM, de Hulster EAF, van Maris AJA et al. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microb 2009;75:5607–14.
-
(2009)
Appl Environ Microb
, vol.75
, pp. 5607-5614
-
-
Boender, L.G.M.1
De Hulster, E.A.F.2
Van Maris, A.J.A.3
-
14
-
-
0027524880
-
The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant
-
Boles E, Lehnert W, Zimmermann FK. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem 1993;217:469–77.
-
(1993)
Eur J Biochem
, vol.217
, pp. 469-477
-
-
Boles, E.1
Lehnert, W.2
Zimmermann, F.K.3
-
15
-
-
0020614458
-
A theoretical analysis of NADPH production and consumption in yeasts
-
Bruinenberg PM, Van Dijken JP, Scheffers WA. A theoretical analysis of NADPH production and consumption in yeasts. Microbiology 1983;129:953–64.
-
(1983)
Microbiology
, vol.129
, pp. 953-964
-
-
Bruinenberg, P.M.1
Van Dijken, J.P.2
Scheffers, W.A.3
-
16
-
-
79251556819
-
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
-
Canelas AB, Harrison N, Fazio A et al. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 2010;1:145.
-
(2010)
Nat Commun
, vol.1
, pp. 145
-
-
Canelas, A.B.1
Harrison, N.2
Fazio, A.3
-
17
-
-
84865574629
-
A comparative transcrip-tomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
-
Celton M, Sanchez I, Goelzer A et al. A comparative transcrip-tomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics 2012;13:317.
-
(2012)
BMC Genomics
, vol.13
, pp. 317
-
-
Celton, M.1
Sanchez, I.2
Goelzer, A.3
-
18
-
-
0029858087
-
Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state
-
De Winde JH, Crauwels M, Hohmann S et al. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 1996;241:633–43.
-
(1996)
Eur J Biochem
, vol.241
, pp. 633-643
-
-
De Winde, J.H.1
Crauwels, M.2
Hohmann, S.3
-
19
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013;41:4336–43.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
-
20
-
-
0028969035
-
In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway
-
Dickinson JR, Sobanski MA, Hewlins MJE. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway. Microbiology 1995;141: 385–91.
-
(1995)
Microbiology
, vol.141
, pp. 385-391
-
-
Dickinson, J.R.1
Sobanski, M.A.2
Hewlins, M.J.E.3
-
21
-
-
0033025514
-
Glucose uptake kinetics and transcription of HXTGenes in chemostat cultures of Saccharomyces cerevisiae
-
Diderich JA, Schepper M, van Hoek P et al. Glucose uptake kinetics and transcription of HXTGenes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 1999;274:15350–9.
-
(1999)
J Biol Chem
, vol.274
, pp. 15350-15359
-
-
Diderich, J.A.1
Schepper, M.2
Van Hoek, P.3
-
22
-
-
0018969294
-
Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast
-
Entian K-D. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 1980;178:633–7.
-
(1980)
Mol Gen Genet
, vol.178
, pp. 633-637
-
-
Entian, K.-D.1
-
23
-
-
0021266044
-
Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering catabolite repression
-
Entian K-D, Fröhlich K-U. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering catabolite repression. J Bacteriol 1984;158:29–35.
-
(1984)
J Bacteriol
, vol.158
, pp. 29-35
-
-
Entian, K.-D.1
Fröhlich, K.-U.2
-
24
-
-
34247580875
-
25 yeast genetic strain and plasmid collections
-
Stansfield I, Stark MJR eds London: Academic Press
-
Entian K-D, Kötter P. 25 yeast genetic strain and plasmid collections. In: Stansfield I, Stark MJR (eds.) Methods in Microbiology, vol. 36. London: Academic Press, 2007, 629–66.
-
(2007)
Methods in Microbiology
, vol.36
, pp. 629-666
-
-
Entian, K.-D.1
Kötter, P.2
-
25
-
-
0027504233
-
Genetic and molecular characterization of Gal83: Its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae
-
Erickson JR, Johnston M. Genetic and molecular characterization of Gal83: Its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 1993;135:655–64.
-
(1993)
Genetics
, vol.135
, pp. 655-664
-
-
Erickson, J.R.1
Johnston, M.2
-
26
-
-
84898053053
-
Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
-
Farwick A, Bruder S, Schadeweg V et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci USA 2014;111:5159–64.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
-
27
-
-
84941740491
-
The need for biofuels as part of a low carbon energy future
-
Fulton LM, Lynd LR, Körner A et al. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Bioref 2015;9:476–83.
-
(2015)
Biofuels Bioprod Bioref
, vol.9
, pp. 476-483
-
-
Fulton, L.M.1
Lynd, L.R.2
Körner, A.3
-
28
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol R 1998;62:334–61.
-
(1998)
Microbiol Mol Biol R
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
29
-
-
77953368385
-
Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
-
Garcia Sanchez R, Karhumaa K, Fonseca C et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010;3:13.
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 13
-
-
Garcia Sanchez, R.1
Karhumaa, K.2
Fonseca, C.3
-
30
-
-
84884962157
-
Novel approach to engineer strains for simultaneous sugar utilization
-
Gawand P, Hyland P, Ekins A et al. Novel approach to engineer strains for simultaneous sugar utilization. Metab Eng 2013;20:63–72.
-
(2013)
Metab Eng
, vol.20
, pp. 63-72
-
-
Gawand, P.1
Hyland, P.2
Ekins, A.3
-
31
-
-
0036270543
-
Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
-
Guthrie C, Fink GR eds Academic Press
-
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In: Guthrie C, Fink GR (eds.) Methods in Enzymology, vol. 350: Academic Press, 2002,87–96.
-
(2002)
Methods in Enzymology
, vol.350
, pp. 87-96
-
-
Gietz, R.D.1
Woods, R.A.2
-
32
-
-
84920729256
-
Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
-
Gombert AK, van Maris AJA. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 2015;33:81–86.
-
(2015)
Curr Opin Biotechnol
, vol.33
, pp. 81-86
-
-
Gombert, A.K.1
Van Maris, A.J.A.2
-
33
-
-
84901422880
-
Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
-
Gonçalves DL, Matsushika A, de Sales BB et al. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 2014;63:13–20.
-
(2014)
Enzyme Microb Technol
, vol.63
, pp. 13-20
-
-
Gonçalves, D.L.1
Matsushika, A.2
De Sales, B.B.3
-
34
-
-
85041369200
-
Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: Bioconversion from glucose
-
Gottardi M, Reifenrath M, Boles E et al. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Res 2017;17: fox035.
-
(2017)
FEMS Yeast Res
, vol.17
, pp. fox035
-
-
Gottardi, M.1
Reifenrath, M.2
Boles, E.3
-
35
-
-
0038529613
-
The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
-
Grabowska D, Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 2003;278:13984–8.
-
(2003)
J Biol Chem
, vol.278
, pp. 13984-13988
-
-
Grabowska, D.1
Chelstowska, A.2
-
36
-
-
33745737415
-
Membrane trafficking of yeast transporters: Mechanisms and physiological control of downregulation
-
Boles E, Krämer R eds. Berlin, Heidelberg: Springer
-
Haguenauer-Tsapis R, André B. Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. In: Boles E, Krämer R (eds). Molecular Mechanisms Controlling Transmembrane Transport. Berlin, Heidelberg: Springer, 2004,273–323.
-
(2004)
Molecular Mechanisms Controlling Transmembrane Transport
, pp. 273-323
-
-
Haguenauer-Tsapis, R.1
André, B.2
-
37
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher T, Becker J, Gárdonyi M et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002;148:2783–8.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gárdonyi, M.3
-
38
-
-
38849180187
-
Glucose utilization glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains
-
Heux S, Cadiere A, Dequin S. Glucose utilization glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res 2008;8:217–24.
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 217-224
-
-
Heux, S.1
Cadiere, A.2
Dequin, S.3
-
39
-
-
0037342537
-
The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
-
Hucka M, Finney A, Sauro HM et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003;19:524–31.
-
(2003)
Bioinformatics
, vol.19
, pp. 524-531
-
-
Hucka, M.1
Finney, A.2
Sauro, H.M.3
-
40
-
-
0030888109
-
The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
-
Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA 1997;94:3656–61.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 3656-3661
-
-
Huibregtse, J.M.1
Yang, J.C.2
Beaudenon, S.L.3
-
41
-
-
85034424282
-
Saccharomyces cerevisiae strains for second-generation ethanol production: From academic exploration to industrial implementation
-
Jansen MLA, Bracher JM, Papapetridis I et al. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017;17: fox044.
-
(2017)
FEMS Yeast Res
, vol.17
, pp. fox044
-
-
Jansen, M.L.A.1
Bracher, J.M.2
Papapetridis, I.3
-
42
-
-
0036053504
-
The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
-
Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2002;2:277–82.
-
(2002)
FEMS Yeast Res
, vol.2
, pp. 277-282
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
43
-
-
58349105807
-
The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells
-
Kaliszewski P, Zoładek T. The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 2008;55:649–62.
-
(2008)
Acta Biochim Pol
, vol.55
, pp. 649-662
-
-
Kaliszewski, P.1
Zoładek, T.2
-
44
-
-
44449171842
-
Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. Cerevisiae via expression of glucose transporter Sut1
-
Katahira S, Ito M, Takema H et al. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 2008;43:115–9.
-
(2008)
Enzyme Microb Technol
, vol.43
, pp. 115-119
-
-
Katahira, S.1
Ito, M.2
Takema, H.3
-
45
-
-
84862812426
-
Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol
-
Kim SR, Ha S-J, Wei N et al. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012;30:274–82.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 274-282
-
-
Kim, S.R.1
Ha, S.-J.2
Wei, N.3
-
46
-
-
0036139158
-
Characterization of degradation products from alkaline wet oxidation of wheat straw
-
Klinke HB, Ahring BK, Schmidt AS et al. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technol 2002;82:15–26.
-
(2002)
Bioresource Technol
, vol.82
, pp. 15-26
-
-
Klinke, H.B.1
Ahring, B.K.2
Schmidt, A.S.3
-
47
-
-
84899904022
-
Yeast lipid metabolism at a glance
-
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014;14:369–88.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 369-388
-
-
Klug, L.1
Daum, G.2
-
48
-
-
0032424416
-
Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis
-
Krampe S, Stamm O, Hollenberg CP et al. Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 1998;441:343–7.
-
(1998)
FEBS Lett
, vol.441
, pp. 343-347
-
-
Krampe, S.1
Stamm, O.2
Hollenberg, C.P.3
-
49
-
-
84877272995
-
A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
-
Kuijpers NG, Solis-Escalante D, Bosman L et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 2013;12:47.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 47
-
-
Kuijpers, N.G.1
Solis-Escalante, D.2
Bosman, L.3
-
50
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, Harhangi HR, Stave AK et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 2003;4:69–78.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
-
51
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation
-
Kuyper M, Hartog MMP, Toirkens MJ et al. Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005a;5:399–409.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.P.2
Toirkens, M.J.3
-
52
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain
-
Kuyper M, Toirkens MJ, Diderich JA et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain. FEMS Yeast Res 2005b;5:925–34.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
-
53
-
-
0037209777
-
Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
-
Lee W-J, Kim M-D, Ryu Y-W et al. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biot 2002;60:186–91.
-
(2002)
Appl Microbiol Biot
, vol.60
, pp. 186-191
-
-
Lee, W.-J.1
Kim, M.-D.2
Ryu, Y.-W.3
-
54
-
-
85004045060
-
Ethanol production in Brazil: A bridge between science and industry
-
Lopes ML, Paulillo SCdL, Godoy A et al. Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 2016;47:64–76.
-
(2016)
Braz J Microbiol
, vol.47
, pp. 64-76
-
-
Lopes, M.L.1
Paulillo, S.C.D.L.2
Godoy, A.3
-
56
-
-
75649125966
-
Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex
-
Mangat S, Chandrashekarappa D, McCartney RR et al. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex. Eukaryot Cell 2010;9:173–83.
-
(2010)
Eukaryot Cell
, vol.9
, pp. 173-183
-
-
Mangat, S.1
Chandrashekarappa, D.2
McCartney, R.R.3
-
57
-
-
84930638003
-
CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans R, van Rossum HM, Wijsman M et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 2015;15:fov004.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. fov004
-
-
Mans, R.1
Van Rossum, H.M.2
Wijsman, M.3
-
58
-
-
0019465012
-
Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae
-
Matsumoto K, Toh-e A, Oshima Y. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Mol Cell Biol 1981;1:83–93.
-
(1981)
Mol Cell Biol
, vol.1
, pp. 83-93
-
-
Matsumoto, K.1
Tohe, A.2
Oshima, Y.3
-
59
-
-
85021642215
-
A design–build–test cycle using modeling and experiments reveals interdependen-cies between upper glycolysis and xylose uptake in recombinant S. Cerevisiae and improves predictive capabilities of large-scale kinetic models
-
Miskovic L, Alff-Tuomala S, Soh KC et al. A design–build–test cycle using modeling and experiments reveals interdependen-cies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models. Biotechnol Biofuels 2017;10:166.
-
(2017)
Biotechnol Biofuels
, vol.10
, pp. 166
-
-
Miskovic, L.1
Alff-Tuomala, S.2
Soh, K.C.3
-
60
-
-
50349099673
-
Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase
-
Momcilovic M, Iram SH, Liu Y et al. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J Biol Chem 2008;283:19521–9.
-
(2008)
J Biol Chem
, vol.283
, pp. 19521-19529
-
-
Momcilovic, M.1
Iram, S.H.2
Liu, Y.3
-
61
-
-
84959240103
-
Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects
-
Moysés D, Reis V, Almeida J et al. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 2016;17:207.
-
(2016)
Int J Mol Sci
, vol.17
, pp. 207
-
-
Moysés, D.1
Reis, V.2
Almeida, J.3
-
62
-
-
84858729135
-
De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
-
Nijkamp JF, van den Broek M, Datema E et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012;11:36.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 36
-
-
Nijkamp, J.F.1
Van Den Broek, M.2
Datema, E.3
-
63
-
-
85019889778
-
Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae
-
Nijland JG, Shin HY, Boender LGM et al. Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Appl Environ Microb 2017;83:95–117.
-
(2017)
Appl Environ Microb
, vol.83
, pp. 95-117
-
-
Nijland, J.G.1
Shin, H.Y.2
Boender, L.G.M.3
-
64
-
-
84988807185
-
Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
-
Nijland JG, Shin HY, de Jong RM et al. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 2014;7:168.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 168
-
-
Nijland, J.G.1
Shin, H.Y.2
De Jong, R.M.3
-
65
-
-
84979587906
-
Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae
-
Nijland JG, Vos E, Shin HY et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. Biotechnol Biofuels 2016;9:158.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 158
-
-
Nijland, J.G.1
Vos, E.2
Shin, H.Y.3
-
66
-
-
0032865543
-
Function and regulation of yeast hexose transporters
-
Özcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol R 1999;63:554–69.
-
(1999)
Microbiol Mol Biol R
, vol.63
, pp. 554-569
-
-
Özcan, S.1
Johnston, M.2
-
67
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 2000;74:25–33.
-
(2000)
Bioresource Technol
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
68
-
-
85041436183
-
Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield
-
Papapetridis I, Goudriaan M, Vázquez Vitali M et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol Biofuels 2018;11:17.
-
(2018)
Biotechnol Biofuels
, vol.11
, pp. 17
-
-
Papapetridis, I.1
Goudriaan, M.2
Vázquez Vitali, M.3
-
69
-
-
84965052624
-
Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6
-
Papapetridis I, van Dijk M, Dobbe APA et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact 2016;15:67.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 67
-
-
Papapetridis, I.1
Van Dijk, M.2
Dobbe, A.P.A.3
-
70
-
-
78649735310
-
Functional domains of yeast hexokinase 2
-
Peláez R, Herrero P, Moreno F. Functional domains of yeast hexokinase 2. Biochem J 2010;432:181–90.
-
(2010)
Biochem J
, vol.432
, pp. 181-190
-
-
Peláez, R.1
Herrero, P.2
Moreno, F.3
-
71
-
-
0034462087
-
Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae
-
Petit T, Diderich JA, Kruckeberg AL et al. Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae. J Bacteriol 2000;182:6815–8.
-
(2000)
J Bacteriol
, vol.182
, pp. 6815-6818
-
-
Petit, T.1
Diderich, J.A.2
Kruckeberg, A.L.3
-
72
-
-
0034882829
-
Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in theHXK2 gene
-
Raamsdonk LM, Diderich JA, Kuiper A et al. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in theHXK2 gene. Yeast 2001;18:1023–33.
-
(2001)
Yeast
, vol.18
, pp. 1023-1033
-
-
Raamsdonk, L.M.1
Diderich, J.A.2
Kuiper, A.3
-
73
-
-
0030015273
-
Dual influence of the yeast Catlp (Snflp) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8
-
Rahner A, Schöler A, Martens E et al. Dual influence of the yeast Catlp (Snflp) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res 1996;24:2331–7.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2331-2337
-
-
Rahner, A.1
Schöler, A.2
Martens, E.3
-
74
-
-
0030891998
-
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
-
Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 1997;245:324–33.
-
(1997)
Eur J Biochem
, vol.245
, pp. 324-333
-
-
Reifenberger, E.1
Boles, E.2
Ciriacy, M.3
-
75
-
-
84931567349
-
Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption
-
Reznicek O, Facey SJ, de Waal PP et al. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 2015;119:99–111.
-
(2015)
J Appl Microbiol
, vol.119
, pp. 99-111
-
-
Reznicek, O.1
Facey, S.J.2
De Waal, P.P.3
-
76
-
-
0034665041
-
Beta-subunits of Snf1 kinase are required for kinase function and substrate definition
-
Schmidt MC, McCartney RR. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 2000;19:4936–43.
-
(2000)
EMBO J
, vol.19
, pp. 4936-4943
-
-
Schmidt, M.C.1
McCartney, R.R.2
-
77
-
-
0037774738
-
Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae
-
Schüller H-J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003;43:139–60.
-
(2003)
Curr Genet
, vol.43
, pp. 139-160
-
-
Schüller, H.-J.1
-
78
-
-
79960454538
-
The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae
-
Shcherbik N, Pestov DG. The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae. RNA 2011;17:1422–8.
-
(2011)
RNA
, vol.17
, pp. 1422-1428
-
-
Shcherbik, N.1
Pestov, D.G.2
-
79
-
-
84939962188
-
Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae
-
Shen M-H, Song H, Li B-Z et al. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett 2015;37:1031–6.
-
(2015)
Biotechnol Lett
, vol.37
, pp. 1031-1036
-
-
Shen, M.-H.1
Song, H.2
Li, B.-Z.3
-
80
-
-
84870994085
-
An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
-
Shen Y, Chen X, Peng B et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biot 2012;96:1079–91.
-
(2012)
Appl Microbiol Biot
, vol.96
, pp. 1079-1091
-
-
Shen, Y.1
Chen, X.2
Peng, B.3
-
81
-
-
84959078116
-
An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae
-
Shin HY, Nijland JG, de Waal PP et al. An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 2015;8: 176.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 176
-
-
Shin, H.Y.1
Nijland, J.G.2
De Waal, P.P.3
-
82
-
-
84872424364
-
AmdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae
-
Solis-Escalante D, Kuijpers NGA, Bongaerts N et al. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 2013;13:126–39.
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 126-139
-
-
Solis-Escalante, D.1
Kuijpers, N.G.A.2
Bongaerts, N.3
-
83
-
-
84858262547
-
Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
-
Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012;5:14.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 14
-
-
Subtil, T.1
Boles, E.2
-
85
-
-
65649130030
-
Energetic limits to metabolic flexibility: Responses of Saccharomyces cerevisiae to glucose-galactose transitions
-
van den Brink J, Akeroyd M, van der Hoeven R et al. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 2009;155:1340–50.
-
(2009)
Microbiology
, vol.155
, pp. 1340-1350
-
-
Van Den Brink, J.1
Akeroyd, M.2
Van Der Hoeven, R.3
-
86
-
-
33750621979
-
Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status
-
van Maris AJA, Abbott DA, Bellissimi E et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw 2006;90:391–418.
-
(2006)
Anton Leeuw
, vol.90
, pp. 391-418
-
-
Van Maris, A.J.A.1
Abbott, D.A.2
Bellissimi, E.3
-
87
-
-
0025304034
-
Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
-
Verduyn C, Postma E, Scheffers WA et al. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Microbiology 1990;136:395–403.
-
(1990)
Microbiology
, vol.136
, pp. 395-403
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
-
88
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C, Postma E, Scheffers WA et al. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992;8:501–17.
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
-
89
-
-
85017464092
-
Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
-
Verhoeven MD, Lee M, Kamoen L et al. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 2017;7:46155.
-
(2017)
Sci Rep
, vol.7
, pp. 46155
-
-
Verhoeven, M.D.1
Lee, M.2
Kamoen, L.3
-
90
-
-
0032403110
-
Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes
-
Vincent O, Carlson M. Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 1998;17:7002–8.
-
(1998)
EMBO J
, vol.17
, pp. 7002-7008
-
-
Vincent, O.1
Carlson, M.2
-
91
-
-
0033485516
-
Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4
-
Vincent O, Carlson M. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J 1999;18:6672–81.
-
(1999)
EMBO J
, vol.18
, pp. 6672-6681
-
-
Vincent, O.1
Carlson, M.2
-
92
-
-
0035338114
-
Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
-
Vincent O, Townley R, Kuchin S et al. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Gene Dev 2001;15:1104–14.
-
(2001)
Gene Dev
, vol.15
, pp. 1104-1114
-
-
Vincent, O.1
Townley, R.2
Kuchin, S.3
-
93
-
-
84934941110
-
Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform
-
Wei N, Oh EJ, Million G et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 2015;4:707–13.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 707-713
-
-
Wei, N.1
Oh, E.J.2
Million, G.3
-
94
-
-
84908297746
-
Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules
-
Westman JO, Bonander N, Taherzadeh MJ et al. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnol Biofuels 2014;7:102.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 102
-
-
Westman, J.O.1
Bonander, N.2
Taherzadeh, M.J.3
-
95
-
-
0345732634
-
Mutations in the Gal83 glycogen-binding domain activate the Snf1/Gal83 kinase pathway by a glycogen-independent mechanism
-
Wiatrowski HA, van Denderen BJW, Berkey CD et al. Mutations in the Gal83 glycogen-binding domain activate the Snf1/Gal83 kinase pathway by a glycogen-independent mechanism. Mol Cell Biol 2004;24:352–61.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 352-361
-
-
Wiatrowski, H.A.1
Van Denderen, B.J.W.2
Berkey, C.D.3
-
96
-
-
34547752339
-
Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose
-
Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microb 2007;73:4881–91.
-
(2007)
Appl Environ Microb
, vol.73
, pp. 4881-4891
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Del Rosario Franco Berriel, M.3
-
97
-
-
59949093124
-
Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
-
Wisselink HW, Toirkens MJ, Wu Q et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microb 2009;75:907–14.
-
(2009)
Appl Environ Microb
, vol.75
, pp. 907-914
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Wu, Q.3
-
99
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H, Cheng J-s, Wang BL et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012;14:611–22.
-
(2012)
Metab Eng
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.2
Wang, B.L.3
|