메뉴 건너뛰기




Volumn 18, Issue 6, 2018, Pages

Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae

Author keywords

Biofuels; Fermentation; Industrial biotechnology; Pentoses; Redox engineering; Yeast

Indexed keywords

GLUCOSE; GLUCOSE 6 PHOSPHATE ISOMERASE; RIBULOSE PHOSPHATE; SUGAR; XYLOSE; XYLOSE ISOMERASE; ALCOHOL; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85052527333     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1093/femsyr/foy056     Document Type: Article
Times cited : (45)

References (99)
  • 1
    • 34547868108 scopus 로고    scopus 로고
    • Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae
    • Abbott DA, Knijnenburg TA, De Poorter LMI et al. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 2007;7:819–33.
    • (2007) FEMS Yeast Res , vol.7 , pp. 819-833
    • Abbott, D.A.1    Knijnenburg, T.A.2    De Poorter, L.M.I.3
  • 2
    • 0022763351 scopus 로고
    • Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae
    • Aguilera A. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol Gen Genet 1986;204:310–6.
    • (1986) Mol Gen Genet , vol.204 , pp. 310-316
    • Aguilera, A.1
  • 3
    • 33947286326 scopus 로고    scopus 로고
    • Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
    • Almeida JRM, Modig T, Petersson A et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 2007;82:340–9.
    • (2007) J Chem Technol Biot , vol.82 , pp. 340-349
    • Almeida, J.R.M.1    Modig, T.2    Petersson, A.3
  • 4
    • 70349281876 scopus 로고    scopus 로고
    • Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential?
    • Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009;7:715–23.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 715-723
    • Alper, H.1    Stephanopoulos, G.2
  • 5
    • 84890284546 scopus 로고    scopus 로고
    • Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
    • Ask M, Bettiga M, Duraiswamy VR et al. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels 2013;6:181.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 181
    • Ask, M.1    Bettiga, M.2    Duraiswamy, V.R.3
  • 6
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol 2013;9:215–28.
    • (2013) Ind Biotechnol , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 7
    • 0035170286 scopus 로고    scopus 로고
    • Stoichiome-try and compartmentation of NADH metabolism in Saccharomyces cerevisiae
    • Bakker BM, Overkamp KM, van Maris AJA et al. Stoichiome-try and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 2001;25:15–37.
    • (2001) FEMS Microbiol Rev , vol.25 , pp. 15-37
    • Bakker, B.M.1    Overkamp, K.M.2    Van Maris, A.J.A.3
  • 9
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol
    • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microb 2003;69:4144–50.
    • (2003) Appl Environ Microb , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 10
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox
    • Becker SA, Feist AM, Mo ML et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007;2:727–38.
    • (2007) Nat Protoc , vol.2 , pp. 727-738
    • Becker, S.A.1    Feist, A.M.2    Mo, M.L.3
  • 11
    • 53849101838 scopus 로고    scopus 로고
    • Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking: Figure 1
    • Belgareh-Touzé N, Léon S, Erpapazoglou Z et al. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking: Figure 1. Biochem Soc Trans 2008;36:791–6.
    • (2008) Biochem Soc Trans , vol.36 , pp. 791-796
    • Belgareh-Touzé, N.1    Léon, S.2    Erpapazoglou, Z.3
  • 12
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E, Van Dijken JP, Pronk JT et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009;9:358–64.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 13
    • 69449091591 scopus 로고    scopus 로고
    • Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates
    • Boender LGM, de Hulster EAF, van Maris AJA et al. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microb 2009;75:5607–14.
    • (2009) Appl Environ Microb , vol.75 , pp. 5607-5614
    • Boender, L.G.M.1    De Hulster, E.A.F.2    Van Maris, A.J.A.3
  • 14
    • 0027524880 scopus 로고
    • The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant
    • Boles E, Lehnert W, Zimmermann FK. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem 1993;217:469–77.
    • (1993) Eur J Biochem , vol.217 , pp. 469-477
    • Boles, E.1    Lehnert, W.2    Zimmermann, F.K.3
  • 15
    • 0020614458 scopus 로고
    • A theoretical analysis of NADPH production and consumption in yeasts
    • Bruinenberg PM, Van Dijken JP, Scheffers WA. A theoretical analysis of NADPH production and consumption in yeasts. Microbiology 1983;129:953–64.
    • (1983) Microbiology , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    Van Dijken, J.P.2    Scheffers, W.A.3
  • 16
    • 79251556819 scopus 로고    scopus 로고
    • Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
    • Canelas AB, Harrison N, Fazio A et al. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 2010;1:145.
    • (2010) Nat Commun , vol.1 , pp. 145
    • Canelas, A.B.1    Harrison, N.2    Fazio, A.3
  • 17
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcrip-tomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • Celton M, Sanchez I, Goelzer A et al. A comparative transcrip-tomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics 2012;13:317.
    • (2012) BMC Genomics , vol.13 , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3
  • 18
    • 0029858087 scopus 로고    scopus 로고
    • Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state
    • De Winde JH, Crauwels M, Hohmann S et al. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 1996;241:633–43.
    • (1996) Eur J Biochem , vol.241 , pp. 633-643
    • De Winde, J.H.1    Crauwels, M.2    Hohmann, S.3
  • 19
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013;41:4336–43.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3
  • 20
    • 0028969035 scopus 로고
    • In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway
    • Dickinson JR, Sobanski MA, Hewlins MJE. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway. Microbiology 1995;141: 385–91.
    • (1995) Microbiology , vol.141 , pp. 385-391
    • Dickinson, J.R.1    Sobanski, M.A.2    Hewlins, M.J.E.3
  • 21
    • 0033025514 scopus 로고    scopus 로고
    • Glucose uptake kinetics and transcription of HXTGenes in chemostat cultures of Saccharomyces cerevisiae
    • Diderich JA, Schepper M, van Hoek P et al. Glucose uptake kinetics and transcription of HXTGenes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 1999;274:15350–9.
    • (1999) J Biol Chem , vol.274 , pp. 15350-15359
    • Diderich, J.A.1    Schepper, M.2    Van Hoek, P.3
  • 22
    • 0018969294 scopus 로고
    • Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast
    • Entian K-D. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 1980;178:633–7.
    • (1980) Mol Gen Genet , vol.178 , pp. 633-637
    • Entian, K.-D.1
  • 23
    • 0021266044 scopus 로고
    • Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering catabolite repression
    • Entian K-D, Fröhlich K-U. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering catabolite repression. J Bacteriol 1984;158:29–35.
    • (1984) J Bacteriol , vol.158 , pp. 29-35
    • Entian, K.-D.1    Fröhlich, K.-U.2
  • 24
    • 34247580875 scopus 로고    scopus 로고
    • 25 yeast genetic strain and plasmid collections
    • Stansfield I, Stark MJR eds London: Academic Press
    • Entian K-D, Kötter P. 25 yeast genetic strain and plasmid collections. In: Stansfield I, Stark MJR (eds.) Methods in Microbiology, vol. 36. London: Academic Press, 2007, 629–66.
    • (2007) Methods in Microbiology , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 25
    • 0027504233 scopus 로고
    • Genetic and molecular characterization of Gal83: Its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae
    • Erickson JR, Johnston M. Genetic and molecular characterization of Gal83: Its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Genetics 1993;135:655–64.
    • (1993) Genetics , vol.135 , pp. 655-664
    • Erickson, J.R.1    Johnston, M.2
  • 26
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • Farwick A, Bruder S, Schadeweg V et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci USA 2014;111:5159–64.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3
  • 27
    • 84941740491 scopus 로고    scopus 로고
    • The need for biofuels as part of a low carbon energy future
    • Fulton LM, Lynd LR, Körner A et al. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Bioref 2015;9:476–83.
    • (2015) Biofuels Bioprod Bioref , vol.9 , pp. 476-483
    • Fulton, L.M.1    Lynd, L.R.2    Körner, A.3
  • 28
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol R 1998;62:334–61.
    • (1998) Microbiol Mol Biol R , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 29
    • 77953368385 scopus 로고    scopus 로고
    • Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
    • Garcia Sanchez R, Karhumaa K, Fonseca C et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010;3:13.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 13
    • Garcia Sanchez, R.1    Karhumaa, K.2    Fonseca, C.3
  • 30
    • 84884962157 scopus 로고    scopus 로고
    • Novel approach to engineer strains for simultaneous sugar utilization
    • Gawand P, Hyland P, Ekins A et al. Novel approach to engineer strains for simultaneous sugar utilization. Metab Eng 2013;20:63–72.
    • (2013) Metab Eng , vol.20 , pp. 63-72
    • Gawand, P.1    Hyland, P.2    Ekins, A.3
  • 31
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Guthrie C, Fink GR eds Academic Press
    • Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In: Guthrie C, Fink GR (eds.) Methods in Enzymology, vol. 350: Academic Press, 2002,87–96.
    • (2002) Methods in Enzymology , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 32
    • 84920729256 scopus 로고    scopus 로고
    • Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
    • Gombert AK, van Maris AJA. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 2015;33:81–86.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 81-86
    • Gombert, A.K.1    Van Maris, A.J.A.2
  • 33
    • 84901422880 scopus 로고    scopus 로고
    • Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
    • Gonçalves DL, Matsushika A, de Sales BB et al. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 2014;63:13–20.
    • (2014) Enzyme Microb Technol , vol.63 , pp. 13-20
    • Gonçalves, D.L.1    Matsushika, A.2    De Sales, B.B.3
  • 34
    • 85041369200 scopus 로고    scopus 로고
    • Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: Bioconversion from glucose
    • Gottardi M, Reifenrath M, Boles E et al. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Res 2017;17: fox035.
    • (2017) FEMS Yeast Res , vol.17 , pp. fox035
    • Gottardi, M.1    Reifenrath, M.2    Boles, E.3
  • 35
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska D, Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 2003;278:13984–8.
    • (2003) J Biol Chem , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 36
    • 33745737415 scopus 로고    scopus 로고
    • Membrane trafficking of yeast transporters: Mechanisms and physiological control of downregulation
    • Boles E, Krämer R eds. Berlin, Heidelberg: Springer
    • Haguenauer-Tsapis R, André B. Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. In: Boles E, Krämer R (eds). Molecular Mechanisms Controlling Transmembrane Transport. Berlin, Heidelberg: Springer, 2004,273–323.
    • (2004) Molecular Mechanisms Controlling Transmembrane Transport , pp. 273-323
    • Haguenauer-Tsapis, R.1    André, B.2
  • 37
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T, Becker J, Gárdonyi M et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002;148:2783–8.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gárdonyi, M.3
  • 38
    • 38849180187 scopus 로고    scopus 로고
    • Glucose utilization glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains
    • Heux S, Cadiere A, Dequin S. Glucose utilization glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res 2008;8:217–24.
    • (2008) FEMS Yeast Res , vol.8 , pp. 217-224
    • Heux, S.1    Cadiere, A.2    Dequin, S.3
  • 39
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • Hucka M, Finney A, Sauro HM et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003;19:524–31.
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1    Finney, A.2    Sauro, H.M.3
  • 40
    • 0030888109 scopus 로고    scopus 로고
    • The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
    • Huibregtse JM, Yang JC, Beaudenon SL. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA 1997;94:3656–61.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 3656-3661
    • Huibregtse, J.M.1    Yang, J.C.2    Beaudenon, S.L.3
  • 41
    • 85034424282 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae strains for second-generation ethanol production: From academic exploration to industrial implementation
    • Jansen MLA, Bracher JM, Papapetridis I et al. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017;17: fox044.
    • (2017) FEMS Yeast Res , vol.17 , pp. fox044
    • Jansen, M.L.A.1    Bracher, J.M.2    Papapetridis, I.3
  • 42
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
    • Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2002;2:277–82.
    • (2002) FEMS Yeast Res , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 43
    • 58349105807 scopus 로고    scopus 로고
    • The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells
    • Kaliszewski P, Zoładek T. The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 2008;55:649–62.
    • (2008) Acta Biochim Pol , vol.55 , pp. 649-662
    • Kaliszewski, P.1    Zoładek, T.2
  • 44
    • 44449171842 scopus 로고    scopus 로고
    • Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. Cerevisiae via expression of glucose transporter Sut1
    • Katahira S, Ito M, Takema H et al. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 2008;43:115–9.
    • (2008) Enzyme Microb Technol , vol.43 , pp. 115-119
    • Katahira, S.1    Ito, M.2    Takema, H.3
  • 45
    • 84862812426 scopus 로고    scopus 로고
    • Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol
    • Kim SR, Ha S-J, Wei N et al. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012;30:274–82.
    • (2012) Trends Biotechnol , vol.30 , pp. 274-282
    • Kim, S.R.1    Ha, S.-J.2    Wei, N.3
  • 46
    • 0036139158 scopus 로고    scopus 로고
    • Characterization of degradation products from alkaline wet oxidation of wheat straw
    • Klinke HB, Ahring BK, Schmidt AS et al. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technol 2002;82:15–26.
    • (2002) Bioresource Technol , vol.82 , pp. 15-26
    • Klinke, H.B.1    Ahring, B.K.2    Schmidt, A.S.3
  • 47
    • 84899904022 scopus 로고    scopus 로고
    • Yeast lipid metabolism at a glance
    • Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014;14:369–88.
    • (2014) FEMS Yeast Res , vol.14 , pp. 369-388
    • Klug, L.1    Daum, G.2
  • 48
    • 0032424416 scopus 로고    scopus 로고
    • Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis
    • Krampe S, Stamm O, Hollenberg CP et al. Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 1998;441:343–7.
    • (1998) FEBS Lett , vol.441 , pp. 343-347
    • Krampe, S.1    Stamm, O.2    Hollenberg, C.P.3
  • 49
    • 84877272995 scopus 로고    scopus 로고
    • A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
    • Kuijpers NG, Solis-Escalante D, Bosman L et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 2013;12:47.
    • (2013) Microb Cell Fact , vol.12 , pp. 47
    • Kuijpers, N.G.1    Solis-Escalante, D.2    Bosman, L.3
  • 50
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper M, Harhangi HR, Stave AK et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 2003;4:69–78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3
  • 51
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation
    • Kuyper M, Hartog MMP, Toirkens MJ et al. Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005a;5:399–409.
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.P.2    Toirkens, M.J.3
  • 52
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain
    • Kuyper M, Toirkens MJ, Diderich JA et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain. FEMS Yeast Res 2005b;5:925–34.
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3
  • 53
    • 0037209777 scopus 로고    scopus 로고
    • Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
    • Lee W-J, Kim M-D, Ryu Y-W et al. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biot 2002;60:186–91.
    • (2002) Appl Microbiol Biot , vol.60 , pp. 186-191
    • Lee, W.-J.1    Kim, M.-D.2    Ryu, Y.-W.3
  • 54
    • 85004045060 scopus 로고    scopus 로고
    • Ethanol production in Brazil: A bridge between science and industry
    • Lopes ML, Paulillo SCdL, Godoy A et al. Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 2016;47:64–76.
    • (2016) Braz J Microbiol , vol.47 , pp. 64-76
    • Lopes, M.L.1    Paulillo, S.C.D.L.2    Godoy, A.3
  • 55
  • 56
    • 75649125966 scopus 로고    scopus 로고
    • Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex
    • Mangat S, Chandrashekarappa D, McCartney RR et al. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex. Eukaryot Cell 2010;9:173–83.
    • (2010) Eukaryot Cell , vol.9 , pp. 173-183
    • Mangat, S.1    Chandrashekarappa, D.2    McCartney, R.R.3
  • 57
    • 84930638003 scopus 로고    scopus 로고
    • CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
    • Mans R, van Rossum HM, Wijsman M et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 2015;15:fov004.
    • (2015) FEMS Yeast Res , vol.15 , pp. fov004
    • Mans, R.1    Van Rossum, H.M.2    Wijsman, M.3
  • 58
    • 0019465012 scopus 로고
    • Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae
    • Matsumoto K, Toh-e A, Oshima Y. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Mol Cell Biol 1981;1:83–93.
    • (1981) Mol Cell Biol , vol.1 , pp. 83-93
    • Matsumoto, K.1    Tohe, A.2    Oshima, Y.3
  • 59
    • 85021642215 scopus 로고    scopus 로고
    • A design–build–test cycle using modeling and experiments reveals interdependen-cies between upper glycolysis and xylose uptake in recombinant S. Cerevisiae and improves predictive capabilities of large-scale kinetic models
    • Miskovic L, Alff-Tuomala S, Soh KC et al. A design–build–test cycle using modeling and experiments reveals interdependen-cies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models. Biotechnol Biofuels 2017;10:166.
    • (2017) Biotechnol Biofuels , vol.10 , pp. 166
    • Miskovic, L.1    Alff-Tuomala, S.2    Soh, K.C.3
  • 60
    • 50349099673 scopus 로고    scopus 로고
    • Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase
    • Momcilovic M, Iram SH, Liu Y et al. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J Biol Chem 2008;283:19521–9.
    • (2008) J Biol Chem , vol.283 , pp. 19521-19529
    • Momcilovic, M.1    Iram, S.H.2    Liu, Y.3
  • 61
    • 84959240103 scopus 로고    scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects
    • Moysés D, Reis V, Almeida J et al. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 2016;17:207.
    • (2016) Int J Mol Sci , vol.17 , pp. 207
    • Moysés, D.1    Reis, V.2    Almeida, J.3
  • 62
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
    • Nijkamp JF, van den Broek M, Datema E et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012;11:36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.F.1    Van Den Broek, M.2    Datema, E.3
  • 63
    • 85019889778 scopus 로고    scopus 로고
    • Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae
    • Nijland JG, Shin HY, Boender LGM et al. Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Appl Environ Microb 2017;83:95–117.
    • (2017) Appl Environ Microb , vol.83 , pp. 95-117
    • Nijland, J.G.1    Shin, H.Y.2    Boender, L.G.M.3
  • 64
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • Nijland JG, Shin HY, de Jong RM et al. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 2014;7:168.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    De Jong, R.M.3
  • 65
    • 84979587906 scopus 로고    scopus 로고
    • Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae
    • Nijland JG, Vos E, Shin HY et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. Biotechnol Biofuels 2016;9:158.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 158
    • Nijland, J.G.1    Vos, E.2    Shin, H.Y.3
  • 66
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Özcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol R 1999;63:554–69.
    • (1999) Microbiol Mol Biol R , vol.63 , pp. 554-569
    • Özcan, S.1    Johnston, M.2
  • 67
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 2000;74:25–33.
    • (2000) Bioresource Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 68
    • 85041436183 scopus 로고    scopus 로고
    • Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield
    • Papapetridis I, Goudriaan M, Vázquez Vitali M et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol Biofuels 2018;11:17.
    • (2018) Biotechnol Biofuels , vol.11 , pp. 17
    • Papapetridis, I.1    Goudriaan, M.2    Vázquez Vitali, M.3
  • 69
    • 84965052624 scopus 로고    scopus 로고
    • Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6
    • Papapetridis I, van Dijk M, Dobbe APA et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact 2016;15:67.
    • (2016) Microb Cell Fact , vol.15 , pp. 67
    • Papapetridis, I.1    Van Dijk, M.2    Dobbe, A.P.A.3
  • 70
    • 78649735310 scopus 로고    scopus 로고
    • Functional domains of yeast hexokinase 2
    • Peláez R, Herrero P, Moreno F. Functional domains of yeast hexokinase 2. Biochem J 2010;432:181–90.
    • (2010) Biochem J , vol.432 , pp. 181-190
    • Peláez, R.1    Herrero, P.2    Moreno, F.3
  • 71
    • 0034462087 scopus 로고    scopus 로고
    • Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae
    • Petit T, Diderich JA, Kruckeberg AL et al. Hexokinase regulates kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae. J Bacteriol 2000;182:6815–8.
    • (2000) J Bacteriol , vol.182 , pp. 6815-6818
    • Petit, T.1    Diderich, J.A.2    Kruckeberg, A.L.3
  • 72
    • 0034882829 scopus 로고    scopus 로고
    • Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in theHXK2 gene
    • Raamsdonk LM, Diderich JA, Kuiper A et al. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in theHXK2 gene. Yeast 2001;18:1023–33.
    • (2001) Yeast , vol.18 , pp. 1023-1033
    • Raamsdonk, L.M.1    Diderich, J.A.2    Kuiper, A.3
  • 73
    • 0030015273 scopus 로고    scopus 로고
    • Dual influence of the yeast Catlp (Snflp) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8
    • Rahner A, Schöler A, Martens E et al. Dual influence of the yeast Catlp (Snflp) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res 1996;24:2331–7.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2331-2337
    • Rahner, A.1    Schöler, A.2    Martens, E.3
  • 74
    • 0030891998 scopus 로고    scopus 로고
    • Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
    • Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 1997;245:324–33.
    • (1997) Eur J Biochem , vol.245 , pp. 324-333
    • Reifenberger, E.1    Boles, E.2    Ciriacy, M.3
  • 75
    • 84931567349 scopus 로고    scopus 로고
    • Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption
    • Reznicek O, Facey SJ, de Waal PP et al. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 2015;119:99–111.
    • (2015) J Appl Microbiol , vol.119 , pp. 99-111
    • Reznicek, O.1    Facey, S.J.2    De Waal, P.P.3
  • 76
    • 0034665041 scopus 로고    scopus 로고
    • Beta-subunits of Snf1 kinase are required for kinase function and substrate definition
    • Schmidt MC, McCartney RR. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 2000;19:4936–43.
    • (2000) EMBO J , vol.19 , pp. 4936-4943
    • Schmidt, M.C.1    McCartney, R.R.2
  • 77
    • 0037774738 scopus 로고    scopus 로고
    • Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae
    • Schüller H-J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003;43:139–60.
    • (2003) Curr Genet , vol.43 , pp. 139-160
    • Schüller, H.-J.1
  • 78
    • 79960454538 scopus 로고    scopus 로고
    • The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae
    • Shcherbik N, Pestov DG. The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae. RNA 2011;17:1422–8.
    • (2011) RNA , vol.17 , pp. 1422-1428
    • Shcherbik, N.1    Pestov, D.G.2
  • 79
    • 84939962188 scopus 로고    scopus 로고
    • Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae
    • Shen M-H, Song H, Li B-Z et al. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett 2015;37:1031–6.
    • (2015) Biotechnol Lett , vol.37 , pp. 1031-1036
    • Shen, M.-H.1    Song, H.2    Li, B.-Z.3
  • 80
    • 84870994085 scopus 로고    scopus 로고
    • An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
    • Shen Y, Chen X, Peng B et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biot 2012;96:1079–91.
    • (2012) Appl Microbiol Biot , vol.96 , pp. 1079-1091
    • Shen, Y.1    Chen, X.2    Peng, B.3
  • 81
    • 84959078116 scopus 로고    scopus 로고
    • An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae
    • Shin HY, Nijland JG, de Waal PP et al. An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 2015;8: 176.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 176
    • Shin, H.Y.1    Nijland, J.G.2    De Waal, P.P.3
  • 82
    • 84872424364 scopus 로고    scopus 로고
    • AmdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae
    • Solis-Escalante D, Kuijpers NGA, Bongaerts N et al. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 2013;13:126–39.
    • (2013) FEMS Yeast Res , vol.13 , pp. 126-139
    • Solis-Escalante, D.1    Kuijpers, N.G.A.2    Bongaerts, N.3
  • 83
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012;5:14.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 85
    • 65649130030 scopus 로고    scopus 로고
    • Energetic limits to metabolic flexibility: Responses of Saccharomyces cerevisiae to glucose-galactose transitions
    • van den Brink J, Akeroyd M, van der Hoeven R et al. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology 2009;155:1340–50.
    • (2009) Microbiology , vol.155 , pp. 1340-1350
    • Van Den Brink, J.1    Akeroyd, M.2    Van Der Hoeven, R.3
  • 86
    • 33750621979 scopus 로고    scopus 로고
    • Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status
    • van Maris AJA, Abbott DA, Bellissimi E et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw 2006;90:391–418.
    • (2006) Anton Leeuw , vol.90 , pp. 391-418
    • Van Maris, A.J.A.1    Abbott, D.A.2    Bellissimi, E.3
  • 87
    • 0025304034 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA et al. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Microbiology 1990;136:395–403.
    • (1990) Microbiology , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3
  • 88
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA et al. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992;8:501–17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3
  • 89
    • 85017464092 scopus 로고    scopus 로고
    • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
    • Verhoeven MD, Lee M, Kamoen L et al. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 2017;7:46155.
    • (2017) Sci Rep , vol.7 , pp. 46155
    • Verhoeven, M.D.1    Lee, M.2    Kamoen, L.3
  • 90
    • 0032403110 scopus 로고    scopus 로고
    • Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes
    • Vincent O, Carlson M. Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 1998;17:7002–8.
    • (1998) EMBO J , vol.17 , pp. 7002-7008
    • Vincent, O.1    Carlson, M.2
  • 91
    • 0033485516 scopus 로고    scopus 로고
    • Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4
    • Vincent O, Carlson M. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J 1999;18:6672–81.
    • (1999) EMBO J , vol.18 , pp. 6672-6681
    • Vincent, O.1    Carlson, M.2
  • 92
    • 0035338114 scopus 로고    scopus 로고
    • Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
    • Vincent O, Townley R, Kuchin S et al. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Gene Dev 2001;15:1104–14.
    • (2001) Gene Dev , vol.15 , pp. 1104-1114
    • Vincent, O.1    Townley, R.2    Kuchin, S.3
  • 93
    • 84934941110 scopus 로고    scopus 로고
    • Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform
    • Wei N, Oh EJ, Million G et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 2015;4:707–13.
    • (2015) ACS Synth Biol , vol.4 , pp. 707-713
    • Wei, N.1    Oh, E.J.2    Million, G.3
  • 94
    • 84908297746 scopus 로고    scopus 로고
    • Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules
    • Westman JO, Bonander N, Taherzadeh MJ et al. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnol Biofuels 2014;7:102.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 102
    • Westman, J.O.1    Bonander, N.2    Taherzadeh, M.J.3
  • 95
    • 0345732634 scopus 로고    scopus 로고
    • Mutations in the Gal83 glycogen-binding domain activate the Snf1/Gal83 kinase pathway by a glycogen-independent mechanism
    • Wiatrowski HA, van Denderen BJW, Berkey CD et al. Mutations in the Gal83 glycogen-binding domain activate the Snf1/Gal83 kinase pathway by a glycogen-independent mechanism. Mol Cell Biol 2004;24:352–61.
    • (2004) Mol Cell Biol , vol.24 , pp. 352-361
    • Wiatrowski, H.A.1    Van Denderen, B.J.W.2    Berkey, C.D.3
  • 96
    • 34547752339 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose
    • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microb 2007;73:4881–91.
    • (2007) Appl Environ Microb , vol.73 , pp. 4881-4891
    • Wisselink, H.W.1    Toirkens, M.J.2    Del Rosario Franco Berriel, M.3
  • 97
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink HW, Toirkens MJ, Wu Q et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microb 2009;75:907–14.
    • (2009) Appl Environ Microb , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3
  • 99
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng J-s, Wang BL et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012;14:611–22.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.2    Wang, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.