메뉴 건너뛰기




Volumn 11, Issue 1, 2018, Pages

Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

Author keywords

Anaerobic metabolism; Biofuels; CO2; Fermentation; NADH; NADPH; Redox cofactor balance; Yeast

Indexed keywords

BATCH CELL CULTURE; BIOETHANOL; BIOFUELS; BIOREACTORS; CARBON DIOXIDE; ENZYMES; ESCHERICHIA COLI; ETHANOL; FERMENTATION; GLUCOSE; GLYCEROL; GROWTH KINETICS; GROWTH RATE; METABOLIC ENGINEERING; METABOLISM; PHOTOSYNTHESIS;

EID: 85041436183     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-1001-z     Document Type: Article
Times cited : (52)

References (93)
  • 1
    • 36248991352 scopus 로고    scopus 로고
    • Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
    • Hermann BG, Blok K, Patel MK. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol. 2007;41:7915-21.
    • (2007) Environ Sci Technol , vol.41 , pp. 7915-7921
    • Hermann, B.G.1    Blok, K.2    Patel, M.K.3
  • 5
    • 84920729256 scopus 로고    scopus 로고
    • Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
    • Gombert AK, van Maris AJA. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol. 2015;33:81-6.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 81-86
    • Gombert, A.K.1    Van Maris, A.J.A.2
  • 8
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng. 2000;2:69-77.
    • (2000) Metab Eng , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 9
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • Van Dijken JP, Scheffers WA. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett. 1986;32:199-224.
    • (1986) FEMS Microbiol Lett , vol.32 , pp. 199-224
    • Van Dijken, J.P.1    Scheffers, W.A.2
  • 10
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990;136:395-403.
    • (1990) J Gen Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 11
    • 0024150892 scopus 로고
    • Assembly of phospholipids into cellular membranes: Biosynthesis, transmembrane movement and intracellular translocation
    • Bishop WR, Bell RM. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Ann Rev Cell Biol. 1988;4:579-610.
    • (1988) Ann Rev Cell Biol , vol.4 , pp. 579-610
    • Bishop, W.R.1    Bell, R.M.2
  • 12
    • 0034614454 scopus 로고    scopus 로고
    • 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles
    • Athenstaedt K, Daum G. 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem. 2000;275:235-40.
    • (2000) J Biol Chem , vol.275 , pp. 235-240
    • Athenstaedt, K.1    Daum, G.2
  • 13
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66:300-72.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 14
    • 0031474318 scopus 로고    scopus 로고
    • Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae
    • Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997;21:231-41.
    • (1997) FEMS Microbiol Rev , vol.21 , pp. 231-241
    • Nevoigt, E.1    Stahl, U.2
  • 16
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994;14:4135-44.
    • (1994) Mol Cell Biol , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 17
    • 0030908893 scopus 로고    scopus 로고
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997;16:2179-87.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 19
    • 0242475404 scopus 로고    scopus 로고
    • Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
    • Björkqvist S, Ansell R, Adler L, Lidén G. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol. 1997;63:128-32.
    • (1997) Appl Environ Microbiol , vol.63 , pp. 128-132
    • Björkqvist, S.1    Ansell, R.2    Adler, L.3    Lidén, G.4
  • 20
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe-Medina V, Almering MJH, van Maris AJA, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol. 2010;76:190-5.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 190-195
    • Guadalupe-Medina, V.1    Almering, M.J.H.2    Van Maris, A.J.A.3    Pronk, J.T.4
  • 21
    • 84890082751 scopus 로고    scopus 로고
    • Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations
    • Guadalupe-Medina V, Metz B, Oud B, van der Graaf CM, Mans R, Pronk JT, van Maris AJA. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Microb Biotechnol. 2014;7:44-53.
    • (2014) Microb Biotechnol , vol.7 , pp. 44-53
    • Guadalupe-Medina, V.1    Metz, B.2    Oud, B.3    Van Der Graaf, C.M.4    Mans, R.5    Pronk, J.T.6    Van Maris, A.J.A.7
  • 22
    • 85020425641 scopus 로고    scopus 로고
    • Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae
    • Papapetridis I, van Dijk M, van Maris AJA, Pronk JT. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae. Biotechnol Biofuels. 2017;10:107.
    • (2017) Biotechnol Biofuels , vol.10 , pp. 107
    • Papapetridis, I.1    Van Dijk, M.2    Van Maris, A.J.A.3    Pronk, J.T.4
  • 23
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 24
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 25
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng. 2006;8:102-11.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 26
    • 0033526123 scopus 로고    scopus 로고
    • Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
    • Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 1999;63:46-55.
    • (1999) Biotechnol Bioeng , vol.63 , pp. 46-55
    • Palmqvist, E.1    Grage, H.2    Meinander, N.Q.3    Hahn-Hägerdal, B.4
  • 27
    • 0031214487 scopus 로고    scopus 로고
    • Acetic acid - Friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae?
    • Taherzadeh MJ, Niklasson C, Lidén G. Acetic acid - friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci. 1997;52:2653-9.
    • (1997) Chem Eng Sci , vol.52 , pp. 2653-2659
    • Taherzadeh, M.J.1    Niklasson, C.2    Lidén, G.3
  • 29
    • 34247580875 scopus 로고    scopus 로고
    • 25 yeast genetic strain and plasmid collections
    • Entian K-D, Kötter P. 25 yeast genetic strain and plasmid collections. Methods Microbiol. 2007;36:629-66.
    • (2007) Methods Microbiol. , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 31
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 33
    • 84857995434 scopus 로고    scopus 로고
    • Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
    • Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng. 2012;14:104-11.
    • (2012) Metab Eng , vol.14 , pp. 104-111
    • Mikkelsen, M.D.1    Buron, L.D.2    Salomonsen, B.3    Olsen, C.E.4    Hansen, B.G.5    Mortensen, U.H.6    Halkier, B.A.7
  • 35
    • 60749120294 scopus 로고    scopus 로고
    • Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data
    • Knijnenburg TA, Daran J-MG, van den Broek MA, Daran-Lapujade P, de Winde JH, Pronk JT, Reinders MJT, Wessels LFA. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genom. 2009;10:53-53.
    • (2009) BMC Genom , vol.10 , pp. 53
    • Knijnenburg, T.A.1    Daran, J.-M.G.2    Van Den Broek, M.A.3    Daran-Lapujade, P.4    De Winde, J.H.5    Pronk, J.T.6    Reinders, M.J.T.7    Wessels, L.F.A.8
  • 36
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Daniel Gietz R, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Daniel Gietz, R.1    Woods, R.A.2
  • 38
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119-22.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 39
    • 84965052624 scopus 로고    scopus 로고
    • Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6
    • Papapetridis I, van Dijk M, Dobbe AP, Metz B, Pronk JT, van Maris AJA. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact. 2016;15:67.
    • (2016) Microb Cell Fact , vol.15 , pp. 67
    • Papapetridis, I.1    Van Dijk, M.2    Dobbe, A.P.3    Metz, B.4    Pronk, J.T.5    Van Maris, A.J.A.6
  • 40
    • 0038034719 scopus 로고    scopus 로고
    • Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae
    • Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ. Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng. 2003;83:395-9.
    • (2003) Biotechnol Bioeng , vol.83 , pp. 395-399
    • Mashego, M.R.1    Van Gulik, W.M.2    Vinke, J.L.3    Heijnen, J.J.4
  • 41
    • 0027112229 scopus 로고
    • In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms
    • Heijnen JJ, van Dijken JP. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng. 1992;39:833-58.
    • (1992) Biotechnol Bioeng , vol.39 , pp. 833-858
    • Heijnen, J.J.1    Van Dijken, J.P.2
  • 42
    • 0024615221 scopus 로고
    • Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • Postma E, Verduyn C, Scheffers WA, van Dijken JP. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989;55:468-77.
    • (1989) Appl Environ Microbiol , vol.55 , pp. 468-477
    • Postma, E.1    Verduyn, C.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 43
    • 0015412584 scopus 로고
    • Properties of phosphoribulokinase from Thiobacillus neapolitanus
    • MacElroy RD, Mack HM, Johnson EJ. Properties of phosphoribulokinase from Thiobacillus neapolitanus. J Bacteriol. 1972;112:532-8.
    • (1972) J Bacteriol , vol.112 , pp. 532-538
    • MacElroy, R.D.1    Mack, H.M.2    Johnson, E.J.3
  • 46
    • 0036490462 scopus 로고    scopus 로고
    • Improved flow cytometric analysis of the budding yeast cell cycle
    • Haase S, Reed S. Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle. 2002;1:132-6.
    • (2002) Cell Cycle , vol.1 , pp. 132-136
    • Haase, S.1    Reed, S.2
  • 48
    • 85017464092 scopus 로고    scopus 로고
    • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
    • Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran J-MG, van Maris AJA, Pronk JT. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep. 2017;7:46155.
    • (2017) Sci Rep , vol.7 , pp. 46155
    • Verhoeven, M.D.1    Lee, M.2    Kamoen, L.3    Van Den Broek, M.4    Janssen, D.B.5    Daran, J.-M.G.6    Van Maris, A.J.A.7    Pronk, J.T.8
  • 50
    • 77949587649 scopus 로고    scopus 로고
    • Fast and accurate long-read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589-95.
    • (2010) Bioinformatics , vol.26 , pp. 589-595
    • Li, H.1    Durbin, R.2
  • 53
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk JT. Auxotrophic yeast strains in fundamental and applied research. App Environ Microbiol. 2002;68:2095-100.
    • (2002) App Environ Microbiol , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 54
    • 84857053335 scopus 로고    scopus 로고
    • Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae
    • Da Silva NA, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 2012;12:197-214.
    • (2012) FEMS Yeast Res , vol.12 , pp. 197-214
    • Da Silva, N.A.1    Srikrishnan, S.2
  • 55
    • 84947279264 scopus 로고    scopus 로고
    • A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae
    • Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng. 2016;33:19-27.
    • (2016) Metab Eng , vol.33 , pp. 19-27
    • Shi, S.1    Liang, Y.2    Zhang, M.M.3    Ang, E.L.4    Zhao, H.5
  • 56
    • 33644980943 scopus 로고    scopus 로고
    • Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli
    • Parikh MR, Greene DN, Woods KK, Matsumura I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Protein Eng Des Sel. 2006;19:113-9.
    • (2006) Protein Eng des Sel , vol.19 , pp. 113-119
    • Parikh, M.R.1    Greene, D.N.2    Woods, K.K.3    Matsumura, I.4
  • 57
    • 0344518871 scopus 로고
    • Synthesis of spinach phosphoribulokinase and ribulose 1,5-bisphosphate in Escherichia coli
    • Hudson G, Morell M, Arvidsson Y, Andrews T. Synthesis of spinach phosphoribulokinase and ribulose 1,5-bisphosphate in Escherichia coli. Funct Plant Biol. 1992;19:213-21.
    • (1992) Funct Plant Biol , vol.19 , pp. 213-221
    • Hudson, G.1    Morell, M.2    Arvidsson, Y.3    Andrews, T.4
  • 58
    • 0028825813 scopus 로고
    • Protein burden in Zymomonas mobilis: Negative flux and growth control due to overproduction of glycolytic enzymes
    • Snoep JL, Yomano LP, Westerhoff HV, Ingram LO. Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology. 1995;141:2329-37.
    • (1995) Microbiology , vol.141 , pp. 2329-2337
    • Snoep, J.L.1    Yomano, L.P.2    Westerhoff, H.V.3    Ingram, L.O.4
  • 59
    • 80052705391 scopus 로고    scopus 로고
    • Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae
    • Hubmann G, Guillouet S, Nevoigt E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2011;77:5857-67.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5857-5867
    • Hubmann, G.1    Guillouet, S.2    Nevoigt, E.3
  • 60
    • 0034732068 scopus 로고    scopus 로고
    • Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis
    • Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast. 2000;16:463-74.
    • (2000) Yeast , vol.16 , pp. 463-474
    • Nissen, T.L.1    Hamann, C.W.2    Kielland-Brandt, M.C.3    Nielsen, J.4    Villadsen, J.5
  • 62
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, van Maris AJA. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng. 2010;12:537-51.
    • (2010) Metab Eng , vol.12 , pp. 537-551
    • Wisselink, H.W.1    Cipollina, C.2    Oud, B.3    Crimi, B.4    Heijnen, J.J.5    Pronk, J.T.6    Van Maris, A.J.A.7
  • 63
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol. 1995;61:4184-90.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttilä, M.3    Keränen, S.4    Hahn-Hägerdal, B.5
  • 64
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund M-F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast. 2005;22:359-68.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.-F.3
  • 65
    • 85019861990 scopus 로고    scopus 로고
    • Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts
    • Gorter de Vries AR, Pronk JT, Daran J-MG. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts. Appl Environ Microbiol. 2017;83:e03206-16.
    • (2017) Appl Environ Microbiol , vol.83 , pp. e03206-e03216
    • De Vries, A.R.1    Pronk, J.T.2    Daran, J.-M.G.3
  • 66
    • 0000528430 scopus 로고
    • The path of carbon in photosynthesis
    • Calvin M, Benson AA. The path of carbon in photosynthesis. Science. 1948;107:476-80.
    • (1948) Science , vol.107 , pp. 476-480
    • Calvin, M.1    Benson, A.A.2
  • 67
    • 84865289744 scopus 로고    scopus 로고
    • Improving carbon fixation pathways
    • Ducat DC, Silver PA. Improving carbon fixation pathways. Curr Opin Chem Biol. 2012;16:337-44.
    • (2012) Curr Opin Chem Biol , vol.16 , pp. 337-344
    • Ducat, D.C.1    Silver, P.A.2
  • 69
    • 77955388615 scopus 로고    scopus 로고
    • Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria
    • McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. PNAS. 2010;107:11669-75.
    • (2010) PNAS , vol.107 , pp. 11669-11675
    • McKinlay, J.B.1    Harwood, C.S.2
  • 72
    • 80052473597 scopus 로고    scopus 로고
    • Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae
    • Jain VK, Divol B, Prior BA, Bauer FF. Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2011;38:1427-35.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1427-1435
    • Jain, V.K.1    Divol, B.2    Prior, B.A.3    Bauer, F.F.4
  • 73
    • 84961223765 scopus 로고    scopus 로고
    • Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications
    • Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34:652-64.
    • (2016) Trends Biotechnol , vol.34 , pp. 652-664
    • Wu, G.1    Yan, Q.2    Jones, J.A.3    Tang, Y.J.4    Fong, S.S.5    Koffas, M.A.G.6
  • 76
    • 84859855738 scopus 로고    scopus 로고
    • Effective enhancement of Pseudomonas stutzeri d-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroEL-GroES
    • Jariyachawalid K, Laowanapiban P, Meevootisom V, Wiyakrutta S. Effective enhancement of Pseudomonas stutzeri d-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroEL-GroES. Microb Cell Fact. 2012;11:47.
    • (2012) Microb Cell Fact , vol.11 , pp. 47
    • Jariyachawalid, K.1    Laowanapiban, P.2    Meevootisom, V.3    Wiyakrutta, S.4
  • 77
    • 85041430999 scopus 로고    scopus 로고
    • The role of GroE chaperonins in developing biocatalysts for biofuel and chemical production
    • Xia PF, Turner TL, Jayakody LN. The role of GroE chaperonins in developing biocatalysts for biofuel and chemical production. Enz Eng. 2016;5:2.
    • (2016) Enz Eng , vol.5 , pp. 2
    • Xia, P.F.1    Turner, T.L.2    Jayakody, L.N.3
  • 79
    • 13844310035 scopus 로고    scopus 로고
    • Metabolic acclimatization: Preparing active dry yeast for fuel ethanol production
    • Bellissimi E, Ingledew WM. Metabolic acclimatization: preparing active dry yeast for fuel ethanol production. Process Biochem. 2005;40:2205-13.
    • (2005) Process Biochem , vol.40 , pp. 2205-2213
    • Bellissimi, E.1    Ingledew, W.M.2
  • 81
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol
    • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. App Environ Microbiol. 2003;69:4144-50.
    • (2003) App Environ Microbiol , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 82
    • 75649152860 scopus 로고    scopus 로고
    • Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations
    • Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell. 2010;21:198-211.
    • (2010) Mol Biol Cell , vol.21 , pp. 198-211
    • Boer, V.M.1    Crutchfield, C.A.2    Bradley, P.H.3    Botstein, D.4    Rabinowitz, J.D.5
  • 83
    • 0023705796 scopus 로고
    • Triosephosphate isomerase: Energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli
    • Nickbarg EB, Knowles JR. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli. Biochemistry. 1988;27:5939-47.
    • (1988) Biochemistry , vol.27 , pp. 5939-5947
    • Nickbarg, E.B.1    Knowles, J.R.2
  • 84
    • 79953882386 scopus 로고    scopus 로고
    • 13C flux analysis and metabolomics
    • 13C flux analysis and metabolomics. FEMS Yeast Res. 2011;11:263-72.
    • (2011) FEMS Yeast Res , vol.11 , pp. 263-272
    • Christen, S.1    Sauer, U.2
  • 85
    • 0032423288 scopus 로고    scopus 로고
    • Properties and functions of the thiamin diphosphate dependent enzyme transketolase
    • Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol. 1998;30:1297-318.
    • (1998) Int J Biochem Cell Biol , vol.30 , pp. 1297-1318
    • Schenk, G.1    Duggleby, R.G.2    Nixon, P.F.3
  • 86
    • 84887294397 scopus 로고    scopus 로고
    • Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae
    • Oud B, Guadalupe-Medina V, Nijkamp JF, De Ridder D, Pronk JT, van Maris AJA, Daran J-MG. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. PNAS. 2013;110:E4223-31.
    • (2013) PNAS , vol.110 , pp. E4223-E4231
    • Oud, B.1    Guadalupe-Medina, V.2    Nijkamp, J.F.3    De Ridder, D.4    Pronk, J.T.5    Van Maris, A.J.A.6    Daran, J.-M.G.7
  • 88
    • 13444283712 scopus 로고    scopus 로고
    • 5-fluoro-orotic acid induces chromosome alterations in Candida albicans
    • Wellington M, Rustchenko E. 5-fluoro-orotic acid induces chromosome alterations in Candida albicans. Yeast. 2005;15:57-70.
    • (2005) Yeast , vol.15 , pp. 57-70
    • Wellington, M.1    Rustchenko, E.2
  • 89
    • 84927920113 scopus 로고    scopus 로고
    • CRISPR - Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
    • Stovicek V, Borodina I, Forster J. CRISPR - Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun. 2015;2:13-22.
    • (2015) Metab Eng Commun , vol.2 , pp. 13-22
    • Stovicek, V.1    Borodina, I.2    Forster, J.3
  • 90
    • 0033199922 scopus 로고    scopus 로고
    • Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast
    • Shen B, Hohmann S, Jensen RG, Bohnert HJ. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 1999;121:45-52.
    • (1999) Plant Physiol , vol.121 , pp. 45-52
    • Shen, B.1    Hohmann, S.2    Jensen, R.G.3    Bohnert, H.J.4
  • 91
    • 0031883515 scopus 로고    scopus 로고
    • Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress
    • Hounsa C-G, Brandt EV, Thevelein J, Hohmann S, Prior BA. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology. 1998;144:671-80.
    • (1998) Microbiology , vol.144 , pp. 671-680
    • Hounsa, C.-G.1    Brandt, E.V.2    Thevelein, J.3    Hohmann, S.4    Prior, B.A.5
  • 92
    • 78650548180 scopus 로고    scopus 로고
    • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance
    • Guo Z-P, Zhang L, Ding Z-Y, Shi G-Y. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng. 2011;13:49-59.
    • (2011) Metab Eng , vol.13 , pp. 49-59
    • Guo, Z.-P.1    Zhang, L.2    Ding, Z.-Y.3    Shi, G.-Y.4
  • 93
    • 0028861099 scopus 로고
    • Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae
    • Hirayama T, Maeda T, Saito H, Shinozaki K. Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol Gen Genet. 1995;249:127-38.
    • (1995) Mol Gen Genet , vol.249 , pp. 127-138
    • Hirayama, T.1    Maeda, T.2    Saito, H.3    Shinozaki, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.