메뉴 건너뛰기




Volumn 15, Issue 1, 2016, Pages

Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6

Author keywords

6 phosphogluconate dehydrogenase; Acetic acid; NADH; NADPH; Redox metabolism; Yeast

Indexed keywords

ACETIC ACID; ALCOHOL; ALDEHYDE DEHYDROGENASE; GLUCOSE; GLYCEROL; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; PENTOSE PHOSPHATE; PHOSPHOGLUCONATE DEHYDROGENASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; ALDEHYDE DEHYDROGENASE (NAD(P)+);

EID: 84965052624     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-016-0465-z     Document Type: Article
Times cited : (52)

References (70)
  • 1
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994;14:4135-44.
    • (1994) Mol Cell Biol , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 2
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E, van Dijken JP, Pronk JT, van Maris AJA. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009;9:358-64.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    Dijken, J.P.2    Pronk, J.T.3    Maris, A.J.A.4
  • 3
    • 0024614329 scopus 로고
    • +) in acquired osmotolerance of Saccharomyces cerevisiae
    • +) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol. 1989;171:1087-92.
    • (1989) J Bacteriol , vol.171 , pp. 1087-1092
    • Blomberg, A.1    Adler, L.2
  • 4
    • 0020614458 scopus 로고
    • A theoretical analysis of NADPH production and consumption in yeasts
    • Bruinenberg PM, van Dijken JP, Scheffers WA. A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol. 1983;129:953-64.
    • (1983) J Gen Microbiol , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    Dijken, J.P.2    Scheffers, W.A.3
  • 5
    • 33746238073 scopus 로고    scopus 로고
    • Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes
    • Cambon B, Monteil V, Remize F, Camarasa C, Dequin S. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microb. 2006;72:4688-94.
    • (2006) Appl Environ Microb , vol.72 , pp. 4688-4694
    • Cambon, B.1    Monteil, V.2    Remize, F.3    Camarasa, C.4    Dequin, S.5
  • 6
    • 84862182291 scopus 로고    scopus 로고
    • A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
    • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng. 2012;14:366-79.
    • (2012) Metab Eng , vol.14 , pp. 366-379
    • Celton, M.1    Goelzer, A.2    Camarasa, C.3    Fromion, V.4    Dequin, S.5
  • 7
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genom. 2012;13:317.
    • (2012) BMC Genom , vol.13 , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3    Fromion, V.4    Camarasa, C.5    Dequin, S.6
  • 8
    • 0033978320 scopus 로고    scopus 로고
    • Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph
    • Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME. Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology. 2000;146:233-8.
    • (2000) Microbiology , vol.146 , pp. 233-238
    • Chistoserdova, L.1    Gomelsky, L.2    Vorholt, J.A.3    Gomelsky, M.4    Tsygankov, Y.D.5    Lidstrom, M.E.6
  • 9
    • 49649141520 scopus 로고
    • Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae
    • Ciriacy M. Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. Mutat Res-Fund Mol M. 1975;29:315-25.
    • (1975) Mutat Res-Fund Mol M , vol.29 , pp. 315-325
    • Ciriacy, M.1
  • 10
    • 84929095780 scopus 로고    scopus 로고
    • Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors
    • Cunha JT, Aguiar TQ, Romaní A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresour Technol. 2015;191:7-16.
    • (2015) Bioresour Technol , vol.191 , pp. 7-16
    • Cunha, J.T.1    Aguiar, T.Q.2    Romaní, A.3    Oliveira, C.4    Domingues, L.5
  • 12
    • 0037087377 scopus 로고    scopus 로고
    • Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene
    • Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barros Lopes M. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast. 2002;19:295-301.
    • (2002) Yeast , vol.19 , pp. 295-301
    • Eglinton, J.M.1    Heinrich, A.J.2    Pollnitz, A.P.3    Langridge, P.4    Henschke, P.A.5    Barros Lopes, M.6
  • 13
    • 34247580875 scopus 로고    scopus 로고
    • Yeast genetic strain and plasmid collections
    • Entian KD, Kötter P. Yeast genetic strain and plasmid collections. Method Microbiol. 2007;36:629-66.
    • (2007) Method Microbiol , vol.36 , pp. 629-666
    • Entian, K.D.1    Kötter, P.2
  • 15
    • 0032900245 scopus 로고    scopus 로고
    • Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae
    • Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT. Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;174:73-9.
    • (1999) FEMS Microbiol Lett , vol.174 , pp. 73-79
    • Flikweert, M.T.1    Swaaf, M.2    Dijken, J.P.3    Pronk, J.T.4
  • 16
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 17
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-49.
    • (2006) Appl Microbiol Biotechnol , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 18
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska D, Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem. 2003;278:13984-8.
    • (2003) J Biol Chem , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 19
    • 84890082751 scopus 로고    scopus 로고
    • Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations
    • Guadalupe-Medina V, Metz B, Oud B, van der Graaf CM, Mans R, Pronk JT, van Maris AJA. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Microb Biotechnol. 2014;7:44-53.
    • (2014) Microb Biotechnol , vol.7 , pp. 44-53
    • Guadalupe-Medina, V.1    Metz, B.2    Oud, B.3    Graaf, C.M.4    Mans, R.5    Pronk, J.T.6    Maris, A.J.A.7
  • 20
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe-Medina V, Almering MJH, van Maris AJA, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microb. 2010;76:190-5.
    • (2010) Appl Environ Microb , vol.76 , pp. 190-195
    • Guadalupe-Medina, V.1    Almering, M.J.H.2    Maris, A.J.A.3    Pronk, J.T.4
  • 23
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 25
    • 80052705391 scopus 로고    scopus 로고
    • Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae
    • Hubmann G, Guillouet S, Nevoigt E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2011;77:5857-67.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5857-5867
    • Hubmann, G.1    Guillouet, S.2    Nevoigt, E.3
  • 26
    • 0345329541 scopus 로고    scopus 로고
    • The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
    • Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast. 2003;20:1263-72.
    • (2003) Yeast , vol.20 , pp. 1263-1272
    • Jeppsson, M.1    Johansson, B.2    Jensen, P.R.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 27
    • 33646048327 scopus 로고    scopus 로고
    • Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
    • Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006;93:1196-206.
    • (2006) Biotechnol Bioeng , vol.93 , pp. 1196-1206
    • Keating, J.D.1    Panganiban, C.2    Mansfield, S.D.3
  • 28
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 30
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran J-M, Pronk JT, van Maris AJA. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng. 2014;21:46-59.
    • (2014) Metab Eng , vol.21 , pp. 46-59
    • Kozak, B.U.1    Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.-M.5    Pronk, J.T.6    Maris, A.J.A.7
  • 34
    • 0030792275 scopus 로고    scopus 로고
    • Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase
    • Michnick S, Roustan JL, Remize F, Barre P, Dequin S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783-93.
    • (1997) Yeast , vol.13 , pp. 783-793
    • Michnick, S.1    Roustan, J.L.2    Remize, F.3    Barre, P.4    Dequin, S.5
  • 35
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira N, Palma M, Guerreiro J, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.1    Palma, M.2    Guerreiro, J.3    Sa-Correia, I.4
  • 36
    • 85039858706 scopus 로고    scopus 로고
    • Müller UM, Wu L, Raamsdonk LM, Winkler AA. Acetyl-coa producing enzymes in yeast. PCT/EP2008/059119(WO2009013159 A2). 30-9-2010.
  • 37
    • 33747376106 scopus 로고    scopus 로고
    • Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae
    • Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol. 2006;72:5266-73.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 5266-5273
    • Nevoigt, E.1    Kohnke, J.2    Fischer, C.R.3    Alper, H.4    Stahl, U.5    Stephanopoulos, G.6
  • 38
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals
    • Nielsen J, Larsson C, van Maris AJA, Pronk JT. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398-404.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    Maris, A.J.A.3    Pronk, J.T.4
  • 40
    • 0000634712 scopus 로고
    • The contribution of glycerol to perceived viscosity and sweetness in white wine
    • Noble AC, Bursick GF. The contribution of glycerol to perceived viscosity and sweetness in white wine. Am J Enol Viticult. 1984;35:110-2.
    • (1984) Am J Enol Viticult , vol.35 , pp. 110-112
    • Noble, A.C.1    Bursick, G.F.2
  • 41
    • 0025670111 scopus 로고
    • Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
    • Nogae I, Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene. 1990;96:161-9.
    • (1990) Gene , vol.96 , pp. 161-169
    • Nogae, I.1    Johnston, M.2
  • 42
    • 84866648366 scopus 로고    scopus 로고
    • Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae
    • Orij R, Urbanus M, Vizeacoumar F, Giaever G, Boone C, Nislow C, Brul S, Smits G. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae. Genome Biol. 2012;13:R80.
    • (2012) Genome Biol , vol.13 , pp. R80
    • Orij, R.1    Urbanus, M.2    Vizeacoumar, F.3    Giaever, G.4    Boone, C.5    Nislow, C.6    Brul, S.7    Smits, G.8
  • 43
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74:17-24.
    • (2000) Bioresour Technol , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 44
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 45
    • 0025608322 scopus 로고
    • Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid
    • Pampulha ME, Loureiro-Dias MC. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol. 1990;34:375-80.
    • (1990) Appl Microbiol Biotechnol , vol.34 , pp. 375-380
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 46
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
    • Pampulha ME, Loureiro-Dias MC. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000;184:69-72.
    • (2000) FEMS Microbiol Lett , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 47
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review
    • Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2010;31:20-31.
    • (2010) Crit Rev Biotechnol , vol.31 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 48
    • 78149358619 scopus 로고    scopus 로고
    • Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans
    • Rauch B, Pahlke J, Schweiger P, Deppenmeier U. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol. 2010;88:711-8.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 711-718
    • Rauch, B.1    Pahlke, J.2    Schweiger, P.3    Deppenmeier, U.4
  • 49
    • 85039845043 scopus 로고    scopus 로고
    • Roubos JA, van Noel N, Peij VNNM. A method for achieving improved polypeptide expression. PCT/EP2007/055943(WO2008000632 A1). 3-1-2008.
  • 50
    • 4344560522 scopus 로고    scopus 로고
    • + -dependent Ald6p and Ald5p isoforms play a major role in acetate formation
    • + -dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology. 2004;150:2209-20.
    • (2004) Microbiology , vol.150 , pp. 2209-2220
    • Saint-Prix, F.1    Bönquist, L.2    Dequin, S.3
  • 51
    • 79960847197 scopus 로고    scopus 로고
    • Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids
    • Sanda T, Hasunuma T, Matsuda F, Kondo A. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol. 2011;102:7917-24.
    • (2011) Bioresour Technol , vol.102 , pp. 7917-7924
    • Sanda, T.1    Hasunuma, T.2    Matsuda, F.3    Kondo, A.4
  • 52
    • 84856028235 scopus 로고    scopus 로고
    • Production technologies for reduced alcoholic wines
    • Schmidtke LM, Blackman JW, Agboola SO. Production technologies for reduced alcoholic wines. J Food Sci. 2012;77:R25-41.
    • (2012) J Food Sci , vol.77 , pp. R25-R41
    • Schmidtke, L.M.1    Blackman, J.W.2    Agboola, S.O.3
  • 53
    • 0033199922 scopus 로고    scopus 로고
    • Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast
    • Shen B, Hohmann S, Jensen RG, Bohnert H. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 1999;121:45-52.
    • (1999) Plant Physiol , vol.121 , pp. 45-52
    • Shen, B.1    Hohmann, S.2    Jensen, R.G.3    Bohnert, H.4
  • 54
    • 0026782586 scopus 로고
    • Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-δ-lactone in Saccharomyces cerevisiae
    • Sinha A, Maitra PK. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-δ-lactone in Saccharomyces cerevisiae. J Gen Microbiol. 1992;138:1865-73.
    • (1992) J Gen Microbiol , vol.138 , pp. 1865-1873
    • Sinha, A.1    Maitra, P.K.2
  • 55
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • Smith J, van Rensburg E, Gorgens J. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014;14:41.
    • (2014) BMC Biotechnol , vol.14 , pp. 41
    • Smith, J.1    Rensburg, E.2    Gorgens, J.3
  • 58
    • 84902075335 scopus 로고    scopus 로고
    • The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae
    • Swinnen S, Fernández-Niño M, González-Ramos D, van Maris AJA, Nevoigt E. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res. 2014;14:642-53.
    • (2014) FEMS Yeast Res , vol.14 , pp. 642-653
    • Swinnen, S.1    Fernández-Niño, M.2    González-Ramos, D.3    Maris, A.J.A.4    Nevoigt, E.5
  • 59
    • 84882478354 scopus 로고    scopus 로고
    • Chapter 12-fermentation inhibitors in ethanol processes and different strategies to reduce their effects
    • Gnansounou APL, editor. Biofuels. Amsterdam: Academic Press
    • Taherzadeh MJ, Karimi K. Chapter 12-fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Gnansounou APL, editor. Biofuels. Amsterdam: Academic Press; 2011. p. 287-311.
    • (2011) , pp. 287-311
    • Taherzadeh, M.J.1    Karimi, K.2
  • 60
    • 0036209598 scopus 로고    scopus 로고
    • Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids
    • Thomas KC, Hynes SH, Ingledew WM. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol. 2002;68:1616-23.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1616-1623
    • Thomas, K.C.1    Hynes, S.H.2    Ingledew, W.M.3
  • 61
    • 84896919039 scopus 로고    scopus 로고
    • Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions
    • Tilloy V, Ortiz-Julien A, Dequin S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623-32.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 2623-2632
    • Tilloy, V.1    Ortiz-Julien, A.2    Dequin, S.3
  • 62
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem. 1996;271:28953-9.
    • (1996) J Biol Chem , vol.271 , pp. 28953-28959
    • Berg, M.A.1    Jong-Gubbels, P.2    Kortland, C.J.3    Dijken, J.P.4    Pronk, J.T.5    Steensma, H.Y.6
  • 63
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken JP, Scheffers WA. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett. 1986;32:199-224.
    • (1986) FEMS Microbiol Lett , vol.32 , pp. 199-224
    • Dijken, J.P.1    Scheffers, W.A.2
  • 66
    • 0025304034 scopus 로고
    • Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990;136:405-12.
    • (1990) J Gen Microbiol , vol.136 , pp. 405-412
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Dijken, J.P.4
  • 67
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Dijken, J.P.4
  • 68
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990;136:395-403.
    • (1990) J Gen Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Dijken, J.P.4
  • 69
    • 42049123423 scopus 로고    scopus 로고
    • Codon-optimized bacterial genes improve l-arabinose fermentation in recombinant Saccharomyces cerevisiae
    • Wiedemann B, Boles E. Codon-optimized bacterial genes improve l-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043-50.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2043-2050
    • Wiedemann, B.1    Boles, E.2
  • 70
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJA. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 2011;11:299-306.
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    Hulster, E.3    Wagner, A.4    Pronk, J.T.5    Maris, A.J.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.