-
1
-
-
76849102772
-
Biofuels and sustainability
-
Solomon BD. 2010. Biofuels and sustainability. Ann N Y Acad Sci 1185: 119-134. https://doi.org/10.1111/j.1749-6632.2009.05279.x.
-
(2010)
Ann N Y Acad Sci
, vol.1185
, pp. 119-134
-
-
Solomon, B.D.1
-
2
-
-
0034922896
-
Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration
-
Zaldivar J, Nielsen J, Olsson L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17-34.
-
(2001)
Appl Microbiol Biotechnol
, vol.56
, pp. 17-34
-
-
Zaldivar, J.1
Nielsen, J.2
Olsson, L.3
-
3
-
-
66449114749
-
Cellulosic biofuels
-
Carroll A, Somerville C. 2009. Cellulosic biofuels. Annu Rev Plant Biol 60:165-182. https://doi.org/10.1146/annurev.arplant.043008.092125.
-
(2009)
Annu Rev Plant Biol
, vol.60
, pp. 165-182
-
-
Carroll, A.1
Somerville, C.2
-
4
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kotter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776-783. https://doi.org/10.1007/BF00167144.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, pp. 776-783
-
-
Kotter, P.1
Ciriacy, M.2
-
5
-
-
0028365545
-
Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose
-
Tantirungkij M, Seki T, Yoshida T. 1994. Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose. Ann N Y Acad Sci 721:138-147. https://doi.org/10.1111/j.1749-6632.1994.tb47386.x.
-
(1994)
Ann N Y Acad Sci
, vol.721
, pp. 138-147
-
-
Tantirungkij, M.1
Seki, T.2
Yoshida, T.3
-
6
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69-78. https://doi.org/10.1016/S1567-1356(03)00141-7.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
Winkler, A.A.4
Jetten, M.S.5
de Laat, W.T.6
den Ridder, J.J.7
Op den Camp, H.J.8
van Dijken, J.P.9
Pronk, J.T.10
-
7
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain
-
Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925-934. https://doi.org/10.1016/j.femsyr.2005.04.004.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
van Dijken, J.P.5
Pronk, J.T.6
-
8
-
-
1642315441
-
Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
-
Kuyper M, Winkler AA, van Dijken JP, Pronk JT. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655-664. https://doi.org/10.1016/j.femsyr.2004.01.003.
-
(2004)
FEMS Yeast Res
, vol.4
, pp. 655-664
-
-
Kuyper, M.1
Winkler, A.A.2
van Dijken, J.P.3
Pronk, J.T.4
-
9
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148(Pt 9):2783-2788. https://doi.org/10.1099/00221287-148-9-2783.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
Hahn-Hagerdal, B.4
Boles, E.5
-
10
-
-
0028500159
-
Cost analysis of ethanol production from willow using recombinant Escherichia coli
-
von Sivers M, Zacchi G, Olsson L, Hahn-Hagerdal B. 1994. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555-560. https://doi.org/10.1021/bp00029a017.
-
(1994)
Biotechnol Prog
, vol.10
, pp. 555-560
-
-
von Sivers, M.1
Zacchi, G.2
Olsson, L.3
Hahn-Hagerdal, B.4
-
11
-
-
84862800120
-
A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
-
Young EM, Comer AD, Huang H, Alper HS. 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401-411. https://doi.org/10.1016/j.ymben.2012.03.004.
-
(2012)
Metab Eng
, vol.14
, pp. 401-411
-
-
Young, E.M.1
Comer, A.D.2
Huang, H.3
Alper, H.S.4
-
12
-
-
74049128960
-
An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli
-
Ren C, Chen T, Zhang J, Liang L, Lin Z. 2009. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microb Cell Fact 8:66. https://doi.org/10.1186/1475-2859-8-66.
-
(2009)
Microb Cell Fact
, vol.8
, pp. 66
-
-
Ren, C.1
Chen, T.2
Zhang, J.3
Liang, L.4
Lin, Z.5
-
13
-
-
77957892899
-
Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis
-
Du J, Li S, Zhao H. 2010. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6:2150-2156. https://doi.org/10.1039/c0mb00007h.
-
(2010)
Mol Biosyst
, vol.6
, pp. 2150-2156
-
-
Du, J.1
Li, S.2
Zhao, H.3
-
14
-
-
50849109464
-
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
-
Hector RE, Qureshi N, Hughes SR, Cotta MA. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675-684. https://doi.org/10.1007/s00253-008-1583-2.
-
(2008)
Appl Microbiol Biotechnol
, vol.80
, pp. 675-684
-
-
Hector, R.E.1
Qureshi, N.2
Hughes, S.R.3
Cotta, M.A.4
-
15
-
-
33646252240
-
Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter
-
Leandro MJ, Goncalves P, Spencer-Martins I. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395: 543-549. https://doi.org/10.1042/BJ20051465.
-
(2006)
Biochem J
, vol.395
, pp. 543-549
-
-
Leandro, M.J.1
Goncalves, P.2
Spencer-Martins, I.3
-
16
-
-
77951127992
-
Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
-
Runquist D, Hahn-Hagerdal B, Radstrom P. 2010. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5. https://doi.org/10.1186/1754-6834-3-5.
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 5
-
-
Runquist, D.1
Hahn-Hagerdal, B.2
Radstrom, P.3
-
17
-
-
84898053053
-
Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
-
Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159-5164. https://doi.org/10.1073/pnas.1323464111.
-
Proc Natl Acad Sci U S A
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
Oreb, M.4
Boles, E.5
-
18
-
-
84891922490
-
Rewiring yeast sugar transporter preference through modifying a conserved protein motif
-
Young EM, Tong A, Bui H, Spofford C, Alper HS. 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A 111:131-136. https://doi.org/10.1073/pnas.1311970111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 131-136
-
-
Young, E.M.1
Tong, A.2
Bui, H.3
Spofford, C.4
Alper, H.S.5
-
19
-
-
0029798141
-
The hexose transporter family of Saccharomyces cerevisiae
-
Kruckeberg AL. 1996. The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283-292. https://doi.org/10.1007/s002030050385.
-
(1996)
Arch Microbiol
, vol.166
, pp. 283-292
-
-
Kruckeberg, A.L.1
-
20
-
-
0030953385
-
The molecular genetics of hexose transport in yeasts
-
Boles E, Hollenberg CP. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85-111. https://doi.org/10.1111/j.1574-6976.1997.tb00346.x.
-
(1997)
FEMS Microbiol Rev
, vol.21
, pp. 85-111
-
-
Boles, E.1
Hollenberg, C.P.2
-
21
-
-
33947192191
-
Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
-
Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041-1052. https://doi.org/10.1007/s00253-006-0747-1.
-
(2007)
Appl Microbiol Biotechnol
, vol.74
, pp. 1041-1052
-
-
Saloheimo, A.1
Rauta, J.2
Stasyk, O.V.3
Sibirny, A.A.4
Penttila, M.5
Ruohonen, L.6
-
22
-
-
84988807185
-
Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
-
Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ. 2014. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 7:168. https://doi.org/10.1186/s13068-014-0168-9.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 168
-
-
Nijland, J.G.1
Shin, H.Y.2
de Jong, R.M.3
de Waal, P.P.4
Klaassen, P.5
Driessen, A.J.6
-
23
-
-
84931567349
-
Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption
-
Reznicek O, Facey SJ, de Waal PP, Teunissen AWRH, de Bont JAM, Nijland JG, Driessen AJM, Hauer B. 2015. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 119:99-111. https://doi.org/10.1111/jam.12825.
-
(2015)
J Appl Microbiol
, vol.119
, pp. 99-111
-
-
Reznicek, O.1
Facey, S.J.2
de Waal, P.P.3
Teunissen, A.W.R.H.4
de Bont, J.A.M.5
Nijland, J.G.6
Driessen, A.J.M.7
Hauer, B.8
-
24
-
-
84858729135
-
De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
-
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJT, Pronk JT, de Ridder D, Daran J-M. 2012. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36. https://doi.org/10.1186/1475-2859-11-36.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 36
-
-
Nijkamp, J.F.1
van den Broek, M.2
Datema, E.3
de Kok, S.4
Bosman, L.5
Luttik, M.A.6
Daran-Lapujade, P.7
Vongsangnak, W.8
Nielsen, J.9
Heijne, W.H.M.10
Klaassen, P.11
Paddon, C.J.12
Platt, D.13
Kötter, P.14
van Ham, R.C.15
Reinders, M.J.T.16
Pronk, J.T.17
de Ridder, D.18
Daran, J.-M.19
-
25
-
-
84922142944
-
The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene
-
Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S. 2014. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242-1255. https://doi.org/10.1016/j.bbagrm.2014.07.022.
-
(2014)
Biochim Biophys Acta
, vol.1839
, pp. 1242-1255
-
-
Fleming, A.B.1
Beggs, S.2
Church, M.3
Tsukihashi, Y.4
Pennings, S.5
-
26
-
-
84891841956
-
Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering
-
Zha J, Shen M, Hu M, Song H, Yuan Y. 2014. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41:27-39. https://doi.org/10.1007/s10295-013-1350-y.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 27-39
-
-
Zha, J.1
Shen, M.2
Hu, M.3
Song, H.4
Yuan, Y.5
-
27
-
-
0028969881
-
Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters
-
Tzamarias D, Struhl K. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821-831. https://doi.org/10.1101/gad.9.7.821.
-
(1995)
Genes Dev
, vol.9
, pp. 821-831
-
-
Tzamarias, D.1
Struhl, K.2
-
28
-
-
0034234638
-
Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes
-
Smith RL, Johnson AD. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325-330. https://doi.org/10.1016/S0968-0004(00)01592-9.
-
(2000)
Trends Biochem Sci
, vol.25
, pp. 325-330
-
-
Smith, R.L.1
Johnson, A.D.2
-
29
-
-
0025004155
-
Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
-
Nehlin JO, Ronne H. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 9:2891-2898.
-
(1990)
EMBO J
, vol.9
, pp. 2891-2898
-
-
Nehlin, J.O.1
Ronne, H.2
-
30
-
-
0028970369
-
Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
-
Treitel MA, Carlson M. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92: 3132-3136. https://doi.org/10.1073/pnas.92.8.3132.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 3132-3136
-
-
Treitel, M.A.1
Carlson, M.2
-
31
-
-
0030669030
-
Exploring the metabolic and genetic control of gene expression on a genomic scale
-
DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686. https://doi.org/10.1126/science.278.5338.680.
-
(1997)
Science
, vol.278
, pp. 680-686
-
-
DeRisi, J.L.1
Iyer, V.R.2
Brown, P.O.3
-
32
-
-
84917694521
-
Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8
-
Chujo M, Yoshida S, Ota A, Murata K, Kawai S. 2015. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81:9-16. https://doi.org/10.1128/AEM.02906-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 9-16
-
-
Chujo, M.1
Yoshida, S.2
Ota, A.3
Murata, K.4
Kawai, S.5
-
33
-
-
0021165532
-
Flocculation of Saccharomyces cerevisiae tup1 mutants
-
Lipke PN, Hull-Pillsbury C. 1984. Flocculation of Saccharomyces cerevisiae tup1 mutants. J Bacteriol 159:797-799.
-
(1984)
J Bacteriol
, vol.159
, pp. 797-799
-
-
Lipke, P.N.1
Hull-Pillsbury, C.2
-
34
-
-
82955217673
-
The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
-
Wong KH, Struhl K. 2011. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525-2539. https://doi.org/10.1101/gad.179275.111.
-
(2011)
Genes Dev
, vol.25
, pp. 2525-2539
-
-
Wong, K.H.1
Struhl, K.2
-
35
-
-
84961730711
-
Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters
-
Jordan P, Choe J-Y, Boles E, Oreb M. 2016. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502. https://doi.org/10.1038/srep23502.
-
(2016)
Sci Rep
, vol.6
, pp. 23502
-
-
Jordan, P.1
Choe, J.-Y.2
Boles, E.3
Oreb, M.4
-
37
-
-
0035650510
-
Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
-
Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B. 2001. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668-5674. https://doi.org/10.1128/AEM.67.12.5668-5674.2001.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 5668-5674
-
-
Traff, K.L.1
Otero Cordero, R.R.2
van Zyl, W.H.3
Hahn-Hagerdal, B.4
-
38
-
-
84959078116
-
An engineered cryptic Hxt11 sugar transporter facilitates glucosexylose co-consumption in Saccharomyces cerevisiae
-
Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJM. 2015. An engineered cryptic Hxt11 sugar transporter facilitates glucosexylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 8:176. https://doi.org/10.1186/s13068-015-0360-6.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 176
-
-
Shin, H.Y.1
Nijland, J.G.2
de Waal, P.P.3
de Jong, R.M.4
Klaassen, P.5
Driessen, A.J.M.6
-
39
-
-
0034461448
-
The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism
-
Luttik MA, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT. 2000. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182:7007-7013. https://doi.org/10.1128/JB.182.24.7007-7013.2000.
-
(2000)
J Bacteriol
, vol.182
, pp. 7007-7013
-
-
Luttik, M.A.1
Kötter, P.2
Salomons, F.A.3
van der Klei, I.J.4
van Dijken, J.P.5
Pronk, J.T.6
-
40
-
-
84930638003
-
CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran J-MG. 2015. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov004-fov004. https://doi.org/10.1093/femsyr/fov004.
-
(2015)
FEMS Yeast Res
, vol.15
-
-
Mans, R.1
van Rossum, H.M.2
Wijsman, M.3
Backx, A.4
Kuijpers, N.G.A.5
van den Broek, M.6
Daran-Lapujade, P.7
Pronk, J.T.8
van Maris, A.J.A.9
Daran, J.-M.G.10
|