메뉴 건너뛰기




Volumn 83, Issue 11, 2017, Pages

Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae

Author keywords

Evolutionary engineering; Sugar transporter; Transcriptome; Xylose transport; Yeast

Indexed keywords

CELLS; CYTOLOGY; GENE EXPRESSION; GENES; GLUCOSE; METABOLISM; PHYSIOLOGY; WALL FUNCTION; YEAST;

EID: 85019889778     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00095-17     Document Type: Article
Times cited : (33)

References (40)
  • 1
    • 76849102772 scopus 로고    scopus 로고
    • Biofuels and sustainability
    • Solomon BD. 2010. Biofuels and sustainability. Ann N Y Acad Sci 1185: 119-134. https://doi.org/10.1111/j.1749-6632.2009.05279.x.
    • (2010) Ann N Y Acad Sci , vol.1185 , pp. 119-134
    • Solomon, B.D.1
  • 2
    • 0034922896 scopus 로고    scopus 로고
    • Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration
    • Zaldivar J, Nielsen J, Olsson L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17-34.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 17-34
    • Zaldivar, J.1    Nielsen, J.2    Olsson, L.3
  • 3
    • 66449114749 scopus 로고    scopus 로고
    • Cellulosic biofuels
    • Carroll A, Somerville C. 2009. Cellulosic biofuels. Annu Rev Plant Biol 60:165-182. https://doi.org/10.1146/annurev.arplant.043008.092125.
    • (2009) Annu Rev Plant Biol , vol.60 , pp. 165-182
    • Carroll, A.1    Somerville, C.2
  • 4
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776-783. https://doi.org/10.1007/BF00167144.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 5
    • 0028365545 scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose
    • Tantirungkij M, Seki T, Yoshida T. 1994. Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose. Ann N Y Acad Sci 721:138-147. https://doi.org/10.1111/j.1749-6632.1994.tb47386.x.
    • (1994) Ann N Y Acad Sci , vol.721 , pp. 138-147
    • Tantirungkij, M.1    Seki, T.2    Yoshida, T.3
  • 7
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain
    • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925-934. https://doi.org/10.1016/j.femsyr.2005.04.004.
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 8
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
    • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655-664. https://doi.org/10.1016/j.femsyr.2004.01.003.
    • (2004) FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    van Dijken, J.P.3    Pronk, J.T.4
  • 9
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148(Pt 9):2783-2788. https://doi.org/10.1099/00221287-148-9-2783.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 10
    • 0028500159 scopus 로고
    • Cost analysis of ethanol production from willow using recombinant Escherichia coli
    • von Sivers M, Zacchi G, Olsson L, Hahn-Hagerdal B. 1994. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555-560. https://doi.org/10.1021/bp00029a017.
    • (1994) Biotechnol Prog , vol.10 , pp. 555-560
    • von Sivers, M.1    Zacchi, G.2    Olsson, L.3    Hahn-Hagerdal, B.4
  • 11
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • Young EM, Comer AD, Huang H, Alper HS. 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401-411. https://doi.org/10.1016/j.ymben.2012.03.004.
    • (2012) Metab Eng , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4
  • 12
    • 74049128960 scopus 로고    scopus 로고
    • An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli
    • Ren C, Chen T, Zhang J, Liang L, Lin Z. 2009. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microb Cell Fact 8:66. https://doi.org/10.1186/1475-2859-8-66.
    • (2009) Microb Cell Fact , vol.8 , pp. 66
    • Ren, C.1    Chen, T.2    Zhang, J.3    Liang, L.4    Lin, Z.5
  • 13
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • Du J, Li S, Zhao H. 2010. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6:2150-2156. https://doi.org/10.1039/c0mb00007h.
    • (2010) Mol Biosyst , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 14
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • Hector RE, Qureshi N, Hughes SR, Cotta MA. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675-684. https://doi.org/10.1007/s00253-008-1583-2.
    • (2008) Appl Microbiol Biotechnol , vol.80 , pp. 675-684
    • Hector, R.E.1    Qureshi, N.2    Hughes, S.R.3    Cotta, M.A.4
  • 15
    • 33646252240 scopus 로고    scopus 로고
    • Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter
    • Leandro MJ, Goncalves P, Spencer-Martins I. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395: 543-549. https://doi.org/10.1042/BJ20051465.
    • (2006) Biochem J , vol.395 , pp. 543-549
    • Leandro, M.J.1    Goncalves, P.2    Spencer-Martins, I.3
  • 16
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D, Hahn-Hagerdal B, Radstrom P. 2010. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5. https://doi.org/10.1186/1754-6834-3-5.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 5
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radstrom, P.3
  • 17
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159-5164. https://doi.org/10.1073/pnas.1323464111.
    • Proc Natl Acad Sci U S A , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 18
    • 84891922490 scopus 로고    scopus 로고
    • Rewiring yeast sugar transporter preference through modifying a conserved protein motif
    • Young EM, Tong A, Bui H, Spofford C, Alper HS. 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A 111:131-136. https://doi.org/10.1073/pnas.1311970111.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 131-136
    • Young, E.M.1    Tong, A.2    Bui, H.3    Spofford, C.4    Alper, H.S.5
  • 19
    • 0029798141 scopus 로고    scopus 로고
    • The hexose transporter family of Saccharomyces cerevisiae
    • Kruckeberg AL. 1996. The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283-292. https://doi.org/10.1007/s002030050385.
    • (1996) Arch Microbiol , vol.166 , pp. 283-292
    • Kruckeberg, A.L.1
  • 20
    • 0030953385 scopus 로고    scopus 로고
    • The molecular genetics of hexose transport in yeasts
    • Boles E, Hollenberg CP. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85-111. https://doi.org/10.1111/j.1574-6976.1997.tb00346.x.
    • (1997) FEMS Microbiol Rev , vol.21 , pp. 85-111
    • Boles, E.1    Hollenberg, C.P.2
  • 21
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
    • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041-1052. https://doi.org/10.1007/s00253-006-0747-1.
    • (2007) Appl Microbiol Biotechnol , vol.74 , pp. 1041-1052
    • Saloheimo, A.1    Rauta, J.2    Stasyk, O.V.3    Sibirny, A.A.4    Penttila, M.5    Ruohonen, L.6
  • 22
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ. 2014. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 7:168. https://doi.org/10.1186/s13068-014-0168-9.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    de Jong, R.M.3    de Waal, P.P.4    Klaassen, P.5    Driessen, A.J.6
  • 25
    • 84922142944 scopus 로고    scopus 로고
    • The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene
    • Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S. 2014. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242-1255. https://doi.org/10.1016/j.bbagrm.2014.07.022.
    • (2014) Biochim Biophys Acta , vol.1839 , pp. 1242-1255
    • Fleming, A.B.1    Beggs, S.2    Church, M.3    Tsukihashi, Y.4    Pennings, S.5
  • 26
    • 84891841956 scopus 로고    scopus 로고
    • Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering
    • Zha J, Shen M, Hu M, Song H, Yuan Y. 2014. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41:27-39. https://doi.org/10.1007/s10295-013-1350-y.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 27-39
    • Zha, J.1    Shen, M.2    Hu, M.3    Song, H.4    Yuan, Y.5
  • 27
    • 0028969881 scopus 로고
    • Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters
    • Tzamarias D, Struhl K. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821-831. https://doi.org/10.1101/gad.9.7.821.
    • (1995) Genes Dev , vol.9 , pp. 821-831
    • Tzamarias, D.1    Struhl, K.2
  • 28
    • 0034234638 scopus 로고    scopus 로고
    • Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes
    • Smith RL, Johnson AD. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325-330. https://doi.org/10.1016/S0968-0004(00)01592-9.
    • (2000) Trends Biochem Sci , vol.25 , pp. 325-330
    • Smith, R.L.1    Johnson, A.D.2
  • 29
    • 0025004155 scopus 로고
    • Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
    • Nehlin JO, Ronne H. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 9:2891-2898.
    • (1990) EMBO J , vol.9 , pp. 2891-2898
    • Nehlin, J.O.1    Ronne, H.2
  • 30
    • 0028970369 scopus 로고
    • Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
    • Treitel MA, Carlson M. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92: 3132-3136. https://doi.org/10.1073/pnas.92.8.3132.
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 3132-3136
    • Treitel, M.A.1    Carlson, M.2
  • 31
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686. https://doi.org/10.1126/science.278.5338.680.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 32
    • 84917694521 scopus 로고    scopus 로고
    • Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8
    • Chujo M, Yoshida S, Ota A, Murata K, Kawai S. 2015. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81:9-16. https://doi.org/10.1128/AEM.02906-14.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 9-16
    • Chujo, M.1    Yoshida, S.2    Ota, A.3    Murata, K.4    Kawai, S.5
  • 33
    • 0021165532 scopus 로고
    • Flocculation of Saccharomyces cerevisiae tup1 mutants
    • Lipke PN, Hull-Pillsbury C. 1984. Flocculation of Saccharomyces cerevisiae tup1 mutants. J Bacteriol 159:797-799.
    • (1984) J Bacteriol , vol.159 , pp. 797-799
    • Lipke, P.N.1    Hull-Pillsbury, C.2
  • 34
    • 82955217673 scopus 로고    scopus 로고
    • The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
    • Wong KH, Struhl K. 2011. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525-2539. https://doi.org/10.1101/gad.179275.111.
    • (2011) Genes Dev , vol.25 , pp. 2525-2539
    • Wong, K.H.1    Struhl, K.2
  • 35
    • 84961730711 scopus 로고    scopus 로고
    • Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters
    • Jordan P, Choe J-Y, Boles E, Oreb M. 2016. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502. https://doi.org/10.1038/srep23502.
    • (2016) Sci Rep , vol.6 , pp. 23502
    • Jordan, P.1    Choe, J.-Y.2    Boles, E.3    Oreb, M.4
  • 36
  • 37
    • 0035650510 scopus 로고    scopus 로고
    • Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
    • Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B. 2001. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668-5674. https://doi.org/10.1128/AEM.67.12.5668-5674.2001.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 5668-5674
    • Traff, K.L.1    Otero Cordero, R.R.2    van Zyl, W.H.3    Hahn-Hagerdal, B.4
  • 38
    • 84959078116 scopus 로고    scopus 로고
    • An engineered cryptic Hxt11 sugar transporter facilitates glucosexylose co-consumption in Saccharomyces cerevisiae
    • Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJM. 2015. An engineered cryptic Hxt11 sugar transporter facilitates glucosexylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 8:176. https://doi.org/10.1186/s13068-015-0360-6.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 176
    • Shin, H.Y.1    Nijland, J.G.2    de Waal, P.P.3    de Jong, R.M.4    Klaassen, P.5    Driessen, A.J.M.6
  • 39
    • 0034461448 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism
    • Luttik MA, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT. 2000. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182:7007-7013. https://doi.org/10.1128/JB.182.24.7007-7013.2000.
    • (2000) J Bacteriol , vol.182 , pp. 7007-7013
    • Luttik, M.A.1    Kötter, P.2    Salomons, F.A.3    van der Klei, I.J.4    van Dijken, J.P.5    Pronk, J.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.