메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models

Author keywords

Bioethanol; Hexokinase; HXK2 deletion; Large scale kinetic models; Metabolic control analysis; S. cerevisiae; Xylose utilization

Indexed keywords

BIOETHANOL; BIOREACTORS; COMPLEX NETWORKS; ENZYMES; FERMENTATION; GLUCOSE; KINETIC PARAMETERS; KINETICS; METABOLIC ENGINEERING; METABOLISM; MODEL BUILDINGS; PATHOLOGY; PHYSIOLOGY; POPULATION STATISTICS; RISK ANALYSIS; RISK ASSESSMENT; YEAST;

EID: 85021642215     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0838-5     Document Type: Article
Times cited : (33)

References (89)
  • 2
    • 84877583888 scopus 로고    scopus 로고
    • Systems metabolic engineering: The creation of microbial cell factories by rational metabolic design and evolution
    • 1:CAS:528:DC%2BC2MXjsl2qu7c%3D
    • Furusawa C, Horinouchi T, Hirasawa T, Shimizu H. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution. Adv Biochem Eng Biotechnol. 2013;131:1-23. doi: 10.1007/10-2012-137.
    • (2013) Adv Biochem Eng Biotechnol , vol.131 , pp. 1-23
    • Furusawa, C.1    Horinouchi, T.2    Hirasawa, T.3    Shimizu, H.4
  • 3
    • 0034071629 scopus 로고    scopus 로고
    • Metabolic engineering applications to renewable resource utilization
    • 1:CAS:528:DC%2BD3cXisFyns7w%3D
    • Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 2000;11(2):187-98.
    • (2000) Curr Opin Biotechnol , vol.11 , Issue.2 , pp. 187-198
    • Aristidou, A.1    Penttila, M.2
  • 4
    • 79959461127 scopus 로고    scopus 로고
    • Metabolic engineering from retrofitting to green field
    • Nielsen LK. Metabolic engineering from retrofitting to green field. Nat Chem Biol. 2011;7(7):407-8. doi: 10.1038/Nchembio.601.
    • (2011) Nat Chem Biol , vol.7 , Issue.7 , pp. 407-408
    • Nielsen, L.K.1
  • 5
    • 0025633861 scopus 로고
    • Isolation and characterization of the Pichia-stipitis xylitol dehydrogenase gene, Xyl2, and construction of a xylose-utilizing Saccharomyces-cerevisiae transformant
    • 1:STN:280:DyaK3M7mvVaqtA%3D%3D
    • Kotter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia-stipitis xylitol dehydrogenase gene, Xyl2, and construction of a xylose-utilizing Saccharomyces-cerevisiae transformant. Curr Genet. 1990;18(6):493-500.
    • (1990) Curr Genet , vol.18 , Issue.6 , pp. 493-500
    • Kotter, P.1    Amore, R.2    Hollenberg, C.P.3    Ciriacy, M.4
  • 6
    • 78649701348 scopus 로고    scopus 로고
    • Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
    • 1:CAS:528:DC%2BC3cXhs1elsbrN
    • Klimacek M, Krahulec S, Sauer U, Nidetzky B. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol. 2010;76(22):7566-74. doi: 10.1128/Aem.01787-10.
    • (2010) Appl Environ Microbiol , vol.76 , Issue.22 , pp. 7566-7574
    • Klimacek, M.1    Krahulec, S.2    Sauer, U.3    Nidetzky, B.4
  • 7
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact. 2008;7:9. doi: 10.1186/1475-2859-7-9.
    • (2008) Microb Cell Fact , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 8
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 2003;4(1):69-78. doi: 10.1016/S1567-1356(03)00141-7.
    • (2003) FEMS Yeast Res , vol.4 , Issue.1 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.M.5    De Laat, W.T.A.M.6
  • 9
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biot. 2009;82(6):1067-78. doi: 10.1007/S00253-008-1794-6.
    • (2009) Appl Microbiol Biot. , vol.82 , Issue.6 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6
  • 10
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75(8):2304-11. doi: 10.1128/Aem.02522-08.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.8 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 11
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Sanchez RG, Hahn-Hagerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories. 2007. doi: 10.1186/1475-2859-6-5.
    • (2007) Microbial Cell Factories
    • Karhumaa, K.1    Sanchez, R.G.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 12
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkanen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng. 2003;5(1):16-31. doi: 10.1016/S1096-7176(02)00012-5.
    • (2003) Metab Eng , vol.5 , Issue.1 , pp. 16-31
    • Pitkanen, J.P.1    Aristidou, A.2    Salusjarvi, L.3    Ruohonen, L.4    Penttila, M.5
  • 13
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol. 2004;63(5):495-509. doi: 10.1007/S00253-003-1450-0.
    • (2004) Appl Microbiol Biotechnol , vol.63 , Issue.5 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 14
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • 1:CAS:528:DC%2BD38Xnt1elurk%3D
    • Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148:2783-8.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 15
    • 0038363853 scopus 로고    scopus 로고
    • Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
    • Gardonyi M, Jeppsson M, Liden G, Gorwa-Grausland MF, Hahn-Hagerdal B. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng. 2003;82(7):818-24. doi: 10.1002/Bit.10631.
    • (2003) Biotechnol Bioeng , vol.82 , Issue.7 , pp. 818-824
    • Gardonyi, M.1    Jeppsson, M.2    Liden, G.3    Gorwa-Grausland, M.F.4    Hahn-Hagerdal, B.5
  • 16
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces-cerevisiae
    • Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces-cerevisiae. Appl Microbiol Biotechnol. 1993;38(6):776-83.
    • (1993) Appl Microbiol Biotechnol , vol.38 , Issue.6 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 17
    • 84955276048 scopus 로고    scopus 로고
    • Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    • Apel AR, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 2016. doi: 10.1038/srep19512.
    • (2016) Sci Rep.
    • Apel, A.R.1    Ouellet, M.2    Szmidt-Middleton, H.3    Keasling, J.D.4    Mukhopadhyay, A.5
  • 18
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3sXitVKgtL0%3D
    • Jeppsson M, Traff K, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2003;3(2):167-75.
    • (2003) FEMS Yeast Res , vol.3 , Issue.2 , pp. 167-175
    • Jeppsson, M.1    Traff, K.2    Johansson, B.3    Hahn-Hagerdal, B.4    Gorwa-Grauslund, M.F.5
  • 19
    • 1242284461 scopus 로고    scopus 로고
    • Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae
    • 1:STN:280:DC%2BD2c%2FlsVKmsA%3D%3D
    • Traff-Bjerre KL, Jeppsson M, Hahn-Hagerdal B, Gorwa-Grauslund MF. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast. 2004;21(2):141-50.
    • (2004) Yeast , vol.21 , Issue.2 , pp. 141-150
    • Traff-Bjerre, K.L.1    Jeppsson, M.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 20
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
    • Toivari MH, Aristidou A, Ruohonen L, Penttila M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng. 2001;3(3):236-49. doi: 10.1006/Mben.2000.0191.
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttila, M.4
  • 21
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim SR, Ha SJ, Kong II, Jin YS. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng. 2012;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001.
    • (2012) Metab Eng , vol.14 , Issue.4 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 22
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • 1:CAS:528:DC%2BD38XivFGltrc%3D
    • Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol. 2002;68(4):1604-9.
    • (2002) Appl Environ Microbiol , vol.68 , Issue.4 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 23
    • 84870704590 scopus 로고    scopus 로고
    • Systems metabolic engineering, industrial biotechnology and microbial cell factories
    • Lee SY, Mattanovich D, Villaverde A. Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microbial Cell Factories. 2012;11:156. doi: 10.1186/1475-2859-11-156.
    • (2012) Microbial Cell Factories , vol.11 , pp. 156
    • Lee, S.Y.1    Mattanovich, D.2    Villaverde, A.3
  • 24
    • 84940773663 scopus 로고    scopus 로고
    • Rites of passage: Requirements and standards for building kinetic models of metabolic phenotypes
    • Miskovic L, Tokic M, Fengos G, Hatzimanikatis V. Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Curr Opin Biotechnol. 2015;36:1-8.
    • (2015) Curr Opin Biotechnol , vol.36 , pp. 1-8
    • Miskovic, L.1    Tokic, M.2    Fengos, G.3    Hatzimanikatis, V.4
  • 25
    • 0015824267 scopus 로고
    • The control of flux
    • 1:STN:280:DyaE2c%2Fms12hug%3D%3D
    • Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65-104.
    • (1973) Symp Soc Exp Biol , vol.27 , pp. 65-104
    • Kacser, H.1    Burns, J.A.2
  • 26
    • 0035812350 scopus 로고    scopus 로고
    • The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
    • Eliasson A, Hofmeyr JHS, Pedler S, Hahn-Hagerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol. 2001;29(4-5):288-97. doi: 10.1016/S0141-0229(01)00386-6.
    • (2001) Enzyme Microb Technol , vol.29 , Issue.4-5 , pp. 288-297
    • Eliasson, A.1    Hofmeyr, J.H.S.2    Pedler, S.3    Hahn-Hagerdal, B.4
  • 27
    • 80052037221 scopus 로고    scopus 로고
    • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3MXhtV2itb%2FN
    • Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng. 2011;13(5):508-17.
    • (2011) Metab Eng , vol.13 , Issue.5 , pp. 508-517
    • Parachin, N.S.1    Bergdahl, B.2    Van Niel, E.W.3    Gorwa-Grauslund, M.F.4
  • 28
    • 84942235916 scopus 로고    scopus 로고
    • Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts
    • Trausinger G, Gruber C, Krahulec S, Magnes C, Nidetzky B, Klimacek M. Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts. Biotechnol Biofuels. 2015;8:157. doi: 10.1186/s13068-015-0340-x.
    • (2015) Biotechnol Biofuels. , vol.8 , pp. 157
    • Trausinger, G.1    Gruber, C.2    Krahulec, S.3    Magnes, C.4    Nidetzky, B.5    Klimacek, M.6
  • 29
    • 77955058605 scopus 로고    scopus 로고
    • Production of biofuels and biochemicals: In need of an ORACLE
    • 1:CAS:528:DC%2BC3cXptVagsrg%3D
    • Miskovic L, Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol. 2010;28(8):391-7.
    • (2010) Trends Biotechnol , vol.28 , Issue.8 , pp. 391-397
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 30
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J. 2013;8(9):1043-57. doi: 10.1002/biot.201300091.
    • (2013) Biotechnol J , vol.8 , Issue.9 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 31
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainties in biochemical reactions
    • Miskovic L, Hatzimanikatis V. Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108(2):413-23. doi: 10.1002/bit.22932.
    • (2011) Biotechnol Bioeng , vol.108 , Issue.2 , pp. 413-423
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 32
    • 10044224601 scopus 로고    scopus 로고
    • Metabolic control analysis under uncertainty: Framework development and case studies
    • 1:CAS:528:DC%2BD2cXhtVOmtbjN
    • Wang L, Birol I, Hatzimanikatis V. Metabolic control analysis under uncertainty: framework development and case studies. Biophys J. 2004;87:3750-63.
    • (2004) Biophys J , vol.87 , pp. 3750-3763
    • Wang, L.1    Birol, I.2    Hatzimanikatis, V.3
  • 33
    • 33644817094 scopus 로고    scopus 로고
    • Metabolic engineering under uncertainty-II: Analysis of yeast metabolism
    • Wang LQ, Hatzimanikatis V. Metabolic engineering under uncertainty-II: analysis of yeast metabolism. Metab Eng. 2006;8(2):142-59. doi: 10.1016/J.Yinben.2005.11.002.
    • (2006) Metab Eng , vol.8 , Issue.2 , pp. 142-159
    • Wang, L.Q.1    Hatzimanikatis, V.2
  • 34
    • 84857052437 scopus 로고    scopus 로고
    • From network models to network responses: Integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
    • 1:CAS:528:DC%2BC38XjsV2gtbk%3D
    • Soh KS, Miskovic L, Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res. 2012;12:129-43.
    • (2012) FEMS Yeast Res , vol.12 , pp. 129-143
    • Soh, K.S.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 35
    • 84969351865 scopus 로고    scopus 로고
    • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. Coli using large-scale kinetic models
    • Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, et al. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng. 2016;35:148-59. doi: 10.1016/j.ymben.2016.01.009.
    • (2016) Metab Eng , vol.35 , pp. 148-159
    • Andreozzi, S.1    Chakrabarti, A.2    Soh, K.C.3    Burgard, A.4    Yang, T.H.5    Van Dien, S.6
  • 36
    • 84952637898 scopus 로고    scopus 로고
    • ISCHRUNK-in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
    • Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK-in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab Eng. 2016;33:158-68. doi: 10.1016/j.ymben.2015.10.002.
    • (2016) Metab Eng , vol.33 , pp. 158-168
    • Andreozzi, S.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 37
    • 33644817094 scopus 로고    scopus 로고
    • Metabolic engineering under uncertainty. I: Framework development
    • Wang LQ, Hatzimanikatis V. Metabolic engineering under uncertainty. I: framework development. Metab Eng. 2006;8(2):133-41. doi: 10.1016/J.Ymben.2005.11.003.
    • (2006) Metab Eng , vol.8 , Issue.2 , pp. 133-141
    • Wang, L.Q.1    Hatzimanikatis, V.2
  • 39
    • 0026015230 scopus 로고
    • DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: Analysis of pyruvate carboxylase-deficient strains
    • 1:CAS:528:DyaK3sXhslaisQ%3D%3D
    • Stucka R, Dequin S, Salmon JM, Gancedo C. DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol Gen Genet: MGG. 1991;229(2):307-15.
    • (1991) Mol Gen Genet: MGG. , vol.229 , Issue.2 , pp. 307-315
    • Stucka, R.1    Dequin, S.2    Salmon, J.M.3    Gancedo, C.4
  • 40
    • 65549125857 scopus 로고    scopus 로고
    • Hexose and pentose transport in ascomycetous yeasts: An overview
    • Leandro MJ, Fonseca C, Goncalves P. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 2009;9(4):511-25. doi: 10.1111/j.1567-1364.2009.00509.x.
    • (2009) FEMS Yeast Res , vol.9 , Issue.4 , pp. 511-525
    • Leandro, M.J.1    Fonseca, C.2    Goncalves, P.3
  • 41
    • 0035339662 scopus 로고    scopus 로고
    • The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3MXjslCntbY%3D
    • Rodriguez A, de la Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J. 2001;355:625-31.
    • (2001) Biochem J , vol.355 , pp. 625-631
    • Rodriguez, A.1    De La Cera, T.2    Herrero, P.3    Moreno, F.4
  • 42
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives
    • Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol. 2009;84(1):37-53. doi: 10.1007/s00253-009-2101-x.
    • (2009) Appl Microbiol Biotechnol , vol.84 , Issue.1 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 43
    • 0032080753 scopus 로고    scopus 로고
    • The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
    • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998;162(1):155-60. doi: 10.1111/j.1574-6968.1998.tb12993.x.
    • (1998) FEMS Microbiol Lett , vol.162 , Issue.1 , pp. 155-160
    • Rodriguez-Pena, J.M.1    Cid, V.J.2    Arroyo, J.3    Nombela, C.4
  • 44
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • Jin YS, Ni HY, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol. 2003;69(1):495-503. doi: 10.1128/Aem.69.1.495-503.2003.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.1 , pp. 495-503
    • Jin, Y.S.1    Ni, H.Y.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 45
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika A, Sawayama S. Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng. 2008;106(3):306-9. doi: 10.1263/jbb.106.306.
    • (2008) J Biosci Bioeng , vol.106 , Issue.3 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 46
    • 33845958976 scopus 로고    scopus 로고
    • A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae
    • Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng. 2007;96(1):134-45. doi: 10.1002/bit.21135.
    • (2007) Biotechnol Bioeng , vol.96 , Issue.1 , pp. 134-145
    • Westergaard, S.L.1    Oliveira, A.P.2    Bro, C.3    Olsson, L.4    Nielsen, J.5
  • 47
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim IK, Roldao A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12(2):228-48. doi: 10.1111/j.1567-1364.2011.00779.x.
    • (2012) FEMS Yeast Res , vol.12 , Issue.2 , pp. 228-248
    • Kim, I.K.1    Roldao, A.2    Siewers, V.3    Nielsen, J.4
  • 48
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • 1:CAS:528:DyaK1cXkt1OitLY%3D
    • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62(2):334-61.
    • (1998) Microbiol Mol Biol Rev , vol.62 , Issue.2 , pp. 334-361
    • Gancedo, J.M.1
  • 49
    • 0031897460 scopus 로고    scopus 로고
    • Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast
    • 1:CAS:528:DyaK1cXis1GmsrY%3D
    • Randez-Gil F, Sanz P, Entian KD, Prieto JA. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol. 1998;18(5):2940-8.
    • (1998) Mol Cell Biol , vol.18 , Issue.5 , pp. 2940-2948
    • Randez-Gil, F.1    Sanz, P.2    Entian, K.D.3    Prieto, J.A.4
  • 50
    • 77950905613 scopus 로고    scopus 로고
    • Differential glucose repression in common yeast strains in response to HXK2 deletion
    • Kummel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, et al. Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res. 2010;10(3):322-32. doi: 10.1111/j.1567-1364.2010.00609.x.
    • (2010) FEMS Yeast Res , vol.10 , Issue.3 , pp. 322-332
    • Kummel, A.1    Ewald, J.C.2    Fendt, S.M.3    Jol, S.J.4    Picotti, P.5    Aebersold, R.6
  • 51
    • 1242292971 scopus 로고    scopus 로고
    • Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae
    • Roca C, Haack MB, Olsson L. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2004;63(5):578-83. doi: 10.1007/s00253-003-1408-2.
    • (2004) Appl Microbiol Biotechnol , vol.63 , Issue.5 , pp. 578-583
    • Roca, C.1    Haack, M.B.2    Olsson, L.3
  • 52
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Guldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24(13):2519-24. doi: 10.1093/Nar/24.13.2519.
    • (1996) Nucleic Acids Res , vol.24 , Issue.13 , pp. 2519-2524
    • Guldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 53
    • 0028676232 scopus 로고
    • New heterologous modules for classical or pcr-based gene disruptions in Saccharomyces-cerevisiae
    • Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or pcr-based gene disruptions in Saccharomyces-cerevisiae. Yeast. 1994;10(13):1793-808. doi: 10.1002/Yea.320101310.
    • (1994) Yeast , vol.10 , Issue.13 , pp. 1793-1808
    • Wach, A.1    Brachat, A.2    Pohlmann, R.3    Philippsen, P.4
  • 54
    • 0024266139 scopus 로고
    • New yeast-Escherichia-coli shuttle vectors constructed with invitro mutagenized yeast genes lacking 6-base pair restriction sites
    • Gietz RD, Sugino A. New yeast-Escherichia-coli shuttle vectors constructed with invitro mutagenized yeast genes lacking 6-base pair restriction sites. Gene. 1988;74(2):527-34. doi: 10.1016/0378-1119(88)90185-0.
    • (1988) Gene , vol.74 , Issue.2 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 55
    • 0035227656 scopus 로고    scopus 로고
    • High-efficiency transformation of plasmid DNA into yeast
    • Woods RA, Gietz RD. High-efficiency transformation of plasmid DNA into yeast. Methods Mol Biol. 2001;177:85-97. doi: 10.1385/1-59259-210-4:085.
    • (2001) Methods Mol Biol , vol.177 , pp. 85-97
    • Woods, R.A.1    Gietz, R.D.2
  • 56
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501-17. doi: 10.1002/yea.320080703.
    • (1992) Yeast , vol.8 , Issue.7 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 57
    • 75349093007 scopus 로고    scopus 로고
    • Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans
    • Turkia H, Siren H, Pitkanen JP, Wiebe M, Penttila M. Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans. J Chromatogr A. 2010;1217(9):1537-42. doi: 10.1016/j.chroma.2009.12.075.
    • (2010) J Chromatogr A , vol.1217 , Issue.9 , pp. 1537-1542
    • Turkia, H.1    Siren, H.2    Pitkanen, J.P.3    Wiebe, M.4    Penttila, M.5
  • 58
    • 0036892455 scopus 로고    scopus 로고
    • Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
    • 1:CAS:528:DC%2BD38XovFGgsbg%3D
    • Maier A, Volker B, Boles E, Fuhrmann GF. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002;2(4):539-50.
    • (2002) FEMS Yeast Res , vol.2 , Issue.4 , pp. 539-550
    • Maier, A.1    Volker, B.2    Boles, E.3    Fuhrmann, G.F.4
  • 59
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
    • Sedlak M, Ho NW. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast. 2004;21(8):671-84. doi: 10.1002/yea.1060.
    • (2004) Yeast , vol.21 , Issue.8 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.2
  • 61
    • 0030800564 scopus 로고    scopus 로고
    • The reversible Hill equation: How to incorporate cooperative enzymes into metabolic models
    • 1:CAS:528:DyaK2sXmtVCns7w%3D
    • Hofmeyr J, Cornish-Bowden A. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comp Appl Biosci. 1997;13:377-85.
    • (1997) Comp Appl Biosci. , vol.13 , pp. 377-385
    • Hofmeyr, J.1    Cornish-Bowden, A.2
  • 62
    • 33846617808 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints
    • Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model. 2006;3:41. doi: 10.1186/1742-4682-3-41.
    • (2006) Theor Biol Med Model , vol.3 , pp. 41
    • Liebermeister, W.1    Klipp, E.2
  • 63
    • 46649103793 scopus 로고    scopus 로고
    • Relationship between thermodynamic driving force and one-way fluxes in reversible processes
    • Beard D, Qian H. Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE. 2007;2(1):e144. doi: 10.1371/journal.pone.0000144.
    • (2007) PLoS ONE , vol.2 , Issue.1 , pp. e144
    • Beard, D.1    Qian, H.2
  • 64
    • 34248632008 scopus 로고    scopus 로고
    • Toward the automated generation of genome-scale metabolic networks in the SEED
    • DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A. Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinform. 2007;8:139. doi: 10.1186/1471-2105-8-139.
    • (2007) BMC Bioinform , vol.8 , pp. 139
    • Dejongh, M.1    Formsma, K.2    Boillot, P.3    Gould, J.4    Rycenga, M.5    Best, A.6
  • 65
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93-121. doi: 10.1038/nprot.2009.203.
    • (2010) Nat Protoc , vol.5 , Issue.1 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 66
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte NC, Becker S, Jamshidi N, Thiele I, Mo M, Vo TD, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007;104(6):1777-82. doi: 10.1073/pnas.0610772104.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.6 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.2    Jamshidi, N.3    Thiele, I.4    Mo, M.5    Vo, T.D.6
  • 67
    • 63549108441 scopus 로고    scopus 로고
    • GrowMatch: An automated method for reconciling in silico/in vivo growth predictions
    • Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol. 2009;5(3):e1000308. doi: 10.1371/journal.pcbi.1000308.
    • (2009) PLoS Comput Biol , vol.5 , Issue.3 , pp. e1000308
    • Kumar, V.S.1    Maranas, C.D.2
  • 69
    • 67650573077 scopus 로고    scopus 로고
    • IBsu1103: A new genome-scale metabolic model of Bacillus subtilis based on SEED annotations
    • Henry CS, Zinner JF, Cohoon MP, Stevens RL. iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol. 2009;10(6):R69. doi: 10.1186/gb-2009-10-6-r69.
    • (2009) Genome Biol , vol.10 , Issue.6 , pp. R69
    • Henry, C.S.1    Zinner, J.F.2    Cohoon, M.P.3    Stevens, R.L.4
  • 70
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007;3:121. doi: 10.1038/Msb4100155.
    • (2007) Mol Syst Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5    Karp, P.D.6
  • 71
    • 70349745413 scopus 로고    scopus 로고
    • Novel biological insights through metabolomics and C-13-flux analysis
    • Zamboni N, Sauer U. Novel biological insights through metabolomics and C-13-flux analysis. Curr Opin Microbiol. 2009;12(5):553-8. doi: 10.1016/j.mib.2009.08.003.
    • (2009) Curr Opin Microbiol , vol.12 , Issue.5 , pp. 553-558
    • Zamboni, N.1    Sauer, U.2
  • 72
    • 74849102606 scopus 로고    scopus 로고
    • Industrial systems biology
    • Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng. 2010;105(3):439-60. doi: 10.1002/bit.22592.
    • (2010) Biotechnol Bioeng , vol.105 , Issue.3 , pp. 439-460
    • Otero, J.M.1    Nielsen, J.2
  • 73
    • 0034741983 scopus 로고    scopus 로고
    • C-13 metabolic flux analysis
    • Wiechert W. C-13 metabolic flux analysis. Metab Eng. 2001;3(3):195-206. doi: 10.1006/mben.2001.0187.
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 195-206
    • Wiechert, W.1
  • 74
    • 51049107514 scopus 로고    scopus 로고
    • Group contribution method for thermodynamic analysis of complex metabolic networks
    • 1:CAS:528:DC%2BD1cXovFWhurg%3D
    • Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008;95:1487-99.
    • (2008) Biophys J , vol.95 , pp. 1487-1499
    • Jankowski, M.1    Henry, C.2    Broadbelt, L.3    Hatzimanikatis, V.4
  • 75
    • 8844259501 scopus 로고    scopus 로고
    • Thermodynamics of enzyme-catalyzed reactions - A database for quantitative biochemistry
    • Goldberg RN, Tewari YB, Bhat TN. Thermodynamics of enzyme-catalyzed reactions-a database for quantitative biochemistry. Bioinformatics. 2004;20(16):2874-7. doi: 10.1093/bioinformatics/bth314.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2874-2877
    • Goldberg, R.N.1    Tewari, Y.B.2    Bhat, T.N.3
  • 76
    • 37149052420 scopus 로고    scopus 로고
    • Thermodynamics of enzyme-catalyzed reactions: Part 7 - 2007 update
    • Goldberg RN, Tewari YB, Bhat TN. Thermodynamics of enzyme-catalyzed reactions: part 7 - 2007 update. J Phys Chem Ref Data. 2007;36(4):1347-97. doi: 10.1063/1.2789450.
    • (2007) J Phys Chem Ref Data , vol.36 , Issue.4 , pp. 1347-1397
    • Goldberg, R.N.1    Tewari, Y.B.2    Bhat, T.N.3
  • 77
    • 0026353854 scopus 로고
    • Estimation of standard Gibbs energy changes of biotransformations
    • 1:CAS:528:DyaK3MXlslyrsrk%3D
    • Mavrovouniotis ML. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem. 1991;266(22):14440-5.
    • (1991) J Biol Chem. , vol.266 , Issue.22 , pp. 14440-14445
    • Mavrovouniotis, M.L.1
  • 78
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis
    • 1:CAS:528:DC%2BD2sXit1alsrk%3D
    • Henry C, Broadbelt L, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys J. 2007;92:1792-805.
    • (2007) Biophys J , vol.92 , pp. 1792-1805
    • Henry, C.1    Broadbelt, L.2    Hatzimanikatis, V.3
  • 79
    • 84921865747 scopus 로고    scopus 로고
    • Constraining the flux space using thermodynamics and integration of metabolomics data
    • 1:CAS:528:DC%2BC2MXotVajurk%3D
    • Soh KS, Hatzimanikatis V. Constraining the flux space using thermodynamics and integration of metabolomics data. Methods Mol Biol. 2014;1191:49-63.
    • (2014) Methods Mol Biol , vol.1191 , pp. 49-63
    • Soh, K.S.1    Hatzimanikatis, V.2
  • 81
    • 0038579951 scopus 로고
    • Various techniques used in connection with random digits
    • A.H. Taub (eds) 5 Pergamon Press Oxford
    • Von Neumann J. Various techniques used in connection with random digits. In: Taub AH, editor. The collected works of John von Neumann. Vol. 5. Oxford: Pergamon Press; 1963. P. 768-770.
    • (1963) The Collected Works of John von Neumann , pp. 768-770
    • Von Neumann, J.1
  • 83
    • 0020148206 scopus 로고
    • Generating random vectors uniformly distributed inside and on the surface of different regions
    • Rubinstein R. Generating random vectors uniformly distributed inside and on the surface of different regions. Europ J Oper Res. 1982;10:205-9.
    • (1982) Europ J Oper Res. , vol.10 , pp. 205-209
    • Rubinstein, R.1
  • 84
    • 75649152860 scopus 로고    scopus 로고
    • Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations
    • Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell. 2010;21(1):198-211. doi: 10.1091/mbc.E09-07-0597.
    • (2010) Mol Biol Cell , vol.21 , Issue.1 , pp. 198-211
    • Boer, V.M.1    Crutchfield, C.A.2    Bradley, P.H.3    Botstein, D.4    Rabinowitz, J.D.5
  • 85
    • 68049100110 scopus 로고    scopus 로고
    • Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5(8):593-9. doi: 10.1038/nchembio.186.
    • (2009) Nat Chem Biol , vol.5 , Issue.8 , pp. 593-599
    • Bennett, B.D.1    Kimball, E.H.2    Gao, M.3    Osterhout, R.4    Van Dien, S.J.5    Rabinowitz, J.D.6
  • 86
    • 34247123157 scopus 로고    scopus 로고
    • Cellular metabolomics of Escherichia coli
    • Rabinowitz JD. Cellular metabolomics of Escherichia coli. Expert Rev Proteom. 2007;4(2):187-98. doi: 10.1586/14789450.4.2.187.
    • (2007) Expert Rev Proteom , vol.4 , Issue.2 , pp. 187-198
    • Rabinowitz, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.