-
2
-
-
84877583888
-
Systems metabolic engineering: The creation of microbial cell factories by rational metabolic design and evolution
-
1:CAS:528:DC%2BC2MXjsl2qu7c%3D
-
Furusawa C, Horinouchi T, Hirasawa T, Shimizu H. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution. Adv Biochem Eng Biotechnol. 2013;131:1-23. doi: 10.1007/10-2012-137.
-
(2013)
Adv Biochem Eng Biotechnol
, vol.131
, pp. 1-23
-
-
Furusawa, C.1
Horinouchi, T.2
Hirasawa, T.3
Shimizu, H.4
-
3
-
-
0034071629
-
Metabolic engineering applications to renewable resource utilization
-
1:CAS:528:DC%2BD3cXisFyns7w%3D
-
Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 2000;11(2):187-98.
-
(2000)
Curr Opin Biotechnol
, vol.11
, Issue.2
, pp. 187-198
-
-
Aristidou, A.1
Penttila, M.2
-
4
-
-
79959461127
-
Metabolic engineering from retrofitting to green field
-
Nielsen LK. Metabolic engineering from retrofitting to green field. Nat Chem Biol. 2011;7(7):407-8. doi: 10.1038/Nchembio.601.
-
(2011)
Nat Chem Biol
, vol.7
, Issue.7
, pp. 407-408
-
-
Nielsen, L.K.1
-
5
-
-
0025633861
-
Isolation and characterization of the Pichia-stipitis xylitol dehydrogenase gene, Xyl2, and construction of a xylose-utilizing Saccharomyces-cerevisiae transformant
-
1:STN:280:DyaK3M7mvVaqtA%3D%3D
-
Kotter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia-stipitis xylitol dehydrogenase gene, Xyl2, and construction of a xylose-utilizing Saccharomyces-cerevisiae transformant. Curr Genet. 1990;18(6):493-500.
-
(1990)
Curr Genet
, vol.18
, Issue.6
, pp. 493-500
-
-
Kotter, P.1
Amore, R.2
Hollenberg, C.P.3
Ciriacy, M.4
-
6
-
-
78649701348
-
Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
-
1:CAS:528:DC%2BC3cXhs1elsbrN
-
Klimacek M, Krahulec S, Sauer U, Nidetzky B. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol. 2010;76(22):7566-74. doi: 10.1128/Aem.01787-10.
-
(2010)
Appl Environ Microbiol
, vol.76
, Issue.22
, pp. 7566-7574
-
-
Klimacek, M.1
Krahulec, S.2
Sauer, U.3
Nidetzky, B.4
-
7
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact. 2008;7:9. doi: 10.1186/1475-2859-7-9.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
8
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 2003;4(1):69-78. doi: 10.1016/S1567-1356(03)00141-7.
-
(2003)
FEMS Yeast Res
, vol.4
, Issue.1
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
Winkler, A.A.4
Jetten, M.S.M.5
De Laat, W.T.A.M.6
-
9
-
-
63949086429
-
Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
-
Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biot. 2009;82(6):1067-78. doi: 10.1007/S00253-008-1794-6.
-
(2009)
Appl Microbiol Biot.
, vol.82
, Issue.6
, pp. 1067-1078
-
-
Madhavan, A.1
Tamalampudi, S.2
Ushida, K.3
Kanai, D.4
Katahira, S.5
Srivastava, A.6
-
10
-
-
64749094343
-
Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
-
Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75(8):2304-11. doi: 10.1128/Aem.02522-08.
-
(2009)
Appl Environ Microbiol
, vol.75
, Issue.8
, pp. 2304-2311
-
-
Brat, D.1
Boles, E.2
Wiedemann, B.3
-
11
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K, Sanchez RG, Hahn-Hagerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories. 2007. doi: 10.1186/1475-2859-6-5.
-
(2007)
Microbial Cell Factories
-
-
Karhumaa, K.1
Sanchez, R.G.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
12
-
-
0038514106
-
Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
-
Pitkanen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng. 2003;5(1):16-31. doi: 10.1016/S1096-7176(02)00012-5.
-
(2003)
Metab Eng
, vol.5
, Issue.1
, pp. 16-31
-
-
Pitkanen, J.P.1
Aristidou, A.2
Salusjarvi, L.3
Ruohonen, L.4
Penttila, M.5
-
13
-
-
1242264261
-
Metabolic engineering for improved fermentation of pentoses by yeasts
-
Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol. 2004;63(5):495-509. doi: 10.1007/S00253-003-1450-0.
-
(2004)
Appl Microbiol Biotechnol
, vol.63
, Issue.5
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.S.2
-
14
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
1:CAS:528:DC%2BD38Xnt1elurk%3D
-
Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148:2783-8.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
Hahn-Hagerdal, B.4
Boles, E.5
-
15
-
-
0038363853
-
Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
-
Gardonyi M, Jeppsson M, Liden G, Gorwa-Grausland MF, Hahn-Hagerdal B. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng. 2003;82(7):818-24. doi: 10.1002/Bit.10631.
-
(2003)
Biotechnol Bioeng
, vol.82
, Issue.7
, pp. 818-824
-
-
Gardonyi, M.1
Jeppsson, M.2
Liden, G.3
Gorwa-Grausland, M.F.4
Hahn-Hagerdal, B.5
-
16
-
-
0027395082
-
Xylose fermentation by Saccharomyces-cerevisiae
-
Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces-cerevisiae. Appl Microbiol Biotechnol. 1993;38(6):776-83.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, Issue.6
, pp. 776-783
-
-
Kotter, P.1
Ciriacy, M.2
-
17
-
-
84955276048
-
Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
-
Apel AR, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 2016. doi: 10.1038/srep19512.
-
(2016)
Sci Rep.
-
-
Apel, A.R.1
Ouellet, M.2
Szmidt-Middleton, H.3
Keasling, J.D.4
Mukhopadhyay, A.5
-
18
-
-
0037375880
-
Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD3sXitVKgtL0%3D
-
Jeppsson M, Traff K, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2003;3(2):167-75.
-
(2003)
FEMS Yeast Res
, vol.3
, Issue.2
, pp. 167-175
-
-
Jeppsson, M.1
Traff, K.2
Johansson, B.3
Hahn-Hagerdal, B.4
Gorwa-Grauslund, M.F.5
-
19
-
-
1242284461
-
Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae
-
1:STN:280:DC%2BD2c%2FlsVKmsA%3D%3D
-
Traff-Bjerre KL, Jeppsson M, Hahn-Hagerdal B, Gorwa-Grauslund MF. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast. 2004;21(2):141-50.
-
(2004)
Yeast
, vol.21
, Issue.2
, pp. 141-150
-
-
Traff-Bjerre, K.L.1
Jeppsson, M.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
20
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
-
Toivari MH, Aristidou A, Ruohonen L, Penttila M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng. 2001;3(3):236-49. doi: 10.1006/Mben.2000.0191.
-
(2001)
Metab Eng
, vol.3
, Issue.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
Penttila, M.4
-
21
-
-
84862231336
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
-
Kim SR, Ha SJ, Kong II, Jin YS. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng. 2012;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001.
-
(2012)
Metab Eng
, vol.14
, Issue.4
, pp. 336-343
-
-
Kim, S.R.1
Ha, S.J.2
Kong, I.I.3
Jin, Y.S.4
-
22
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
1:CAS:528:DC%2BD38XivFGltrc%3D
-
Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol. 2002;68(4):1604-9.
-
(2002)
Appl Environ Microbiol
, vol.68
, Issue.4
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
23
-
-
84870704590
-
Systems metabolic engineering, industrial biotechnology and microbial cell factories
-
Lee SY, Mattanovich D, Villaverde A. Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microbial Cell Factories. 2012;11:156. doi: 10.1186/1475-2859-11-156.
-
(2012)
Microbial Cell Factories
, vol.11
, pp. 156
-
-
Lee, S.Y.1
Mattanovich, D.2
Villaverde, A.3
-
24
-
-
84940773663
-
Rites of passage: Requirements and standards for building kinetic models of metabolic phenotypes
-
Miskovic L, Tokic M, Fengos G, Hatzimanikatis V. Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Curr Opin Biotechnol. 2015;36:1-8.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 1-8
-
-
Miskovic, L.1
Tokic, M.2
Fengos, G.3
Hatzimanikatis, V.4
-
25
-
-
0015824267
-
The control of flux
-
1:STN:280:DyaE2c%2Fms12hug%3D%3D
-
Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65-104.
-
(1973)
Symp Soc Exp Biol
, vol.27
, pp. 65-104
-
-
Kacser, H.1
Burns, J.A.2
-
26
-
-
0035812350
-
The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
-
Eliasson A, Hofmeyr JHS, Pedler S, Hahn-Hagerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol. 2001;29(4-5):288-97. doi: 10.1016/S0141-0229(01)00386-6.
-
(2001)
Enzyme Microb Technol
, vol.29
, Issue.4-5
, pp. 288-297
-
-
Eliasson, A.1
Hofmeyr, J.H.S.2
Pedler, S.3
Hahn-Hagerdal, B.4
-
27
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3MXhtV2itb%2FN
-
Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng. 2011;13(5):508-17.
-
(2011)
Metab Eng
, vol.13
, Issue.5
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
Van Niel, E.W.3
Gorwa-Grauslund, M.F.4
-
28
-
-
84942235916
-
Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts
-
Trausinger G, Gruber C, Krahulec S, Magnes C, Nidetzky B, Klimacek M. Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts. Biotechnol Biofuels. 2015;8:157. doi: 10.1186/s13068-015-0340-x.
-
(2015)
Biotechnol Biofuels.
, vol.8
, pp. 157
-
-
Trausinger, G.1
Gruber, C.2
Krahulec, S.3
Magnes, C.4
Nidetzky, B.5
Klimacek, M.6
-
29
-
-
77955058605
-
Production of biofuels and biochemicals: In need of an ORACLE
-
1:CAS:528:DC%2BC3cXptVagsrg%3D
-
Miskovic L, Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol. 2010;28(8):391-7.
-
(2010)
Trends Biotechnol
, vol.28
, Issue.8
, pp. 391-397
-
-
Miskovic, L.1
Hatzimanikatis, V.2
-
30
-
-
84883800631
-
Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
-
Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J. 2013;8(9):1043-57. doi: 10.1002/biot.201300091.
-
(2013)
Biotechnol J
, vol.8
, Issue.9
, pp. 1043-1057
-
-
Chakrabarti, A.1
Miskovic, L.2
Soh, K.C.3
Hatzimanikatis, V.4
-
31
-
-
78650218972
-
Modeling of uncertainties in biochemical reactions
-
Miskovic L, Hatzimanikatis V. Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108(2):413-23. doi: 10.1002/bit.22932.
-
(2011)
Biotechnol Bioeng
, vol.108
, Issue.2
, pp. 413-423
-
-
Miskovic, L.1
Hatzimanikatis, V.2
-
32
-
-
10044224601
-
Metabolic control analysis under uncertainty: Framework development and case studies
-
1:CAS:528:DC%2BD2cXhtVOmtbjN
-
Wang L, Birol I, Hatzimanikatis V. Metabolic control analysis under uncertainty: framework development and case studies. Biophys J. 2004;87:3750-63.
-
(2004)
Biophys J
, vol.87
, pp. 3750-3763
-
-
Wang, L.1
Birol, I.2
Hatzimanikatis, V.3
-
33
-
-
33644817094
-
Metabolic engineering under uncertainty-II: Analysis of yeast metabolism
-
Wang LQ, Hatzimanikatis V. Metabolic engineering under uncertainty-II: analysis of yeast metabolism. Metab Eng. 2006;8(2):142-59. doi: 10.1016/J.Yinben.2005.11.002.
-
(2006)
Metab Eng
, vol.8
, Issue.2
, pp. 142-159
-
-
Wang, L.Q.1
Hatzimanikatis, V.2
-
34
-
-
84857052437
-
From network models to network responses: Integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
-
1:CAS:528:DC%2BC38XjsV2gtbk%3D
-
Soh KS, Miskovic L, Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res. 2012;12:129-43.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 129-143
-
-
Soh, K.S.1
Miskovic, L.2
Hatzimanikatis, V.3
-
35
-
-
84969351865
-
Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. Coli using large-scale kinetic models
-
Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, et al. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng. 2016;35:148-59. doi: 10.1016/j.ymben.2016.01.009.
-
(2016)
Metab Eng
, vol.35
, pp. 148-159
-
-
Andreozzi, S.1
Chakrabarti, A.2
Soh, K.C.3
Burgard, A.4
Yang, T.H.5
Van Dien, S.6
-
36
-
-
84952637898
-
ISCHRUNK-in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
-
Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK-in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab Eng. 2016;33:158-68. doi: 10.1016/j.ymben.2015.10.002.
-
(2016)
Metab Eng
, vol.33
, pp. 158-168
-
-
Andreozzi, S.1
Miskovic, L.2
Hatzimanikatis, V.3
-
37
-
-
33644817094
-
Metabolic engineering under uncertainty. I: Framework development
-
Wang LQ, Hatzimanikatis V. Metabolic engineering under uncertainty. I: framework development. Metab Eng. 2006;8(2):133-41. doi: 10.1016/J.Ymben.2005.11.003.
-
(2006)
Metab Eng
, vol.8
, Issue.2
, pp. 133-141
-
-
Wang, L.Q.1
Hatzimanikatis, V.2
-
39
-
-
0026015230
-
DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: Analysis of pyruvate carboxylase-deficient strains
-
1:CAS:528:DyaK3sXhslaisQ%3D%3D
-
Stucka R, Dequin S, Salmon JM, Gancedo C. DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol Gen Genet: MGG. 1991;229(2):307-15.
-
(1991)
Mol Gen Genet: MGG.
, vol.229
, Issue.2
, pp. 307-315
-
-
Stucka, R.1
Dequin, S.2
Salmon, J.M.3
Gancedo, C.4
-
40
-
-
65549125857
-
Hexose and pentose transport in ascomycetous yeasts: An overview
-
Leandro MJ, Fonseca C, Goncalves P. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 2009;9(4):511-25. doi: 10.1111/j.1567-1364.2009.00509.x.
-
(2009)
FEMS Yeast Res
, vol.9
, Issue.4
, pp. 511-525
-
-
Leandro, M.J.1
Fonseca, C.2
Goncalves, P.3
-
41
-
-
0035339662
-
The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD3MXjslCntbY%3D
-
Rodriguez A, de la Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J. 2001;355:625-31.
-
(2001)
Biochem J
, vol.355
, pp. 625-631
-
-
Rodriguez, A.1
De La Cera, T.2
Herrero, P.3
Moreno, F.4
-
42
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives
-
Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol. 2009;84(1):37-53. doi: 10.1007/s00253-009-2101-x.
-
(2009)
Appl Microbiol Biotechnol
, vol.84
, Issue.1
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
43
-
-
0032080753
-
The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
-
Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998;162(1):155-60. doi: 10.1111/j.1574-6968.1998.tb12993.x.
-
(1998)
FEMS Microbiol Lett
, vol.162
, Issue.1
, pp. 155-160
-
-
Rodriguez-Pena, J.M.1
Cid, V.J.2
Arroyo, J.3
Nombela, C.4
-
44
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
-
Jin YS, Ni HY, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol. 2003;69(1):495-503. doi: 10.1128/Aem.69.1.495-503.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, Issue.1
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.Y.2
Laplaza, J.M.3
Jeffries, T.W.4
-
45
-
-
53649084361
-
Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
-
Matsushika A, Sawayama S. Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng. 2008;106(3):306-9. doi: 10.1263/jbb.106.306.
-
(2008)
J Biosci Bioeng
, vol.106
, Issue.3
, pp. 306-309
-
-
Matsushika, A.1
Sawayama, S.2
-
46
-
-
33845958976
-
A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae
-
Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng. 2007;96(1):134-45. doi: 10.1002/bit.21135.
-
(2007)
Biotechnol Bioeng
, vol.96
, Issue.1
, pp. 134-145
-
-
Westergaard, S.L.1
Oliveira, A.P.2
Bro, C.3
Olsson, L.4
Nielsen, J.5
-
47
-
-
84857058761
-
A systems-level approach for metabolic engineering of yeast cell factories
-
Kim IK, Roldao A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 2012;12(2):228-48. doi: 10.1111/j.1567-1364.2011.00779.x.
-
(2012)
FEMS Yeast Res
, vol.12
, Issue.2
, pp. 228-248
-
-
Kim, I.K.1
Roldao, A.2
Siewers, V.3
Nielsen, J.4
-
48
-
-
0031810672
-
Yeast carbon catabolite repression
-
1:CAS:528:DyaK1cXkt1OitLY%3D
-
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62(2):334-61.
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, Issue.2
, pp. 334-361
-
-
Gancedo, J.M.1
-
49
-
-
0031897460
-
Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast
-
1:CAS:528:DyaK1cXis1GmsrY%3D
-
Randez-Gil F, Sanz P, Entian KD, Prieto JA. Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol. 1998;18(5):2940-8.
-
(1998)
Mol Cell Biol
, vol.18
, Issue.5
, pp. 2940-2948
-
-
Randez-Gil, F.1
Sanz, P.2
Entian, K.D.3
Prieto, J.A.4
-
50
-
-
77950905613
-
Differential glucose repression in common yeast strains in response to HXK2 deletion
-
Kummel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, et al. Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res. 2010;10(3):322-32. doi: 10.1111/j.1567-1364.2010.00609.x.
-
(2010)
FEMS Yeast Res
, vol.10
, Issue.3
, pp. 322-332
-
-
Kummel, A.1
Ewald, J.C.2
Fendt, S.M.3
Jol, S.J.4
Picotti, P.5
Aebersold, R.6
-
51
-
-
1242292971
-
Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae
-
Roca C, Haack MB, Olsson L. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2004;63(5):578-83. doi: 10.1007/s00253-003-1408-2.
-
(2004)
Appl Microbiol Biotechnol
, vol.63
, Issue.5
, pp. 578-583
-
-
Roca, C.1
Haack, M.B.2
Olsson, L.3
-
52
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Guldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24(13):2519-24. doi: 10.1093/Nar/24.13.2519.
-
(1996)
Nucleic Acids Res
, vol.24
, Issue.13
, pp. 2519-2524
-
-
Guldener, U.1
Heck, S.2
Fiedler, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
53
-
-
0028676232
-
New heterologous modules for classical or pcr-based gene disruptions in Saccharomyces-cerevisiae
-
Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or pcr-based gene disruptions in Saccharomyces-cerevisiae. Yeast. 1994;10(13):1793-808. doi: 10.1002/Yea.320101310.
-
(1994)
Yeast
, vol.10
, Issue.13
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pohlmann, R.3
Philippsen, P.4
-
54
-
-
0024266139
-
New yeast-Escherichia-coli shuttle vectors constructed with invitro mutagenized yeast genes lacking 6-base pair restriction sites
-
Gietz RD, Sugino A. New yeast-Escherichia-coli shuttle vectors constructed with invitro mutagenized yeast genes lacking 6-base pair restriction sites. Gene. 1988;74(2):527-34. doi: 10.1016/0378-1119(88)90185-0.
-
(1988)
Gene
, vol.74
, Issue.2
, pp. 527-534
-
-
Gietz, R.D.1
Sugino, A.2
-
55
-
-
0035227656
-
High-efficiency transformation of plasmid DNA into yeast
-
Woods RA, Gietz RD. High-efficiency transformation of plasmid DNA into yeast. Methods Mol Biol. 2001;177:85-97. doi: 10.1385/1-59259-210-4:085.
-
(2001)
Methods Mol Biol
, vol.177
, pp. 85-97
-
-
Woods, R.A.1
Gietz, R.D.2
-
56
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501-17. doi: 10.1002/yea.320080703.
-
(1992)
Yeast
, vol.8
, Issue.7
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
57
-
-
75349093007
-
Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans
-
Turkia H, Siren H, Pitkanen JP, Wiebe M, Penttila M. Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans. J Chromatogr A. 2010;1217(9):1537-42. doi: 10.1016/j.chroma.2009.12.075.
-
(2010)
J Chromatogr A
, vol.1217
, Issue.9
, pp. 1537-1542
-
-
Turkia, H.1
Siren, H.2
Pitkanen, J.P.3
Wiebe, M.4
Penttila, M.5
-
58
-
-
0036892455
-
Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
-
1:CAS:528:DC%2BD38XovFGgsbg%3D
-
Maier A, Volker B, Boles E, Fuhrmann GF. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002;2(4):539-50.
-
(2002)
FEMS Yeast Res
, vol.2
, Issue.4
, pp. 539-550
-
-
Maier, A.1
Volker, B.2
Boles, E.3
Fuhrmann, G.F.4
-
59
-
-
3042769437
-
Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
-
Sedlak M, Ho NW. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast. 2004;21(8):671-84. doi: 10.1002/yea.1060.
-
(2004)
Yeast
, vol.21
, Issue.8
, pp. 671-684
-
-
Sedlak, M.1
Ho, N.W.2
-
61
-
-
0030800564
-
The reversible Hill equation: How to incorporate cooperative enzymes into metabolic models
-
1:CAS:528:DyaK2sXmtVCns7w%3D
-
Hofmeyr J, Cornish-Bowden A. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comp Appl Biosci. 1997;13:377-85.
-
(1997)
Comp Appl Biosci.
, vol.13
, pp. 377-385
-
-
Hofmeyr, J.1
Cornish-Bowden, A.2
-
62
-
-
33846617808
-
Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints
-
Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model. 2006;3:41. doi: 10.1186/1742-4682-3-41.
-
(2006)
Theor Biol Med Model
, vol.3
, pp. 41
-
-
Liebermeister, W.1
Klipp, E.2
-
63
-
-
46649103793
-
Relationship between thermodynamic driving force and one-way fluxes in reversible processes
-
Beard D, Qian H. Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE. 2007;2(1):e144. doi: 10.1371/journal.pone.0000144.
-
(2007)
PLoS ONE
, vol.2
, Issue.1
, pp. e144
-
-
Beard, D.1
Qian, H.2
-
64
-
-
34248632008
-
Toward the automated generation of genome-scale metabolic networks in the SEED
-
DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A. Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinform. 2007;8:139. doi: 10.1186/1471-2105-8-139.
-
(2007)
BMC Bioinform
, vol.8
, pp. 139
-
-
Dejongh, M.1
Formsma, K.2
Boillot, P.3
Gould, J.4
Rycenga, M.5
Best, A.6
-
65
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93-121. doi: 10.1038/nprot.2009.203.
-
(2010)
Nat Protoc
, vol.5
, Issue.1
, pp. 93-121
-
-
Thiele, I.1
Palsson, B.O.2
-
66
-
-
33846910173
-
Global reconstruction of the human metabolic network based on genomic and bibliomic data
-
Duarte NC, Becker S, Jamshidi N, Thiele I, Mo M, Vo TD, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007;104(6):1777-82. doi: 10.1073/pnas.0610772104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.6
, pp. 1777-1782
-
-
Duarte, N.C.1
Becker, S.2
Jamshidi, N.3
Thiele, I.4
Mo, M.5
Vo, T.D.6
-
67
-
-
63549108441
-
GrowMatch: An automated method for reconciling in silico/in vivo growth predictions
-
Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol. 2009;5(3):e1000308. doi: 10.1371/journal.pcbi.1000308.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.3
, pp. e1000308
-
-
Kumar, V.S.1
Maranas, C.D.2
-
68
-
-
58549108388
-
Reconstruction of biochemical networks in microorganisms
-
Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009;7(2):129-43. doi: 10.1038/nrmicro1949.
-
(2009)
Nat Rev Microbiol
, vol.7
, Issue.2
, pp. 129-143
-
-
Feist, A.M.1
Herrgard, M.J.2
Thiele, I.3
Reed, J.L.4
Palsson, B.O.5
-
69
-
-
67650573077
-
IBsu1103: A new genome-scale metabolic model of Bacillus subtilis based on SEED annotations
-
Henry CS, Zinner JF, Cohoon MP, Stevens RL. iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol. 2009;10(6):R69. doi: 10.1186/gb-2009-10-6-r69.
-
(2009)
Genome Biol
, vol.10
, Issue.6
, pp. R69
-
-
Henry, C.S.1
Zinner, J.F.2
Cohoon, M.P.3
Stevens, R.L.4
-
70
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
-
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007;3:121. doi: 10.1038/Msb4100155.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 121
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
-
71
-
-
70349745413
-
Novel biological insights through metabolomics and C-13-flux analysis
-
Zamboni N, Sauer U. Novel biological insights through metabolomics and C-13-flux analysis. Curr Opin Microbiol. 2009;12(5):553-8. doi: 10.1016/j.mib.2009.08.003.
-
(2009)
Curr Opin Microbiol
, vol.12
, Issue.5
, pp. 553-558
-
-
Zamboni, N.1
Sauer, U.2
-
72
-
-
74849102606
-
Industrial systems biology
-
Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng. 2010;105(3):439-60. doi: 10.1002/bit.22592.
-
(2010)
Biotechnol Bioeng
, vol.105
, Issue.3
, pp. 439-460
-
-
Otero, J.M.1
Nielsen, J.2
-
73
-
-
0034741983
-
C-13 metabolic flux analysis
-
Wiechert W. C-13 metabolic flux analysis. Metab Eng. 2001;3(3):195-206. doi: 10.1006/mben.2001.0187.
-
(2001)
Metab Eng
, vol.3
, Issue.3
, pp. 195-206
-
-
Wiechert, W.1
-
74
-
-
51049107514
-
Group contribution method for thermodynamic analysis of complex metabolic networks
-
1:CAS:528:DC%2BD1cXovFWhurg%3D
-
Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008;95:1487-99.
-
(2008)
Biophys J
, vol.95
, pp. 1487-1499
-
-
Jankowski, M.1
Henry, C.2
Broadbelt, L.3
Hatzimanikatis, V.4
-
75
-
-
8844259501
-
Thermodynamics of enzyme-catalyzed reactions - A database for quantitative biochemistry
-
Goldberg RN, Tewari YB, Bhat TN. Thermodynamics of enzyme-catalyzed reactions-a database for quantitative biochemistry. Bioinformatics. 2004;20(16):2874-7. doi: 10.1093/bioinformatics/bth314.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2874-2877
-
-
Goldberg, R.N.1
Tewari, Y.B.2
Bhat, T.N.3
-
76
-
-
37149052420
-
Thermodynamics of enzyme-catalyzed reactions: Part 7 - 2007 update
-
Goldberg RN, Tewari YB, Bhat TN. Thermodynamics of enzyme-catalyzed reactions: part 7 - 2007 update. J Phys Chem Ref Data. 2007;36(4):1347-97. doi: 10.1063/1.2789450.
-
(2007)
J Phys Chem Ref Data
, vol.36
, Issue.4
, pp. 1347-1397
-
-
Goldberg, R.N.1
Tewari, Y.B.2
Bhat, T.N.3
-
77
-
-
0026353854
-
Estimation of standard Gibbs energy changes of biotransformations
-
1:CAS:528:DyaK3MXlslyrsrk%3D
-
Mavrovouniotis ML. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem. 1991;266(22):14440-5.
-
(1991)
J Biol Chem.
, vol.266
, Issue.22
, pp. 14440-14445
-
-
Mavrovouniotis, M.L.1
-
78
-
-
33847797256
-
Thermodynamics-based metabolic flux analysis
-
1:CAS:528:DC%2BD2sXit1alsrk%3D
-
Henry C, Broadbelt L, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys J. 2007;92:1792-805.
-
(2007)
Biophys J
, vol.92
, pp. 1792-1805
-
-
Henry, C.1
Broadbelt, L.2
Hatzimanikatis, V.3
-
79
-
-
84921865747
-
Constraining the flux space using thermodynamics and integration of metabolomics data
-
1:CAS:528:DC%2BC2MXotVajurk%3D
-
Soh KS, Hatzimanikatis V. Constraining the flux space using thermodynamics and integration of metabolomics data. Methods Mol Biol. 2014;1191:49-63.
-
(2014)
Methods Mol Biol
, vol.1191
, pp. 49-63
-
-
Soh, K.S.1
Hatzimanikatis, V.2
-
81
-
-
0038579951
-
Various techniques used in connection with random digits
-
A.H. Taub (eds) 5 Pergamon Press Oxford
-
Von Neumann J. Various techniques used in connection with random digits. In: Taub AH, editor. The collected works of John von Neumann. Vol. 5. Oxford: Pergamon Press; 1963. P. 768-770.
-
(1963)
The Collected Works of John von Neumann
, pp. 768-770
-
-
Von Neumann, J.1
-
83
-
-
0020148206
-
Generating random vectors uniformly distributed inside and on the surface of different regions
-
Rubinstein R. Generating random vectors uniformly distributed inside and on the surface of different regions. Europ J Oper Res. 1982;10:205-9.
-
(1982)
Europ J Oper Res.
, vol.10
, pp. 205-209
-
-
Rubinstein, R.1
-
84
-
-
75649152860
-
Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations
-
Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell. 2010;21(1):198-211. doi: 10.1091/mbc.E09-07-0597.
-
(2010)
Mol Biol Cell
, vol.21
, Issue.1
, pp. 198-211
-
-
Boer, V.M.1
Crutchfield, C.A.2
Bradley, P.H.3
Botstein, D.4
Rabinowitz, J.D.5
-
85
-
-
68049100110
-
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
-
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5(8):593-9. doi: 10.1038/nchembio.186.
-
(2009)
Nat Chem Biol
, vol.5
, Issue.8
, pp. 593-599
-
-
Bennett, B.D.1
Kimball, E.H.2
Gao, M.3
Osterhout, R.4
Van Dien, S.J.5
Rabinowitz, J.D.6
-
86
-
-
34247123157
-
Cellular metabolomics of Escherichia coli
-
Rabinowitz JD. Cellular metabolomics of Escherichia coli. Expert Rev Proteom. 2007;4(2):187-98. doi: 10.1586/14789450.4.2.187.
-
(2007)
Expert Rev Proteom
, vol.4
, Issue.2
, pp. 187-198
-
-
Rabinowitz, J.D.1
|