메뉴 건너뛰기




Volumn 14, Issue 6, 2012, Pages 611-622

Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae

Author keywords

Ethanol production; Evolutionary engineering; Inverse metabolic engineering; Saccharomyces cerevisiae; Xylose isomerase; Xylose utilization

Indexed keywords

ANAEROBIC GROWTH; COMPLEMENTATION; CONSUMPTION RATES; ETHANOL CONVERSION; ETHANOL PRODUCTION; EVOLUTIONARY ENGINEERING; EXPRESSION LEVELS; INVERSE METABOLIC ENGINEERING; LIGNOCELLULOSIC FEEDSTOCKS; METABOLIC ENGINEERING APPROACH; NON-OXIDATIVE; OVER-EXPRESSION; PENTOSE PHOSPHATE PATHWAY; PERFORMANCE METRICS; PICHIA STIPITIS; S.CEREVISIAE; SEQUENTIAL BATCH; THREE-STAGE PROCESS; XYLOSE ISOMERASE; XYLULOSE; YEAST SACCHAROMYCES CEREVISIAE;

EID: 84869043924     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2012.07.011     Document Type: Article
Times cited : (245)

References (52)
  • 1
    • 55549118196 scopus 로고    scopus 로고
    • Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose
    • Akinterinwa O., Cirino P.C. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 2009, 11:48-55.
    • (2009) Metab. Eng. , vol.11 , pp. 48-55
    • Akinterinwa, O.1    Cirino, P.C.2
  • 2
    • 0024508349 scopus 로고
    • The fermentation of xylose-an analysis of the expression of bacillus and actinoplanes xylose isomerase genes in yeast
    • Amore R., Wilhelm M., Hollenberg C.P. The fermentation of xylose-an analysis of the expression of bacillus and actinoplanes xylose isomerase genes in yeast. Appl. Environ. Microbiol. 1989, 30:351-357.
    • (1989) Appl. Environ. Microbiol. , vol.30 , pp. 351-357
    • Amore, R.1    Wilhelm, M.2    Hollenberg, C.P.3
  • 3
    • 0002587184 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium
    • Andreasen A.A., Stier T.J. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell. Physiol. 1953, 41:23-36.
    • (1953) J. Cell. Physiol. , vol.41 , pp. 23-36
    • Andreasen, A.A.1    Stier, T.J.2
  • 4
    • 0000493179 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium
    • Andreasen A.A., Stier T.J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Physiol. 1954, 43:271-281.
    • (1954) J. Cell. Physiol. , vol.43 , pp. 271-281
    • Andreasen, A.A.1    Stier, T.J.2
  • 5
    • 70349410320 scopus 로고    scopus 로고
    • Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene
    • Baerends R.J., Qiu J.L., Rasmussen S., Nielsen H.B., Brandt A. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl. Environ. Microbiol. 2009, 75:6055-6061.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 6055-6061
    • Baerends, R.J.1    Qiu, J.L.2    Rasmussen, S.3    Nielsen, H.B.4    Brandt, A.5
  • 6
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • Becker J., Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 2003, 69:4144-4150.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 7
    • 0031790955 scopus 로고    scopus 로고
    • Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer
    • Bieche I., Olivi M., Champeme M.H., Vidaud D., Lidereau R., Vidaud M. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int. J. Cancer 1998, 78:661-666.
    • (1998) Int. J. Cancer , vol.78 , pp. 661-666
    • Bieche, I.1    Olivi, M.2    Champeme, M.H.3    Vidaud, D.4    Lidereau, R.5    Vidaud, M.6
  • 8
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D., Boles E., Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:2304-2311.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 11
    • 0037415332 scopus 로고    scopus 로고
    • The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae
    • Gardonyi M., Hahn-Hägerdal B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb. Technol. 2003, 32:252-259.
    • (2003) Enzyme Microb. Technol. , vol.32 , pp. 252-259
    • Gardonyi, M.1    Hahn-Hägerdal, B.2
  • 13
    • 0034213671 scopus 로고    scopus 로고
    • Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae
    • Hauf J., Zimmermann F.K., Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb. Technol. 2000, 26:688-698.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 688-698
    • Hauf, J.1    Zimmermann, F.K.2    Muller, S.3
  • 14
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho, N.W., Chen, Z., Brainard, a. P., 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64, 1852-1859.
    • (1998) Appl. Environ. Microbiol , vol.64 , pp. 1852-1859
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3
  • 15
    • 0020912407 scopus 로고
    • Utilization of xylose by bacteria, yeasts, and fungi
    • Jeffries T.W. Utilization of xylose by bacteria, yeasts, and fungi. Adv. Biochem. Eng. Biotechnol. 1983, 27:1-32.
    • (1983) Adv. Biochem. Eng. Biotechnol. , vol.27 , pp. 1-32
    • Jeffries, T.W.1
  • 16
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin Y.-s., Laplaza J.M., Jeffries T.W. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 2004, 70:6816-6825.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 6816-6825
    • Jin, Y.-S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 17
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • Jin Y.-s., Ni H., Laplaza J.M., Jeffries T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69:495-503.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 495-503
    • Jin, Y.-S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 18
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin Y.S., Alper H., Yang Y.T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8249
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3    Stephanopoulos, G.4
  • 19
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67:4249-4255.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hägerdal, B.4
  • 20
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
    • Johansson B., Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002, 2:277-282.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 21
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M.-F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22:359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.-F.3
  • 22
    • 33646569083 scopus 로고    scopus 로고
    • Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains
    • Karhumaa K., Wiedemann B., Hahn-Hagerdal B., Boles E., Gorwa-Grauslund M.F. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact. 2006, 5:18.
    • (2006) Microb Cell Fact. , vol.5 , pp. 18
    • Karhumaa, K.1    Wiedemann, B.2    Hahn-Hagerdal, B.3    Boles, E.4    Gorwa-Grauslund, M.F.5
  • 25
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M., Hartog M.M.P., Toirkens M.J., Almering M.J.H., Winkler A.a., van Dijken J.P., Pronk J.T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5:399-409.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.P.2    Toirkens, M.J.3    Almering, M.J.H.4    Winkler, A.A.5    van Dijken, J.P.6    Pronk, J.T.7
  • 26
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper M., Toirkens M.J., Diderich J.a., Winkler A.a., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5:925-934.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 27
    • 63949086729 scopus 로고    scopus 로고
    • Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
    • Madhavan A., Tamalampudi S., Srivastava A., Fukuda H., Bisaria V.S., Kondo A. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl. Environ. Microbiol. 2009, 82:1037-1047.
    • (2009) Appl. Environ. Microbiol. , vol.82 , pp. 1037-1047
    • Madhavan, A.1    Tamalampudi, S.2    Srivastava, A.3    Fukuda, H.4    Bisaria, V.S.5    Kondo, A.6
  • 28
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A., Tamalampudi S., Ushida K., Kanai D., Katahira S., Srivastava A., Fukuda H., Bisaria V.S., Kondo A. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Environ. Microbiol. 2009, 82:1067-1078.
    • (2009) Appl. Environ. Microbiol. , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 30
    • 0030000304 scopus 로고    scopus 로고
    • Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae
    • Moes C.J., Pretorius I.S., vanZyl W.H. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 1996, 18:269-274.
    • (1996) Biotechnol. Lett. , vol.18 , pp. 269-274
    • Moes, C.J.1    Pretorius, I.S.2    vanZyl, W.H.3
  • 31
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D., Muller R., Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156:119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 32
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 33
    • 34247508562 scopus 로고    scopus 로고
    • Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
    • Ni H., Laplaza J.M., Jeffries T.W. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl. Environ. Microbiol. 2007, 73:2061-2066.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 2061-2066
    • Ni, H.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 34
    • 0021064763 scopus 로고
    • Role of tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts
    • Ohta K., Hayashida S. Role of tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts. Appl. Environ. Microbiol. 1983, 46:821-825.
    • (1983) Appl. Environ. Microbiol. , vol.46 , pp. 821-825
    • Ohta, K.1    Hayashida, S.2
  • 35
    • 21344472162 scopus 로고    scopus 로고
    • Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain
    • Pitkänen J.-P., Rintala E., Aristidou A., Ruohonen L., Penttilä M. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl. Environ. Microbiol. 2005, 67:827-837.
    • (2005) Appl. Environ. Microbiol. , vol.67 , pp. 827-837
    • Pitkänen, J.-P.1    Rintala, E.2    Aristidou, A.3    Ruohonen, L.4    Penttilä, M.5
  • 36
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk J.T. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 2002, 68:2095-2100.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 39
    • 0035232377 scopus 로고    scopus 로고
    • Evolutionary engineering of industrially important microbial phenotypes
    • Sauer U. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 2001, 73:129-169.
    • (2001) Adv. Biochem. Eng. Biotechnol. , vol.73 , pp. 129-169
    • Sauer, U.1
  • 40
    • 0018399752 scopus 로고
    • Uptake and catabolism of D-xylose in Salmonella typhimurium Lt2
    • Shamanna D.K., Sanderson K.E. Uptake and catabolism of D-xylose in Salmonella typhimurium Lt2. J. Bacteriol. 1979, 139:64-70.
    • (1979) J. Bacteriol. , vol.139 , pp. 64-70
    • Shamanna, D.K.1    Sanderson, K.E.2
  • 41
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski R.S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 42
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M., Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69:1990-1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 43
    • 0024593929 scopus 로고
    • Double-strand breaks at an initiation site for meiotic gene conversion
    • Sun H., Treco D., Schultes N.P., Szostak J.W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 1989, 338:87-90.
    • (1989) Nature , vol.338 , pp. 87-90
    • Sun, H.1    Treco, D.2    Schultes, N.P.3    Szostak, J.W.4
  • 44
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari M.H., Aristidou A., Ruohonen L., Penttila M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 2001, 3:236-249.
    • (2001) Metab. Eng. , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttila, M.4
  • 47
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 2009, 20:300-306.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 48
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom C.F., Cordero Otero R.R., van Zyl W.H., Hahn-Hägerdal B., Jonsson L.J. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 2003, 69:740-746.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jonsson, L.J.5
  • 49
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M., Bao X., Anderlund M., Lilius G., Bülow L., Hahn-Hägerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 1996, 62:4648-4651.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 50
    • 84884614785 scopus 로고    scopus 로고
    • High Throughput Screen for Cells with High Extracellular Metabolite Consumption-Secretion Rates Using Microfluidic Droplets
    • Ph. D. Massachusetts Institute of Technology, Cambridge, MA
    • Wang, B.L., 2009. High Throughput Screen for Cells with High Extracellular Metabolite Consumption-Secretion Rates Using Microfluidic Droplets. Dept. of Chemical Engineering., Vol. Ph. D. Massachusetts Institute of Technology, Cambridge, MA.
    • (2009) Dept. of Chemical Engineering , vol.1
    • Wang, B.L.1
  • 51
    • 79952293732 scopus 로고    scopus 로고
    • Microfluidic droplets as nanobioreactors for screening metabolic engineering libraries
    • In: The AIChE 2008 Annual Meeting, Philadelphia, PA
    • Wang, B.L., Zhou, H., Weitz, D.A., Stephanopoulos, G.N., 2008. Microfluidic droplets as nanobioreactors for screening metabolic engineering libraries. In: The AIChE 2008 Annual Meeting, Philadelphia, PA.
    • (2008)
    • Wang, B.L.1    Zhou, H.2    Weitz, D.A.3    Stephanopoulos, G.N.4
  • 52
    • 42049123423 scopus 로고    scopus 로고
    • Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae
    • Wiedemann B., Boles E. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74:2043-2050.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2043-2050
    • Wiedemann, B.1    Boles, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.