-
1
-
-
0942288120
-
Bacteria engineered for fuel ethanol production
-
[CrossRef][PubMed]
-
Dien, B.S.; Cotta, M.A.; Jeffries, T.W. Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 2003, 63, 258–266. [CrossRef][PubMed]
-
(2003)
Current Status. Appl. Microbiol. Biotechnol
, vol.63
, pp. 258-266
-
-
Dien, B.S.1
Cotta, M.A.2
Jeffries, T.W.3
-
2
-
-
31544462628
-
Ethanol can contribute to energy and environmental goals
-
[CrossRef][PubMed]
-
Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science 2006, 311, 506–508. [CrossRef][PubMed]
-
(2006)
Science
, vol.311
, pp. 506-508
-
-
Farrell, A.E.1
Plevin, R.J.2
Turner, B.T.3
Jones, A.D.4
O’Hare, M.5
Kammen, D.M.6
-
3
-
-
33750621979
-
Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Van Maris, A.J.A.; Abbott, D.A.; Bellissimi, E.; van den Brink, J.; Kuyper, M.; Luttik, M.A.; Wisselink, H.W.; Scheffers, W.A.; van Dijken, J.P.; Pronk, J.T. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie Van Leeuwenhoek 2006, 90, 391–418. [CrossRef][PubMed]
-
(2006)
Current Status. Antonie Van Leeuwenhoek
, vol.90
, pp. 391-418
-
-
Van Maris, A.J.A.1
Abbott, D.A.2
Bellissimi, E.3
Van Den Brink, J.4
Kuyper, M.5
Luttik, M.A.6
Wisselink, H.W.7
Scheffers, W.A.8
Van Dijken, J.P.9
Pronk, J.T.10
-
4
-
-
33751208021
-
Bioethanol—The fuel of tomorrow from the residues of today
-
[CrossRef][PubMed]
-
Hahn-Hagerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Liden, G.; Zacchi, G. Bioethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549–556. [CrossRef][PubMed]
-
(2006)
Trends Biotechnol
, vol.24
, pp. 549-556
-
-
Hahn-Hagerdal, B.1
Galbe, M.2
Gorwa-Grauslund, M.F.3
Liden, G.4
Zacchi, G.5
-
5
-
-
0036385526
-
Review of the production of ethanol from softwood. Appl. Microbiol
-
[CrossRef][PubMed]
-
Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. [CrossRef][PubMed]
-
(2002)
Biotechnol
, vol.59
, pp. 618-628
-
-
Galbe, M.1
Zacchi, G.A.2
-
6
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
[CrossRef][PubMed]
-
Klinke, H.B.; Thomsen, A.B.; Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10–26. [CrossRef][PubMed]
-
(2004)
Appl. Microbiol. Biotechnol
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
7
-
-
1342265594
-
Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes
-
[CrossRef][PubMed]
-
Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol. 2004, 93, 1–10. [CrossRef][PubMed]
-
(2004)
A Review. Bioresour. Technol
, vol.93
, pp. 1-10
-
-
Mussatto, S.I.1
Roberto, I.C.2
-
8
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
[CrossRef]
-
Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [CrossRef]
-
(2000)
Bioresour. Technol
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
9
-
-
0004248830
-
-
2nd ed.; Cambridge University Press: Cambridge, UK
-
Barnett, J.A.; Payne, R.W.; Yarrow, D. Yeasts: Characteristics and Identification, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990.
-
(1990)
Yeasts: Characteristics and Identification
-
-
Barnett, J.A.1
Payne, R.W.2
Yarrow, D.3
-
10
-
-
17044443785
-
Fermentation of lignocellulosic hydrolates for ethanol production
-
[CrossRef]
-
Olsson, L.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolates for ethanol production. Enzym. Microb. Technol. 1996, 18, 312–331. [CrossRef]
-
(1996)
Enzym. Microb. Technol
, vol.18
, pp. 312-331
-
-
Olsson, L.1
Hahn-Hägerdal, B.2
-
11
-
-
0020408321
-
Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains
-
[PubMed]
-
Margaritis, A.; Bajpai, P. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl. Environ. Microbiol. 1982, 44, 1039–1041. [PubMed]
-
(1982)
Appl. Environ. Microbiol
, vol.44
, pp. 1039-1041
-
-
Margaritis, A.1
Bajpai, P.2
-
12
-
-
0345131613
-
Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose
-
[CrossRef]
-
Wang, P.Y.; Johnson, B.F.; Schneider, H. Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol. Lett. 1980, 2, 273–278. [CrossRef]
-
(1980)
Biotechnol. Lett
, vol.2
, pp. 273-278
-
-
Wang, P.Y.1
Johnson, B.F.2
Schneider, H.3
-
13
-
-
33947372119
-
Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus
-
[CrossRef][PubMed]
-
Stephens, C.; Christen, B.; Fuchs, T.; Sundaram, V.; Watanabe, K.; Jenal, U. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J. Bacteriol. 2007, 189, 2181–2185. [CrossRef][PubMed]
-
(2007)
J. Bacteriol
, vol.189
, pp. 2181-2185
-
-
Stephens, C.1
Christen, B.2
Fuchs, T.3
Sundaram, V.4
Watanabe, K.5
Jenal, U.6
-
14
-
-
34250110513
-
NAD (P) H-dependent aldose reductase from the xylose-fermenting yeast Pichia stipitis
-
[CrossRef]
-
Verduyn, C.; Kleef, R.; Frank Jzn, J.; Schreuder, H.; Dijken, J.P.; Scheffers, W.A. NAD (P) H-dependent aldose reductase from the xylose-fermenting yeast Pichia stipitis. Antonie Van Leeuwenhoek 1985, 51, 562–562. [CrossRef]
-
(1985)
Antonie Van Leeuwenhoek
, vol.51
-
-
Verduyn, C.1
Kleef, R.2
Frank Jzn, J.3
Schreuder, H.4
Dijken, J.P.5
Scheffers, W.A.6
-
15
-
-
0024962287
-
Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source
-
[CrossRef][PubMed]
-
Rizzi, M.; Klein, C.; Schulze, C.; Bui-Thanh, N.A.; Dellweg, H. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol. Bioeng. 1989, 34, 509–514. [CrossRef][PubMed]
-
(1989)
Biotechnol. Bioeng
, vol.34
, pp. 509-514
-
-
Rizzi, M.1
Klein, C.2
Schulze, C.3
Bui-Thanh, N.A.4
Dellweg, H.5
-
16
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
[CrossRef][PubMed]
-
Hahn-Hagerdal, B.; Karhumaa, K.; Fonseca, C.; Spencer-Martins, I.; Gorwa-Grauslund, M.F. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 2007, 74, 937–953. [CrossRef][PubMed]
-
(2007)
Appl. Microbiol. Biotechnol
, vol.74
, pp. 937-953
-
-
Hahn-Hagerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.F.5
-
17
-
-
70350443043
-
D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii
-
[CrossRef][PubMed]
-
Johnsen, U.; Dambeck, M.; Zaiss, H.; Fuhrer, T.; Soppa, J.; Sauer, U.; Schönheit, P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 2009, 284, 27290–27303. [CrossRef][PubMed]
-
(2009)
J. Biol. Chem
, vol.284
, pp. 27290-27303
-
-
Johnsen, U.1
Dambeck, M.2
Zaiss, H.3
Fuhrer, T.4
Soppa, J.5
Sauer, U.6
Schönheit, P.7
-
18
-
-
33847168661
-
Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim. Biophys
-
[CrossRef][PubMed]
-
Chang, Q.; Griest, T.; Harter, T.; Petrash, J. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim. Biophys. Acta 2007, 1773, 321–329. [CrossRef][PubMed]
-
(2007)
Acta
, vol.1773
, pp. 321-329
-
-
Chang, Q.1
Griest, T.2
Harter, T.3
Petrash, J.4
-
19
-
-
0036799466
-
Putative xylose and arabinose reductases in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Traff, K.L.; Jonsson, L.J.; Hahn-Hägerdal, B. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002, 19, 1233–1241. [CrossRef][PubMed]
-
(2002)
Yeast
, vol.19
, pp. 1233-1241
-
-
Traff, K.L.1
Jonsson, L.J.2
Hahn-Hägerdal, B.3
-
20
-
-
2942616482
-
Endogenous xylose pathway in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Toivari, M.H.; Salusjarvi, L.; Ruohonen, L.; Penttilä, M. Endogenous xylose pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 3681–3686. [CrossRef][PubMed]
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 3681-3686
-
-
Toivari, M.H.1
Salusjarvi, L.2
Ruohonen, L.3
Penttilä, M.4
-
21
-
-
0037140422
-
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Wahlbom, C.F.; Hahn-Hägerdal, B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2002, 78, 172–178. [CrossRef][PubMed]
-
(2002)
Biotechnol. Bioeng
, vol.78
, pp. 172-178
-
-
Wahlbom, C.F.1
Hahn-Hägerdal, B.2
-
22
-
-
33750310028
-
Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400
-
[CrossRef][PubMed]
-
Öhgren, K.; Bengtsson, O.; Gorwa-Grauslund, M.F.; Galbe, M.; Hahn-Hägerdal, B.; Zacchi, G. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Botechnol. 2006, 126, 488–498. [CrossRef][PubMed]
-
(2006)
J. Botechnol
, vol.126
, pp. 488-498
-
-
Öhgren, K.1
Bengtsson, O.2
Gorwa-Grauslund, M.F.3
Galbe, M.4
Hahn-Hägerdal, B.5
Zacchi, G.6
-
23
-
-
69949160038
-
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction
-
Almeida, J.R.M.; Bertilsson, M.; Hahn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.-F. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl. Microbiol. Biotechnol. 2009, 84, 751–761.
-
(2009)
Appl. Microbiol. Biotechnol
, vol.84
, pp. 751-761
-
-
Almeida, J.R.M.1
Bertilsson, M.2
Hahn-Hägerdal, B.3
Lidén, G.4
Gorwa-Grauslund, M.-F.5
-
24
-
-
0041528246
-
Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
-
[CrossRef][PubMed]
-
Roca, C.; Nielsen, J.; Olsson, L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 2003, 69, 4732–4736. [CrossRef][PubMed]
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 4732-4736
-
-
Roca, C.1
Nielsen, J.2
Olsson, L.3
-
25
-
-
2442684544
-
Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Sonderegger, M.; Schumperli, M.; Sauer, U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 2892–2897. [CrossRef][PubMed]
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 2892-2897
-
-
Sonderegger, M.1
Schumperli, M.2
Sauer, U.3
-
26
-
-
79952181277
-
Stress-related challenges in pentose fermentation to ethanol by the yeast
-
[CrossRef][PubMed]
-
Almeida, J.R.M.; Runquist, D.; Sànchez Nogué, V.; Lidén, G.; Gorwa-Grauslund, M.F. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol. J. 2011, 6, 286–299. [CrossRef][PubMed]
-
(2011)
Saccharomyces Cerevisiae. Biotechnol. J
, vol.6
, pp. 286-299
-
-
Almeida, J.R.M.1
Runquist, D.2
Sànchez Nogué, V.3
Lidén, G.4
Gorwa-Grauslund, M.F.5
-
27
-
-
0023408004
-
Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae
-
[PubMed]
-
Sarthy, A.V.; McConaughy, B.L.; Lobo, Z.; Sundstrom, J.A.; Furlong, C.E.; Hall, B.D. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1987, 53, 1996–2000. [PubMed]
-
(1987)
Appl. Environ. Microbiol
, vol.53
, pp. 1996-2000
-
-
Sarthy, A.V.1
McConaughy, B.L.2
Lobo, Z.3
Sundstrom, J.A.4
Furlong, C.E.5
Hall, B.D.6
-
28
-
-
0024508349
-
The fermentation of xylose—An analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast
-
[CrossRef]
-
Amore, R.; Wilhelm, M.; Hollenberg, C.P. The fermentation of xylose—An analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl. Microbiol. Biotechnol. 1989, 30, 351–357. [CrossRef]
-
(1989)
Appl. Microbiol. Biotechnol
, vol.30
, pp. 351-357
-
-
Amore, R.1
Wilhelm, M.2
Hollenberg, C.P.3
-
29
-
-
0030000304
-
Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (XylA) in Saccharomyces cerevisiae
-
[CrossRef]
-
Moes, C.J.; Pretorius, I.S.; van Zyl W.H. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 1996, 18, 269–274. [CrossRef]
-
(1996)
Biotechnol. Lett
, vol.18
, pp. 269-274
-
-
Moes, C.J.1
Pretorius, I.S.2
Van Zyl, W.H.3
-
30
-
-
0037415332
-
The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb
-
[CrossRef]
-
Gárdonyi, M.; Hahn-Hägerdal, B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb. Technol. 2003, 32, 252–259. [CrossRef]
-
(2003)
Technol
, vol.32
, pp. 252-259
-
-
Gárdonyi, M.1
Hahn-Hägerdal, B.2
-
31
-
-
34548728610
-
Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component
-
[PubMed]
-
Van Maris, A.J.; Winkler, A.A.; Kuyper, M.; de Laat, W.T.; van Dijken, J.P.; Pronk, J.T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Adv. Biochem. Eng. Biotechnol. 2007, 108, 179–204. [PubMed]
-
(2007)
Adv. Biochem. Eng. Biotechnol
, vol.108
, pp. 179-204
-
-
Van Maris, A.J.1
Winkler, A.A.2
Kuyper, M.3
De Laat, W.T.4
Van Dijken, J.P.5
Pronk, J.T.6
-
32
-
-
0029909726
-
Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (Glucose) isomerase
-
[PubMed]
-
Walfridsson, M.; Bao, X.; Anderlund, M.; Lilius, G.; Bulow, L.; Hahn-Hagerdal, B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 1996, 62, 4648–4651. [PubMed]
-
(1996)
Appl. Environ. Microbiol
, vol.62
, pp. 4648-4651
-
-
Walfridsson, M.1
Bao, X.2
Anderlund, M.3
Lilius, G.4
Bulow, L.5
Hahn-Hagerdal, B.6
-
33
-
-
0242669383
-
Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
-
[CrossRef]
-
Lönn, A.; Träff-Bjerre, K.L.; Cordero Otero, R.R.; van Zyl, W.H.; Hahn-Hägerdal, B. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzym. Microb. Technol. 2003, 32, 567–573. [CrossRef]
-
(2003)
Enzym. Microb. Technol
, vol.32
, pp. 567-573
-
-
Lönn, A.1
Träff-Bjerre, K.L.2
Cordero Otero, R.R.3
Van Zyl, W.H.4
Hahn-Hägerdal, B.5
-
34
-
-
82455209009
-
Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
-
[CrossRef][PubMed]
-
Ha, S.J.; Kim, S.R.; Choi, J.H.; Park, M.S.; Jin, Y.S. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl. Microbiol. Biotechnol. 2011, 92, 77–84. [CrossRef][PubMed]
-
(2011)
Appl. Microbiol. Biotechnol
, vol.92
, pp. 77-84
-
-
Ha, S.J.1
Kim, S.R.2
Choi, J.H.3
Park, M.S.4
Jin, Y.S.5
-
35
-
-
84857449270
-
Reduction of PDC1 expression in S. Cerevisiae with xylose isomerase on xylose medium
-
[CrossRef][PubMed]
-
Kim, D.M.; Choi, S.H.; Ko, B.S.; Jeong, G.Y.; Jang, H.B.; Han, J.G.; Jeong, K.H.; Lee, H.Y.; Won, Y.; Kim, I.C. Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. Bioprocess. Biosyst. Eng. 2012, 35, 183–189. [CrossRef][PubMed]
-
(2012)
Bioprocess. Biosyst. Eng
, vol.35
, pp. 183-189
-
-
Kim, D.M.1
Choi, S.H.2
Ko, B.S.3
Jeong, G.Y.4
Jang, H.B.5
Han, J.G.6
Jeong, K.H.7
Lee, H.Y.8
Won, Y.9
Kim, I.C.10
-
36
-
-
84868201333
-
Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Aeling, K.A.; Salmon, K.A.; Laplaza, J.M.; Li, L.; Headman, J.R.; Hutagalung, A.H.; Picataggio, S. Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2012, 39, 1597–1604. [CrossRef][PubMed]
-
(2012)
J. Ind. Microbiol. Biotechnol
, vol.39
, pp. 1597-1604
-
-
Aeling, K.A.1
Salmon, K.A.2
Laplaza, J.M.3
Li, L.4
Headman, J.R.5
Hutagalung, A.H.6
Picataggio, S.7
-
37
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
[CrossRef]
-
Kuyper, M.; Harhangi, H.R.; Stave, A.K.; Winkler, A.A.; Jetten, M.S.; de Laat, W.T.; den Ridder, J.J.; Op den Camp, H.J.; van Dijken, J.P.; Pronk, J.T. High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 2003, 4, 69–78. [CrossRef]
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
Winkler, A.A.4
Jetten, M.S.5
De Laat, W.T.6
Den Ridder, J.J.7
Op Den Camp, H.J.8
Van Dijken, J.P.9
Pronk, J.T.10
-
38
-
-
1642315441
-
Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation
-
[CrossRef][PubMed]
-
Kuyper, M.; Winkler, A.A.; van Dijken, J.P.; Pronk, J.T. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res. 2004, 4, 655–664. [CrossRef][PubMed]
-
(2004)
A Proof of Principle. FEMS Yeast Res
, vol.4
, pp. 655-664
-
-
Kuyper, M.1
Winkler, A.A.2
Van Dijken, J.P.3
Pronk, J.T.4
-
39
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
[CrossRef][PubMed]
-
Kuyper, M.; Hartog, M.M.; Toirkens, M.J.; Almering, M.J.; Winkler, A.A.; van Dijken, J.P.; Pronk, J.T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5, 399–409. [CrossRef][PubMed]
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
Almering, M.J.4
Winkler, A.A.5
Van Dijken, J.P.6
Pronk, J.T.7
-
40
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
[CrossRef][PubMed]
-
Kuyper, M.; Toirkens, M.J.; Diderich, J.A.; Winkler, A.A.; Dijken, J.P.; Pronk, J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5, 925–934. [CrossRef][PubMed]
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
Dijken, J.P.5
Pronk, J.T.6
-
41
-
-
63949086729
-
Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
-
[CrossRef][PubMed]
-
Madhavan, A.; Tamalampudi, S.; Srivastava, A.; Fukuda, H.; Bisaria, V.S.; Kondo, A. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl. Microbiol. Biotechnol. 2009, 82, 1037–1047. [CrossRef][PubMed]
-
(2009)
Appl. Microbiol. Biotechnol
, vol.82
, pp. 1037-1047
-
-
Madhavan, A.1
Tamalampudi, S.2
Srivastava, A.3
Fukuda, H.4
Bisaria, V.S.5
Kondo, A.6
-
42
-
-
63949086429
-
Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
-
[CrossRef][PubMed]
-
Madhavan, A.; Tamalampudi, S.; Ushida, K.; Kanai, D.; Katahira, S.; Srivastava, A.; Fukuda, H.; Bisaria, V.S.; Kondo, A. Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 2009, 82, 1067–1078. [CrossRef][PubMed]
-
(2009)
Appl. Microbiol. Biotechnol
, vol.82
, pp. 1067-1078
-
-
Madhavan, A.1
Tamalampudi, S.2
Ushida, K.3
Kanai, D.4
Katahira, S.5
Srivastava, A.6
Fukuda, H.7
Bisaria, V.S.8
Kondo, A.9
-
43
-
-
64749094343
-
Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Brat, D.; Boles, E.; Wiedemann, B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75, 2304–2311. [CrossRef][PubMed]
-
(2009)
Appl. Environ. Microbiol
, vol.75
, pp. 2304-2311
-
-
Brat, D.1
Boles, E.2
Wiedemann, B.3
-
44
-
-
84878237818
-
Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
-
[CrossRef][PubMed]
-
Hector, R.E.; Dien, B.S.; Cotta, M.A.; Mertens, J.A. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
-
(2013)
Biotechnol. Biofuels
, pp. 6
-
-
Hector, R.E.1
Dien, B.S.2
Cotta, M.A.3
Mertens, J.A.4
-
45
-
-
84873164214
-
Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
-
[CrossRef][PubMed]
-
Vilela, L.F.; de Mello, V.M.; Reis, V.C.; Bon, E.P.; Goncalves, D.L.; Torres, F.A.; Neves, B.C.; Eleutherio, E.C. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour. Technol. 2013, 128, 792–796. [CrossRef][PubMed]
-
(2013)
Bioresour. Technol
, vol.128
, pp. 792-796
-
-
Vilela, L.F.1
De Mello, V.M.2
Reis, V.C.3
Bon, E.P.4
Goncalves, D.L.5
Torres, F.A.6
Neves, B.C.7
Eleutherio, E.C.8
-
46
-
-
84938074995
-
Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
-
[CrossRef][PubMed]
-
Vilela, L.F.; de Araujo, V.P.; Paredes, R.S.; Bon, E.P.; Torres, F.A.; Neves, B.C.; Eleutherio, E.C. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 2015, 5. [CrossRef][PubMed]
-
(2015)
AMB Express
-
-
Vilela, L.F.1
De Araujo, V.P.2
Paredes, R.S.3
Bon, E.P.4
Torres, F.A.5
Neves, B.C.6
Eleutherio, E.C.7
-
47
-
-
84929429110
-
Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation
-
[CrossRef][PubMed]
-
Peng, B.; Huang, S.; Liu, T.; Geng, A. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb. Cell Fact. 2015, 14, 70. [CrossRef][PubMed]
-
(2015)
Microb. Cell Fact
, vol.14
-
-
Peng, B.1
Huang, S.2
Liu, T.3
Geng, A.4
-
48
-
-
0028533973
-
Biochemistry and physiology of xylose fermentation by yeasts
-
[CrossRef]
-
Hahn-Hägerdal, B.; Jeppsson, H.; Skoog, K.; Prior, B.A. Biochemistry and physiology of xylose fermentation by yeasts. Enzym. Microb. Technol. 1994, 16, 933–943. [CrossRef]
-
(1994)
Enzym. Microb. Technol
, vol.16
, pp. 933-943
-
-
Hahn-Hägerdal, B.1
Jeppsson, H.2
Skoog, K.3
Prior, B.A.4
-
49
-
-
84875943563
-
Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation
-
[CrossRef][PubMed]
-
Ota, M.; Sakuragi, H.; Morisaka, H.; Kuroda, K.; Miyake, H.; Tamaru, Y.; Ueda, M. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol. Prog. 2013, 29, 346–351. [CrossRef][PubMed]
-
(2013)
Biotechnol. Prog
, vol.29
, pp. 346-351
-
-
Ota, M.1
Sakuragi, H.2
Morisaka, H.3
Kuroda, K.4
Miyake, H.5
Tamaru, Y.6
Ueda, M.7
-
50
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Parachin, N.S.; Bergdahl, B.; van Niel, E.W.; Gorwa-Grauslund, M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13, 508–517. [CrossRef][PubMed]
-
(2011)
Metab. Eng
, vol.13
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
Van Niel, E.W.3
Gorwa-Grauslund, M.F.4
-
51
-
-
0037228901
-
Ptimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
-
[CrossRef][PubMed]
-
Jin, Y.S.; Ni, H.; Laplaza, J.M.; Jeffries, T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69, 495–503. [CrossRef][PubMed]
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.4
-
52
-
-
0025857432
-
Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts
-
[PubMed]
-
Senac, T.; Hahn-Hagerdal, B. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Appl. Environ. Microbiol. 1991, 57, 1701–1706. [PubMed]
-
(1991)
Appl. Environ. Microbiol
, vol.57
, pp. 1701-1706
-
-
Senac, T.1
Hahn-Hagerdal, B.2
-
53
-
-
0014512243
-
Inhibition of D-xylose isomerase by pentitols and D-lyxose
-
[CrossRef]
-
Yamanaka, K. Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch. Biochem. Biophys. 1969, 131, 502–506. [CrossRef]
-
(1969)
Arch. Biochem. Biophys
, vol.131
, pp. 502-506
-
-
Yamanaka, K.1
-
54
-
-
0028969384
-
Urification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae
-
[PubMed]
-
Kuhn, A.; van Zyl, C.; van Tonder, A.; Prior, B.A. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1995, 61, 1580–1585. [PubMed]
-
(1995)
Appl. Environ. Microbiol
, vol.61
, pp. 1580-1585
-
-
Kuhn, A.1
Van Zyl, C.2
Van Tonder, A.3
Prior, B.4
-
55
-
-
0035650510
-
Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
-
[CrossRef][PubMed]
-
Traff, K.L.; Otero Cordero, R.R.; van Zyl, W.H.; Hahn-Hagerdal, B. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl. Environ. Microbiol. 2001, 67, 5668–5674. [CrossRef][PubMed]
-
(2001)
Appl. Environ. Microbiol
, vol.67
, pp. 5668-5674
-
-
Traff, K.L.1
Otero Cordero, R.R.2
Van Zyl, W.H.3
Hahn-Hagerdal, B.4
-
56
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Verho, R.; Londesborough, J.; Penttila, M.; Richard, P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 5892–5897. [CrossRef][PubMed]
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttila, M.3
Richard, P.4
-
57
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (PNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
-
[CrossRef][PubMed]
-
Van Vleet, J.H.; Jeffries, T.W.; Olsson, L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 2008, 10, 360–369. [CrossRef][PubMed]
-
(2008)
Metab. Eng
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
58
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
[CrossRef][PubMed]
-
Bro, C.; Regenberg, B.; Forster, J.; Nielsen, J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8, 102–111. [CrossRef][PubMed]
-
(2006)
Metab. Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Forster, J.3
Nielsen, J.4
-
59
-
-
84873736810
-
-
[CrossRef][PubMed]
-
Usher, J.; Balderas-Hernandez, V.; Quon, P.; Gold, N.D.; Martin, V.J.; Mahadevan, R.; Baetz, K. Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. G3 2011, 1, 247–258. [CrossRef][PubMed]
-
(2011)
Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces Cerevisiae. G3
, vol.1
, pp. 247-258
-
-
Usher, J.1
Balderas-Hernandez, V.2
Quon, P.3
Gold, N.D.4
Martin, V.J.5
Mahadevan, R.6
Baetz, K.7
-
60
-
-
0032977883
-
Lessons from metabolic engineering for functional genomics and drug discovery
-
[CrossRef][PubMed]
-
Baley, J.E. Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 1999, 17, 616–618. [CrossRef][PubMed]
-
(1999)
Nat. Biotechnol
, vol.17
, pp. 616-618
-
-
Baley, J.E.1
-
61
-
-
3543082676
-
Dealing with complexity: Evolutionary engineering and genome shuffling
-
[CrossRef][PubMed]
-
Petri, R.; Schmidt-Dannert, C. Dealing with complexity: Evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 2004, 15, 298–304. [CrossRef][PubMed]
-
(2004)
Curr. Opin. Biotechnol
, vol.15
, pp. 298-304
-
-
Petri, R.1
Schmidt-Dannert, C.2
-
62
-
-
77953602249
-
Adaptive evolution of baker’s yeast in a dough-like environment enhances freeze and salinity tolerance. Microb
-
[CrossRef][PubMed]
-
Aguilera, J.; Andreu, P.; Randez-Gil, F.; Prieto, J.A. Adaptive evolution of baker’s yeast in a dough-like environment enhances freeze and salinity tolerance. Microb. Biotechnol. 2010, 3, 210–221. [CrossRef][PubMed]
-
(2010)
Biotechnol
, vol.3
, pp. 210-221
-
-
Aguilera, J.1
Andreu, P.2
Randez-Gil, F.3
Prieto, J.A.4
-
63
-
-
33747373639
-
Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source
-
[CrossRef][PubMed]
-
Attfield, P.V.; Bell, P.J.L. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res. 2006, 6, 862–868. [CrossRef][PubMed]
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 862-868
-
-
Attfield, P.V.1
Bell, P.J.L.2
-
64
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
[CrossRef][PubMed]
-
Sonderegger, M.; Sauer, U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69, 1990–1998. [CrossRef][PubMed]
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
65
-
-
84863618228
-
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
-
[CrossRef][PubMed]
-
Scalcinati, G.; Otero, J.M.; Vleet, J.R.; Jeffries, T.W.; Olsson, L.; Nielsen, J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012, 12, 582–597. [CrossRef][PubMed]
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 582-597
-
-
Scalcinati, G.1
Otero, J.M.2
Vleet, J.R.3
Jeffries, T.W.4
Olsson, L.5
Nielsen, J.6
-
66
-
-
84876090690
-
Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis
-
[CrossRef][PubMed]
-
Kim, S.R.; Kwee, N.R.; Kim, H.; Jin, Y.S. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 2013, 13, 312–321. [CrossRef][PubMed]
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 312-321
-
-
Kim, S.R.1
Kwee, N.R.2
Kim, H.3
Jin, Y.S.4
-
67
-
-
84897513442
-
Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Klimacek, M.; Kirl, E.; Krahulec, S.; Longus, K.; Novy, V.; Nidetzky, B. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 2014, 13. [CrossRef][PubMed]
-
(2014)
Microb. Cell Fact.
-
-
Klimacek, M.1
Kirl, E.2
Krahulec, S.3
Longus, K.4
Novy, V.5
Nidetzky, B.6
-
68
-
-
84879119602
-
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
[CrossRef][PubMed]
-
Demeke, M.M.; Dietz, H.; Li, Y.; Foulquie-Moreno, M.R.; Mutturi, S.; Deprez, S.; Den Abt, T.; Bonini, B.M.; Liden, G.; Dumortier, F. et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
-
(2013)
Biotechnol. Biofuels
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquie-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
Den Abt, T.7
Bonini, B.M.8
Liden, G.9
Dumortier, F.10
-
69
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Zhou, H.; Cheng, J.S.; Wang, B.L.; Fink, G.R.; Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14, 611–622. [CrossRef][PubMed]
-
(2012)
Metab. Eng
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.S.2
Wang, B.L.3
Fink, G.R.4
Stephanopoulos, G.5
-
70
-
-
84926201540
-
Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA
-
[CrossRef][PubMed]
-
Demeke, M.M.; Foulquie-Moreno, M.R.; Dumortier, F.; Thevelein, J.M. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet. 2015, 11, e1005010. [CrossRef][PubMed]
-
(2015)
Plos Genet
, vol.11
-
-
Demeke, M.M.1
Foulquie-Moreno, M.R.2
Dumortier, F.3
Thevelein, J.M.4
-
71
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and production
-
[CrossRef][PubMed]
-
Alper, H.; Moxley, J.; Nevoigt, E.; Fink, G.R.; Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314, 1565–1568. [CrossRef][PubMed]
-
(2006)
Science
, vol.314
, pp. 1565-1568
-
-
Alper, H.1
Moxley, J.2
Nevoigt, E.3
Fink, G.R.4
Stephanopoulos, G.5
-
72
-
-
79959248684
-
Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance
-
[CrossRef][PubMed]
-
Yang, J.; Bae, J.Y.; Lee, Y.M.; Kwon, H.; Moon, H.Y.; Kang, H.A.; Yee, S.B.; Kim, W.; Choi, W. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol. Bioeng. 2011, 108, 1776–1787. [CrossRef][PubMed]
-
(2011)
Biotechnol. Bioeng
, vol.108
, pp. 1776-1787
-
-
Yang, J.1
Bae, J.Y.2
Lee, Y.M.3
Kwon, H.4
Moon, H.Y.5
Kang, H.A.6
Yee, S.B.7
Kim, W.8
Choi, W.9
-
73
-
-
72149123391
-
Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
-
[CrossRef]
-
Liu, E.; Hu, Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 2010, 48, 204–210. [CrossRef]
-
(2010)
Biochem. Eng. J
, vol.48
, pp. 204-210
-
-
Liu, E.1
Hu, Y.2
-
74
-
-
79960095900
-
GTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate
-
[CrossRef][PubMed]
-
Liu, H.; Liu, K.; Yan, M.; Xu, L.; Ouyang, P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl. Biochem. Biotechnol. 2011, 164, 1150–1159. [CrossRef][PubMed]
-
(2011)
Appl. Biochem. Biotechnol
, vol.164
, pp. 1150-1159
-
-
Liu, H.1
Liu, K.2
Yan, M.3
Xu, L.4
Ouyang, P.5
-
75
-
-
84862922807
-
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation
-
[CrossRef][PubMed]
-
Cai, Z.; Zhang, B.; Li, Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol. J. 2012, 7, 34–46. [CrossRef][PubMed]
-
(2012)
Reflections and Perspectives. Biotechnol. J
, vol.7
, pp. 34-46
-
-
Cai, Z.1
Zhang, B.2
Li, Y.3
-
76
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
-
[CrossRef][PubMed]
-
Wahlbom, C.F.; Otero, R.R.C.; van Zyl, W.H.; Hahn-Hägerdal, B.; Jönsson, L.J. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 2003, 69, 740–746. [CrossRef][PubMed]
-
(2003)
Appl. Environ. Microbiol
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Otero, R.R.C.2
Van Zyl, W.H.3
Hahn-Hägerdal, B.4
Jönsson, L.J.5
-
77
-
-
50849109464
-
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
-
[CrossRef][PubMed]
-
Hector, R.E.; Qureshi, N.; Hughes, S.R.; Cotta, M.A. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 2008, 80, 675–684. [CrossRef][PubMed]
-
(2008)
Appl. Microbiol. Biotechnol
, vol.80
, pp. 675-684
-
-
Hector, R.E.1
Qureshi, N.2
Hughes, S.R.3
Cotta, M.A.4
-
78
-
-
77951127992
-
Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Runquist, D.; Hahn-Hagerdal, B.; Radstrom, P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 2010, 17, 3–5. [CrossRef][PubMed]
-
(2010)
Biotechnol. Biofuels
, vol.17
, pp. 3-5
-
-
Runquist, D.1
Hahn-Hagerdal, B.2
Radstrom, P.3
-
79
-
-
84890317534
-
Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
-
[CrossRef][PubMed]
-
Diao, L.; Liu, Y.; Qian, F.; Yang, J.; Jiang, Y.; Yang, S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 2013, 13. [CrossRef][PubMed]
-
(2013)
BMC Biotechnol
-
-
Diao, L.1
Liu, Y.2
Qian, F.3
Yang, J.4
Jiang, Y.5
Yang, S.6
-
80
-
-
84901422880
-
Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
-
[CrossRef][PubMed]
-
Gonçalves, D.L.; Matsushika, A.; Belisa, B.; Goshima, T.; Bon, E.P.; Stambuk, B.U. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym. Microb. Technol. 2014, 63, 13–20. [CrossRef][PubMed]
-
(2014)
Enzym. Microb. Technol
, vol.63
, pp. 13-20
-
-
Gonçalves, D.L.1
Matsushika, A.2
Belisa, B.3
Goshima, T.4
Bon, E.P.5
Stambuk, B.U.6
-
81
-
-
0030891998
-
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
-
Reifenberger, E.; Boles, E.; Ciriacy, M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 1997, 245, 324–333.
-
(1997)
Eur. J. Biochem
, vol.245
, pp. 324-333
-
-
Reifenberger, E.1
Boles, E.2
Ciriacy, M.3
-
82
-
-
0033025514
-
Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Diderich, J.A.; Schepper, M.; van Hoek, P.; Luttik, M.A.; van Dijken, J.P.; Pronk, J.T.; Klaassen, P.; Boelens, H.F.; de Mattos, M.J.; van Dam, K.; et al. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274, 15350–15359. [CrossRef][PubMed]
-
(1999)
J. Biol. Chem
, vol.274
, pp. 15350-15359
-
-
Diderich, J.A.1
Schepper, M.2
Van Hoek, P.3
Luttik, M.A.4
Van Dijken, J.P.5
Pronk, J.T.6
Klaassen, P.7
Boelens, H.F.8
De Mattos, M.J.9
Van Dam, K.10
-
83
-
-
3042769437
-
Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
-
[CrossRef][PubMed]
-
Sedlak, M.; Ho, N.W. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 2004, 21, 671–684. [CrossRef][PubMed]
-
(2004)
Yeast
, vol.21
, pp. 671-684
-
-
Sedlak, M.1
Ho, N.W.2
-
84
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
[CrossRef][PubMed]
-
Hamacher, T.; Becker, J.; Gárdonyi, M.; Hahn-Hägerdal, B.; Boles, E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148, 2783–2788. [CrossRef][PubMed]
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gárdonyi, M.3
Hahn-Hägerdal, B.4
Boles, E.5
-
85
-
-
0037209777
-
Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
-
[PubMed]
-
Lee, W.J.; Kim, M.D.; Ryu, Y.W.; Bisson, L.F.; Seo, J.H. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2002, 60, 186–191. [PubMed]
-
(2002)
Appl. Microbiol. Biotechnol
, vol.60
, pp. 186-191
-
-
Lee, W.J.1
Kim, M.D.2
Ryu, Y.W.3
Bisson, L.F.4
Seo, J.H.5
-
86
-
-
84858262547
-
Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Subtil, T.; Boles, E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5. [CrossRef][PubMed]
-
(2012)
Biotechnol. Biofuels
-
-
Subtil, T.1
Boles, E.2
-
87
-
-
33646252240
-
Two glucose/xylose transporter genes from the yeast Candida intermedia: First molecular characterization of a yeast xylose-H+ symporter
-
[CrossRef][PubMed]
-
Leandro, M.; Gonçalves, P.; Spencer-Martins, I. Two glucose/xylose transporter genes from the yeast Candida intermedia: First molecular characterization of a yeast xylose-H+ symporter. Biochem. J. 2006, 395, 543–549. [CrossRef][PubMed]
-
(2006)
Biochem. J
, vol.395
, pp. 543-549
-
-
Leandro, M.1
Gonçalves, P.2
Spencer-Martins, I.3
-
88
-
-
33947192191
-
Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl
-
[CrossRef][PubMed]
-
Saloheimo, A.; Rauta, J.; Stasyk, O.V.; Sibirny, A.A.; Penttilä, M.; Ruohonen, L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 2007, 74, 1041–1052. [CrossRef][PubMed]
-
(2007)
Microbiol. Biotechnol
, vol.74
, pp. 1041-1052
-
-
Saloheimo, A.1
Rauta, J.2
Stasyk, O.V.3
Sibirny, A.A.4
Penttilä, M.5
Ruohonen, L.6
-
89
-
-
77957892899
-
Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis
-
[CrossRef][PubMed]
-
Du, J.; Li, S.; Zhao, H. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 2010, 6, 2150–2156. [CrossRef][PubMed]
-
(2010)
Mol. Biosyst
, vol.6
, pp. 2150-2156
-
-
Du, J.1
Li, S.2
Zhao, H.3
-
90
-
-
79958211835
-
Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
-
[CrossRef][PubMed]
-
Young, E.; Poucher, A.; Comer, A.; Bailey, A.; Alper, H. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 2011, 77, 3311–3319. [CrossRef][PubMed]
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 3311-3319
-
-
Young, E.1
Poucher, A.2
Comer, A.3
Bailey, A.4
Alper, H.5
-
91
-
-
84891922490
-
Rewiring yeast sugar transporter preference through modifying a conserved protein motif
-
[CrossRef][PubMed]
-
Young, E.M.; Tong, A.; Bui, H.; Spofford, C.; Alper, H.S. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc. Natl. Acad. Sci. USA 2013, 111, 131–136. [CrossRef][PubMed]
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 131-136
-
-
Young, E.M.1
Tong, A.2
Bui, H.3
Spofford, C.4
Alper, H.S.5
-
92
-
-
84898401847
-
Functional characterization of a xylose transporter in Aspergillus nidulans
-
[CrossRef][PubMed]
-
Colabardini, A.C.; Ries, L.N.A.; Brown, N.A.; Dos Reis, T.F.; Savoldi, M.; Goldman, M.H.S.; Menino, J.F.; Rodrigues, F.; Goldman, G.H. Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnol. Biofuels 2014, 7. [CrossRef][PubMed]
-
(2014)
Biotechnol. Biofuels
-
-
Colabardini, A.C.1
Ries, L.N.A.2
Brown, N.A.3
Dos Reis, T.F.4
Savoldi, M.5
Goldman, M.H.S.6
Menino, J.F.7
Rodrigues, F.8
Goldman, G.H.9
-
93
-
-
0033373342
-
Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
-
[CrossRef]
-
Wieczorke, R.; Krampe, S.; Weierstall, T.; Freidel, K.; Hollenberg, C.P.; Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999, 464, 123–128. [CrossRef]
-
(1999)
FEBS Lett
, vol.464
, pp. 123-128
-
-
Wieczorke, R.1
Krampe, S.2
Weierstall, T.3
Freidel, K.4
Hollenberg, C.P.5
Boles, E.6
-
94
-
-
84898053053
-
Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
-
[CrossRef][PubMed]
-
Farwick, A.; Bruder, S.; Schadeweg, V.; Oreb, M.; Boles, E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA 2014, 111, 5159–5164. [CrossRef][PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
Oreb, M.4
Boles, E.5
-
95
-
-
84868565867
-
Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates
-
[CrossRef][PubMed]
-
Oreb, M.; Dietz, H.; Farwick, A.; Boles, E. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 2012, 3, 347–351. [CrossRef][PubMed]
-
(2012)
Bioengineered
, vol.3
, pp. 347-351
-
-
Oreb, M.1
Dietz, H.2
Farwick, A.3
Boles, E.4
-
96
-
-
0032961329
-
Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis
-
[CrossRef][PubMed]
-
Weierstall, T.; Hollenberg, C.P.; Boles, E. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 1999, 31, 871–883. [CrossRef][PubMed]
-
(1999)
Mol. Microbiol
, vol.31
, pp. 871-883
-
-
Weierstall, T.1
Hollenberg, C.P.2
Boles, E.3
-
97
-
-
84959193484
-
-
U.S. Patent Application Publication US 2009/0325241 A1, 31 December
-
Jeffries, T.W.; Bae, J.; Lin, B.C.Y.; van Vleet, J.R.H. Sugar Transport Sequences, Yeast Strains Having Improved Sugar Uptake, and Methods of Use. U.S. Patent Application Publication US 2009/0325241 A1, 31 December 2009.
-
(2009)
Sugar Transport Sequences, Yeast Strains Having Improved Sugar Uptake, and Methods of Use
-
-
Jeffries, T.W.1
Bae, J.2
Lin, B.C.Y.3
Van Vleet, J.R.H.4
-
98
-
-
84930205130
-
Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metabol
-
[CrossRef][PubMed]
-
Wang, C.; Bao, X.; Li, Y.; Jiao, C.; Hou, J.; Zhang, Q.; Zhang, W.; Liu, W.; Shen, Y. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metabol. Eng. 2015, 30, 79–88. [CrossRef][PubMed]
-
(2015)
Eng
, vol.30
, pp. 79-88
-
-
Wang, C.1
Bao, X.2
Li, Y.3
Jiao, C.4
Hou, J.5
Zhang, Q.6
Zhang, W.7
Liu, W.8
Shen, Y.9
-
99
-
-
84886089702
-
XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii
-
[CrossRef][PubMed]
-
Ferreira, D.; Nobre, A.; Silva, M.L.; Faria-Oliveira, F.; Tulha, J.; Ferreira, C.; Lucas, C. XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii. FEMS Yeast Res. 2013, 13, 585–596. [CrossRef][PubMed]
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 585-596
-
-
Ferreira, D.1
Nobre, A.2
Silva, M.L.3
Faria-Oliveira, F.4
Tulha, J.5
Ferreira, C.6
Lucas, C.7
-
100
-
-
77956223286
-
Two dimensional comprehensive study: Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7
-
[CrossRef][PubMed]
-
Kasahara, T.; Kasahara, M. A two dimensional comprehensive study: Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7. J. Biol. Chem. 2010, 285, 26263–26268. [CrossRef][PubMed]
-
(2010)
J. Biol. Chem
, vol.285
, pp. 26263-26268
-
-
Kasahara, T.1
Kasahara, M.A.2
-
101
-
-
80053609137
-
Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7
-
[CrossRef][PubMed]
-
Kasahara, T.; Shimogawara, K.; Kasahara, M. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Biochemistry 2011, 50, 8674–8681. [CrossRef][PubMed]
-
(2011)
Biochemistry
, vol.50
, pp. 8674-8681
-
-
Kasahara, T.1
Shimogawara, K.2
Kasahara, M.3
-
102
-
-
84988807185
-
Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
-
[CrossRef][PubMed]
-
Nijland, J.G.; Shin, H.Y.; de Jong, R.M.; de Waal, P.P.; Klaassen, P.; Driessen, A.J. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol. Biofuels 2014, 7. [CrossRef][PubMed]
-
(2014)
Biotechnol. Biofuels
-
-
Nijland, J.G.1
Shin, H.Y.2
De Jong, R.M.3
De Waal, P.P.4
Klaassen, P.5
Driessen, A.J.6
-
103
-
-
33947286326
-
Creased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
[CrossRef]
-
Almeida, J.R.M.; Modig, T.; Petersson, A.; Hahn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [CrossRef]
-
(2007)
J. Chem. Technol. Biotechnol
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hägerdal, B.4
Lidén, G.5
Gorwa-Grauslund, M.F.I.6
-
104
-
-
84890284546
-
Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
-
[CrossRef][PubMed]
-
Ask, M.; Bettiga, M.; Duraiswamy, V.; Olsson, L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
-
(2013)
Biotechnol. Biofuels
-
-
Ask, M.1
Bettiga, M.2
Duraiswamy, V.3
Olsson, L.4
-
105
-
-
84883114857
-
Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
-
[CrossRef][PubMed]
-
Demeke, M.M.; Dumortier, F.; Li, Y.; Broeckx, T.; Foulquie-Moreno, M.R.; Thevelein, J.M. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
-
(2013)
Biotechnol. Biofuels
-
-
Demeke, M.M.1
Dumortier, F.2
Li, Y.3
Broeckx, T.4
Foulquie-Moreno, M.R.5
Thevelein, J.M.6
-
106
-
-
84947046745
-
Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate
-
[CrossRef][PubMed]
-
Wallace-Salinas, V.; Signori, L.; Li, Y.-Y.; Ask, M.; Bettiga, M.; Porro, D.; Thevelein, J.M.; Branduardi, P.; Foulquié-Moreno, M.R.; Gorwa-Grauslund, M. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express 2014, 4. [CrossRef][PubMed]
-
(2014)
AMB Express
-
-
Wallace-Salinas, V.1
Signori, L.2
Li, Y.-Y.3
Ask, M.4
Bettiga, M.5
Porro, D.6
Thevelein, J.M.7
Branduardi, P.8
Foulquié-Moreno, M.R.9
Gorwa-Grauslund, M.10
-
107
-
-
84888032956
-
Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors
-
[CrossRef][PubMed]
-
Wang, X.; Jin, M.; Balan, V.; Jones, A.D.; Li, X.; Li, B.-Z.; Dale, B.E.; Yuan, Y.-J. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol. Bioeng. 2014, 111, 152–164. [CrossRef][PubMed]
-
(2014)
Biotechnol. Bioeng
, vol.111
, pp. 152-164
-
-
Wang, X.1
Jin, M.2
Balan, V.3
Jones, A.D.4
Li, X.5
Li, B.-Z.6
Dale, B.E.7
Yuan, Y.-J.8
-
108
-
-
84860907188
-
Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose
-
[CrossRef][PubMed]
-
Bergdahl, B.; Heer, D.; Sauer, U.; Hahn-Hägerdal, B.; van Niel, E.W. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose.Biotechnol. Biofuels 2012, 5. [CrossRef][PubMed]
-
(2012)
Biotechnol. Biofuels
-
-
Bergdahl, B.1
Heer, D.2
Sauer, U.3
Hahn-Hägerdal, B.4
Van Niel, E.W.5
-
109
-
-
84900839963
-
Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
-
[CrossRef][PubMed]
-
Smith, J.; van Rensburg, E.; Görgens, J.F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014, 14. [CrossRef][PubMed]
-
(2014)
BMC Biotechnol
-
-
Smith, J.1
Van Rensburg, E.2
Görgens, J.F.3
-
110
-
-
64549126134
-
Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
-
[CrossRef][PubMed]
-
Bellissimi, E.; van Dijken, J.P.; Pronk, J.T.; van Maris, A.J.A. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009, 9, 358–364. [CrossRef][PubMed]
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 358-364
-
-
Bellissimi, E.1
Van Dijken, J.P.2
Pronk, J.T.3
Van Maris, A.J.A.4
-
111
-
-
27944495636
-
Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce
-
[CrossRef]
-
Alkasrawi, M.; Rudolf, A.; Lidén, G.; Zacchi, G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym. Microb. Technol. 2006, 38, 279–286. [CrossRef]
-
(2006)
Enzym. Microb. Technol
, vol.38
, pp. 279-286
-
-
Alkasrawi, M.1
Rudolf, A.2
Lidén, G.3
Zacchi, G.4
-
112
-
-
84945492016
-
Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates
-
[CrossRef][PubMed]
-
Tomás-Pejó, E.; Olsson, L. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microb. Biotechnol. 2015, 8, 99–105. [CrossRef][PubMed]
-
(2015)
Microb. Biotechnol
, vol.8
, pp. 99-105
-
-
Tomás-Pejó, E.1
Olsson, L.2
-
113
-
-
75749088467
-
Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells
-
[CrossRef]
-
Zhao, J.; Xia, L. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J. 2010, 49, 28–32. [CrossRef]
-
(2010)
Biochem. Eng. J
, vol.49
, pp. 28-32
-
-
Zhao, J.1
Xia, L.2
|