메뉴 건너뛰기




Volumn 17, Issue 3, 2016, Pages

Xylose fermentation by saccharomyces cerevisiae: Challenges and prospects

Author keywords

Fermentation; Lignocellulosic ethanol; Saccharomyces cerevisiae; Xylose

Indexed keywords

2 OXOGLUTARIC ACID; 5 XYLULOSE; ALCOHOL; ALDEHYDE REDUCTASE; BIOFUEL; GLUCOSE; HEXOSE; LIGNIN; LIGNOCELLULOSE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; TRANSALDOLASE; TRANSKETOLASE; UNCLASSIFIED DRUG; XYLITOL; XYLITOL DEHYDROGENASE; XYLOSE; XYLOSE ISOMERASE; XYLOSE REDUCTASE; XYLULOSE REDUCTASE;

EID: 84959240103     PISSN: 16616596     EISSN: 14220067     Source Type: Journal    
DOI: 10.3390/ijms17030207     Document Type: Review
Times cited : (228)

References (113)
  • 2
  • 5
    • 0036385526 scopus 로고    scopus 로고
    • Review of the production of ethanol from softwood. Appl. Microbiol
    • [CrossRef][PubMed]
    • Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. [CrossRef][PubMed]
    • (2002) Biotechnol , vol.59 , pp. 618-628
    • Galbe, M.1    Zacchi, G.A.2
  • 6
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • [CrossRef][PubMed]
    • Klinke, H.B.; Thomsen, A.B.; Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10–26. [CrossRef][PubMed]
    • (2004) Appl. Microbiol. Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 7
    • 1342265594 scopus 로고    scopus 로고
    • Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes
    • [CrossRef][PubMed]
    • Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol. 2004, 93, 1–10. [CrossRef][PubMed]
    • (2004) A Review. Bioresour. Technol , vol.93 , pp. 1-10
    • Mussatto, S.I.1    Roberto, I.C.2
  • 8
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
    • [CrossRef]
    • Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [CrossRef]
    • (2000) Bioresour. Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 10
    • 17044443785 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolates for ethanol production
    • [CrossRef]
    • Olsson, L.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolates for ethanol production. Enzym. Microb. Technol. 1996, 18, 312–331. [CrossRef]
    • (1996) Enzym. Microb. Technol , vol.18 , pp. 312-331
    • Olsson, L.1    Hahn-Hägerdal, B.2
  • 11
    • 0020408321 scopus 로고
    • Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains
    • [PubMed]
    • Margaritis, A.; Bajpai, P. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl. Environ. Microbiol. 1982, 44, 1039–1041. [PubMed]
    • (1982) Appl. Environ. Microbiol , vol.44 , pp. 1039-1041
    • Margaritis, A.1    Bajpai, P.2
  • 12
    • 0345131613 scopus 로고
    • Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose
    • [CrossRef]
    • Wang, P.Y.; Johnson, B.F.; Schneider, H. Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol. Lett. 1980, 2, 273–278. [CrossRef]
    • (1980) Biotechnol. Lett , vol.2 , pp. 273-278
    • Wang, P.Y.1    Johnson, B.F.2    Schneider, H.3
  • 13
    • 33947372119 scopus 로고    scopus 로고
    • Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus
    • [CrossRef][PubMed]
    • Stephens, C.; Christen, B.; Fuchs, T.; Sundaram, V.; Watanabe, K.; Jenal, U. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J. Bacteriol. 2007, 189, 2181–2185. [CrossRef][PubMed]
    • (2007) J. Bacteriol , vol.189 , pp. 2181-2185
    • Stephens, C.1    Christen, B.2    Fuchs, T.3    Sundaram, V.4    Watanabe, K.5    Jenal, U.6
  • 15
    • 0024962287 scopus 로고
    • Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source
    • [CrossRef][PubMed]
    • Rizzi, M.; Klein, C.; Schulze, C.; Bui-Thanh, N.A.; Dellweg, H. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol. Bioeng. 1989, 34, 509–514. [CrossRef][PubMed]
    • (1989) Biotechnol. Bioeng , vol.34 , pp. 509-514
    • Rizzi, M.1    Klein, C.2    Schulze, C.3    Bui-Thanh, N.A.4    Dellweg, H.5
  • 17
    • 70350443043 scopus 로고    scopus 로고
    • D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii
    • [CrossRef][PubMed]
    • Johnsen, U.; Dambeck, M.; Zaiss, H.; Fuhrer, T.; Soppa, J.; Sauer, U.; Schönheit, P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 2009, 284, 27290–27303. [CrossRef][PubMed]
    • (2009) J. Biol. Chem , vol.284 , pp. 27290-27303
    • Johnsen, U.1    Dambeck, M.2    Zaiss, H.3    Fuhrer, T.4    Soppa, J.5    Sauer, U.6    Schönheit, P.7
  • 18
    • 33847168661 scopus 로고    scopus 로고
    • Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim. Biophys
    • [CrossRef][PubMed]
    • Chang, Q.; Griest, T.; Harter, T.; Petrash, J. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Biochim. Biophys. Acta 2007, 1773, 321–329. [CrossRef][PubMed]
    • (2007) Acta , vol.1773 , pp. 321-329
    • Chang, Q.1    Griest, T.2    Harter, T.3    Petrash, J.4
  • 19
    • 0036799466 scopus 로고    scopus 로고
    • Putative xylose and arabinose reductases in Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Traff, K.L.; Jonsson, L.J.; Hahn-Hägerdal, B. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002, 19, 1233–1241. [CrossRef][PubMed]
    • (2002) Yeast , vol.19 , pp. 1233-1241
    • Traff, K.L.1    Jonsson, L.J.2    Hahn-Hägerdal, B.3
  • 21
    • 0037140422 scopus 로고    scopus 로고
    • Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Wahlbom, C.F.; Hahn-Hägerdal, B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2002, 78, 172–178. [CrossRef][PubMed]
    • (2002) Biotechnol. Bioeng , vol.78 , pp. 172-178
    • Wahlbom, C.F.1    Hahn-Hägerdal, B.2
  • 22
    • 33750310028 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400
    • [CrossRef][PubMed]
    • Öhgren, K.; Bengtsson, O.; Gorwa-Grauslund, M.F.; Galbe, M.; Hahn-Hägerdal, B.; Zacchi, G. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Botechnol. 2006, 126, 488–498. [CrossRef][PubMed]
    • (2006) J. Botechnol , vol.126 , pp. 488-498
    • Öhgren, K.1    Bengtsson, O.2    Gorwa-Grauslund, M.F.3    Galbe, M.4    Hahn-Hägerdal, B.5    Zacchi, G.6
  • 23
    • 69949160038 scopus 로고    scopus 로고
    • Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction
    • Almeida, J.R.M.; Bertilsson, M.; Hahn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.-F. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl. Microbiol. Biotechnol. 2009, 84, 751–761.
    • (2009) Appl. Microbiol. Biotechnol , vol.84 , pp. 751-761
    • Almeida, J.R.M.1    Bertilsson, M.2    Hahn-Hägerdal, B.3    Lidén, G.4    Gorwa-Grauslund, M.-F.5
  • 24
    • 0041528246 scopus 로고    scopus 로고
    • Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production
    • [CrossRef][PubMed]
    • Roca, C.; Nielsen, J.; Olsson, L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 2003, 69, 4732–4736. [CrossRef][PubMed]
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 4732-4736
    • Roca, C.1    Nielsen, J.2    Olsson, L.3
  • 25
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Sonderegger, M.; Schumperli, M.; Sauer, U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 2892–2897. [CrossRef][PubMed]
    • (2004) Appl. Environ. Microbiol , vol.70 , pp. 2892-2897
    • Sonderegger, M.1    Schumperli, M.2    Sauer, U.3
  • 28
    • 0024508349 scopus 로고
    • The fermentation of xylose—An analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast
    • [CrossRef]
    • Amore, R.; Wilhelm, M.; Hollenberg, C.P. The fermentation of xylose—An analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl. Microbiol. Biotechnol. 1989, 30, 351–357. [CrossRef]
    • (1989) Appl. Microbiol. Biotechnol , vol.30 , pp. 351-357
    • Amore, R.1    Wilhelm, M.2    Hollenberg, C.P.3
  • 29
    • 0030000304 scopus 로고    scopus 로고
    • Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (XylA) in Saccharomyces cerevisiae
    • [CrossRef]
    • Moes, C.J.; Pretorius, I.S.; van Zyl W.H. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 1996, 18, 269–274. [CrossRef]
    • (1996) Biotechnol. Lett , vol.18 , pp. 269-274
    • Moes, C.J.1    Pretorius, I.S.2    Van Zyl, W.H.3
  • 30
    • 0037415332 scopus 로고    scopus 로고
    • The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb
    • [CrossRef]
    • Gárdonyi, M.; Hahn-Hägerdal, B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym. Microb. Technol. 2003, 32, 252–259. [CrossRef]
    • (2003) Technol , vol.32 , pp. 252-259
    • Gárdonyi, M.1    Hahn-Hägerdal, B.2
  • 31
    • 34548728610 scopus 로고    scopus 로고
    • Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component
    • [PubMed]
    • Van Maris, A.J.; Winkler, A.A.; Kuyper, M.; de Laat, W.T.; van Dijken, J.P.; Pronk, J.T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Adv. Biochem. Eng. Biotechnol. 2007, 108, 179–204. [PubMed]
    • (2007) Adv. Biochem. Eng. Biotechnol , vol.108 , pp. 179-204
    • Van Maris, A.J.1    Winkler, A.A.2    Kuyper, M.3    De Laat, W.T.4    Van Dijken, J.P.5    Pronk, J.T.6
  • 32
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (Glucose) isomerase
    • [PubMed]
    • Walfridsson, M.; Bao, X.; Anderlund, M.; Lilius, G.; Bulow, L.; Hahn-Hagerdal, B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 1996, 62, 4648–4651. [PubMed]
    • (1996) Appl. Environ. Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5    Hahn-Hagerdal, B.6
  • 33
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
    • [CrossRef]
    • Lönn, A.; Träff-Bjerre, K.L.; Cordero Otero, R.R.; van Zyl, W.H.; Hahn-Hägerdal, B. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzym. Microb. Technol. 2003, 32, 567–573. [CrossRef]
    • (2003) Enzym. Microb. Technol , vol.32 , pp. 567-573
    • Lönn, A.1    Träff-Bjerre, K.L.2    Cordero Otero, R.R.3    Van Zyl, W.H.4    Hahn-Hägerdal, B.5
  • 34
    • 82455209009 scopus 로고    scopus 로고
    • Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
    • [CrossRef][PubMed]
    • Ha, S.J.; Kim, S.R.; Choi, J.H.; Park, M.S.; Jin, Y.S. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl. Microbiol. Biotechnol. 2011, 92, 77–84. [CrossRef][PubMed]
    • (2011) Appl. Microbiol. Biotechnol , vol.92 , pp. 77-84
    • Ha, S.J.1    Kim, S.R.2    Choi, J.H.3    Park, M.S.4    Jin, Y.S.5
  • 38
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation
    • [CrossRef][PubMed]
    • Kuyper, M.; Winkler, A.A.; van Dijken, J.P.; Pronk, J.T. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res. 2004, 4, 655–664. [CrossRef][PubMed]
    • (2004) A Proof of Principle. FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 39
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • [CrossRef][PubMed]
    • Kuyper, M.; Hartog, M.M.; Toirkens, M.J.; Almering, M.J.; Winkler, A.A.; van Dijken, J.P.; Pronk, J.T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5, 399–409. [CrossRef][PubMed]
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    Van Dijken, J.P.6    Pronk, J.T.7
  • 40
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • [CrossRef][PubMed]
    • Kuyper, M.; Toirkens, M.J.; Diderich, J.A.; Winkler, A.A.; Dijken, J.P.; Pronk, J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5, 925–934. [CrossRef][PubMed]
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    Dijken, J.P.5    Pronk, J.T.6
  • 41
    • 63949086729 scopus 로고    scopus 로고
    • Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
    • [CrossRef][PubMed]
    • Madhavan, A.; Tamalampudi, S.; Srivastava, A.; Fukuda, H.; Bisaria, V.S.; Kondo, A. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl. Microbiol. Biotechnol. 2009, 82, 1037–1047. [CrossRef][PubMed]
    • (2009) Appl. Microbiol. Biotechnol , vol.82 , pp. 1037-1047
    • Madhavan, A.1    Tamalampudi, S.2    Srivastava, A.3    Fukuda, H.4    Bisaria, V.S.5    Kondo, A.6
  • 42
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • [CrossRef][PubMed]
    • Madhavan, A.; Tamalampudi, S.; Ushida, K.; Kanai, D.; Katahira, S.; Srivastava, A.; Fukuda, H.; Bisaria, V.S.; Kondo, A. Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 2009, 82, 1067–1078. [CrossRef][PubMed]
    • (2009) Appl. Microbiol. Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 43
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Brat, D.; Boles, E.; Wiedemann, B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75, 2304–2311. [CrossRef][PubMed]
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 44
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • [CrossRef][PubMed]
    • Hector, R.E.; Dien, B.S.; Cotta, M.A.; Mertens, J.A. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
    • (2013) Biotechnol. Biofuels , pp. 6
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Mertens, J.A.4
  • 45
    • 84873164214 scopus 로고    scopus 로고
    • Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
    • [CrossRef][PubMed]
    • Vilela, L.F.; de Mello, V.M.; Reis, V.C.; Bon, E.P.; Goncalves, D.L.; Torres, F.A.; Neves, B.C.; Eleutherio, E.C. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour. Technol. 2013, 128, 792–796. [CrossRef][PubMed]
    • (2013) Bioresour. Technol , vol.128 , pp. 792-796
    • Vilela, L.F.1    De Mello, V.M.2    Reis, V.C.3    Bon, E.P.4    Goncalves, D.L.5    Torres, F.A.6    Neves, B.C.7    Eleutherio, E.C.8
  • 47
    • 84929429110 scopus 로고    scopus 로고
    • Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation
    • [CrossRef][PubMed]
    • Peng, B.; Huang, S.; Liu, T.; Geng, A. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb. Cell Fact. 2015, 14, 70. [CrossRef][PubMed]
    • (2015) Microb. Cell Fact , vol.14
    • Peng, B.1    Huang, S.2    Liu, T.3    Geng, A.4
  • 48
    • 0028533973 scopus 로고
    • Biochemistry and physiology of xylose fermentation by yeasts
    • [CrossRef]
    • Hahn-Hägerdal, B.; Jeppsson, H.; Skoog, K.; Prior, B.A. Biochemistry and physiology of xylose fermentation by yeasts. Enzym. Microb. Technol. 1994, 16, 933–943. [CrossRef]
    • (1994) Enzym. Microb. Technol , vol.16 , pp. 933-943
    • Hahn-Hägerdal, B.1    Jeppsson, H.2    Skoog, K.3    Prior, B.A.4
  • 49
    • 84875943563 scopus 로고    scopus 로고
    • Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation
    • [CrossRef][PubMed]
    • Ota, M.; Sakuragi, H.; Morisaka, H.; Kuroda, K.; Miyake, H.; Tamaru, Y.; Ueda, M. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol. Prog. 2013, 29, 346–351. [CrossRef][PubMed]
    • (2013) Biotechnol. Prog , vol.29 , pp. 346-351
    • Ota, M.1    Sakuragi, H.2    Morisaka, H.3    Kuroda, K.4    Miyake, H.5    Tamaru, Y.6    Ueda, M.7
  • 50
    • 80052037221 scopus 로고    scopus 로고
    • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Parachin, N.S.; Bergdahl, B.; van Niel, E.W.; Gorwa-Grauslund, M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13, 508–517. [CrossRef][PubMed]
    • (2011) Metab. Eng , vol.13 , pp. 508-517
    • Parachin, N.S.1    Bergdahl, B.2    Van Niel, E.W.3    Gorwa-Grauslund, M.F.4
  • 51
    • 0037228901 scopus 로고    scopus 로고
    • Ptimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • [CrossRef][PubMed]
    • Jin, Y.S.; Ni, H.; Laplaza, J.M.; Jeffries, T.W. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69, 495–503. [CrossRef][PubMed]
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.4
  • 52
    • 0025857432 scopus 로고
    • Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts
    • [PubMed]
    • Senac, T.; Hahn-Hagerdal, B. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Appl. Environ. Microbiol. 1991, 57, 1701–1706. [PubMed]
    • (1991) Appl. Environ. Microbiol , vol.57 , pp. 1701-1706
    • Senac, T.1    Hahn-Hagerdal, B.2
  • 53
    • 0014512243 scopus 로고
    • Inhibition of D-xylose isomerase by pentitols and D-lyxose
    • [CrossRef]
    • Yamanaka, K. Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch. Biochem. Biophys. 1969, 131, 502–506. [CrossRef]
    • (1969) Arch. Biochem. Biophys , vol.131 , pp. 502-506
    • Yamanaka, K.1
  • 54
    • 0028969384 scopus 로고
    • Urification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae
    • [PubMed]
    • Kuhn, A.; van Zyl, C.; van Tonder, A.; Prior, B.A. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1995, 61, 1580–1585. [PubMed]
    • (1995) Appl. Environ. Microbiol , vol.61 , pp. 1580-1585
    • Kuhn, A.1    Van Zyl, C.2    Van Tonder, A.3    Prior, B.4
  • 55
    • 0035650510 scopus 로고    scopus 로고
    • Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
    • [CrossRef][PubMed]
    • Traff, K.L.; Otero Cordero, R.R.; van Zyl, W.H.; Hahn-Hagerdal, B. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl. Environ. Microbiol. 2001, 67, 5668–5674. [CrossRef][PubMed]
    • (2001) Appl. Environ. Microbiol , vol.67 , pp. 5668-5674
    • Traff, K.L.1    Otero Cordero, R.R.2    Van Zyl, W.H.3    Hahn-Hagerdal, B.4
  • 56
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Verho, R.; Londesborough, J.; Penttila, M.; Richard, P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 5892–5897. [CrossRef][PubMed]
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttila, M.3    Richard, P.4
  • 57
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (PNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • [CrossRef][PubMed]
    • Van Vleet, J.H.; Jeffries, T.W.; Olsson, L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 2008, 10, 360–369. [CrossRef][PubMed]
    • (2008) Metab. Eng , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 58
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • [CrossRef][PubMed]
    • Bro, C.; Regenberg, B.; Forster, J.; Nielsen, J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8, 102–111. [CrossRef][PubMed]
    • (2006) Metab. Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 60
    • 0032977883 scopus 로고    scopus 로고
    • Lessons from metabolic engineering for functional genomics and drug discovery
    • [CrossRef][PubMed]
    • Baley, J.E. Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 1999, 17, 616–618. [CrossRef][PubMed]
    • (1999) Nat. Biotechnol , vol.17 , pp. 616-618
    • Baley, J.E.1
  • 61
    • 3543082676 scopus 로고    scopus 로고
    • Dealing with complexity: Evolutionary engineering and genome shuffling
    • [CrossRef][PubMed]
    • Petri, R.; Schmidt-Dannert, C. Dealing with complexity: Evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 2004, 15, 298–304. [CrossRef][PubMed]
    • (2004) Curr. Opin. Biotechnol , vol.15 , pp. 298-304
    • Petri, R.1    Schmidt-Dannert, C.2
  • 62
    • 77953602249 scopus 로고    scopus 로고
    • Adaptive evolution of baker’s yeast in a dough-like environment enhances freeze and salinity tolerance. Microb
    • [CrossRef][PubMed]
    • Aguilera, J.; Andreu, P.; Randez-Gil, F.; Prieto, J.A. Adaptive evolution of baker’s yeast in a dough-like environment enhances freeze and salinity tolerance. Microb. Biotechnol. 2010, 3, 210–221. [CrossRef][PubMed]
    • (2010) Biotechnol , vol.3 , pp. 210-221
    • Aguilera, J.1    Andreu, P.2    Randez-Gil, F.3    Prieto, J.A.4
  • 63
    • 33747373639 scopus 로고    scopus 로고
    • Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source
    • [CrossRef][PubMed]
    • Attfield, P.V.; Bell, P.J.L. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res. 2006, 6, 862–868. [CrossRef][PubMed]
    • (2006) FEMS Yeast Res , vol.6 , pp. 862-868
    • Attfield, P.V.1    Bell, P.J.L.2
  • 64
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • [CrossRef][PubMed]
    • Sonderegger, M.; Sauer, U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69, 1990–1998. [CrossRef][PubMed]
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 65
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    • [CrossRef][PubMed]
    • Scalcinati, G.; Otero, J.M.; Vleet, J.R.; Jeffries, T.W.; Olsson, L.; Nielsen, J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012, 12, 582–597. [CrossRef][PubMed]
    • (2012) FEMS Yeast Res , vol.12 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Vleet, J.R.3    Jeffries, T.W.4    Olsson, L.5    Nielsen, J.6
  • 66
    • 84876090690 scopus 로고    scopus 로고
    • Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis
    • [CrossRef][PubMed]
    • Kim, S.R.; Kwee, N.R.; Kim, H.; Jin, Y.S. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 2013, 13, 312–321. [CrossRef][PubMed]
    • (2013) FEMS Yeast Res , vol.13 , pp. 312-321
    • Kim, S.R.1    Kwee, N.R.2    Kim, H.3    Jin, Y.S.4
  • 67
    • 84897513442 scopus 로고    scopus 로고
    • Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Klimacek, M.; Kirl, E.; Krahulec, S.; Longus, K.; Novy, V.; Nidetzky, B. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 2014, 13. [CrossRef][PubMed]
    • (2014) Microb. Cell Fact.
    • Klimacek, M.1    Kirl, E.2    Krahulec, S.3    Longus, K.4    Novy, V.5    Nidetzky, B.6
  • 68
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • [CrossRef][PubMed]
    • Demeke, M.M.; Dietz, H.; Li, Y.; Foulquie-Moreno, M.R.; Mutturi, S.; Deprez, S.; Den Abt, T.; Bonini, B.M.; Liden, G.; Dumortier, F. et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
    • (2013) Biotechnol. Biofuels
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6    Den Abt, T.7    Bonini, B.M.8    Liden, G.9    Dumortier, F.10
  • 69
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Zhou, H.; Cheng, J.S.; Wang, B.L.; Fink, G.R.; Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14, 611–622. [CrossRef][PubMed]
    • (2012) Metab. Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5
  • 70
    • 84926201540 scopus 로고    scopus 로고
    • Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA
    • [CrossRef][PubMed]
    • Demeke, M.M.; Foulquie-Moreno, M.R.; Dumortier, F.; Thevelein, J.M. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet. 2015, 11, e1005010. [CrossRef][PubMed]
    • (2015) Plos Genet , vol.11
    • Demeke, M.M.1    Foulquie-Moreno, M.R.2    Dumortier, F.3    Thevelein, J.M.4
  • 71
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • [CrossRef][PubMed]
    • Alper, H.; Moxley, J.; Nevoigt, E.; Fink, G.R.; Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314, 1565–1568. [CrossRef][PubMed]
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 72
    • 79959248684 scopus 로고    scopus 로고
    • Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance
    • [CrossRef][PubMed]
    • Yang, J.; Bae, J.Y.; Lee, Y.M.; Kwon, H.; Moon, H.Y.; Kang, H.A.; Yee, S.B.; Kim, W.; Choi, W. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol. Bioeng. 2011, 108, 1776–1787. [CrossRef][PubMed]
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 1776-1787
    • Yang, J.1    Bae, J.Y.2    Lee, Y.M.3    Kwon, H.4    Moon, H.Y.5    Kang, H.A.6    Yee, S.B.7    Kim, W.8    Choi, W.9
  • 73
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • [CrossRef]
    • Liu, E.; Hu, Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 2010, 48, 204–210. [CrossRef]
    • (2010) Biochem. Eng. J , vol.48 , pp. 204-210
    • Liu, E.1    Hu, Y.2
  • 74
    • 79960095900 scopus 로고    scopus 로고
    • GTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate
    • [CrossRef][PubMed]
    • Liu, H.; Liu, K.; Yan, M.; Xu, L.; Ouyang, P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl. Biochem. Biotechnol. 2011, 164, 1150–1159. [CrossRef][PubMed]
    • (2011) Appl. Biochem. Biotechnol , vol.164 , pp. 1150-1159
    • Liu, H.1    Liu, K.2    Yan, M.3    Xu, L.4    Ouyang, P.5
  • 75
    • 84862922807 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation
    • [CrossRef][PubMed]
    • Cai, Z.; Zhang, B.; Li, Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol. J. 2012, 7, 34–46. [CrossRef][PubMed]
    • (2012) Reflections and Perspectives. Biotechnol. J , vol.7 , pp. 34-46
    • Cai, Z.1    Zhang, B.2    Li, Y.3
  • 76
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • [CrossRef][PubMed]
    • Wahlbom, C.F.; Otero, R.R.C.; van Zyl, W.H.; Hahn-Hägerdal, B.; Jönsson, L.J. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 2003, 69, 740–746. [CrossRef][PubMed]
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Otero, R.R.C.2    Van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jönsson, L.J.5
  • 77
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • [CrossRef][PubMed]
    • Hector, R.E.; Qureshi, N.; Hughes, S.R.; Cotta, M.A. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 2008, 80, 675–684. [CrossRef][PubMed]
    • (2008) Appl. Microbiol. Biotechnol , vol.80 , pp. 675-684
    • Hector, R.E.1    Qureshi, N.2    Hughes, S.R.3    Cotta, M.A.4
  • 78
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Runquist, D.; Hahn-Hagerdal, B.; Radstrom, P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 2010, 17, 3–5. [CrossRef][PubMed]
    • (2010) Biotechnol. Biofuels , vol.17 , pp. 3-5
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radstrom, P.3
  • 79
    • 84890317534 scopus 로고    scopus 로고
    • Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
    • [CrossRef][PubMed]
    • Diao, L.; Liu, Y.; Qian, F.; Yang, J.; Jiang, Y.; Yang, S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 2013, 13. [CrossRef][PubMed]
    • (2013) BMC Biotechnol
    • Diao, L.1    Liu, Y.2    Qian, F.3    Yang, J.4    Jiang, Y.5    Yang, S.6
  • 80
    • 84901422880 scopus 로고    scopus 로고
    • Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
    • [CrossRef][PubMed]
    • Gonçalves, D.L.; Matsushika, A.; Belisa, B.; Goshima, T.; Bon, E.P.; Stambuk, B.U. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym. Microb. Technol. 2014, 63, 13–20. [CrossRef][PubMed]
    • (2014) Enzym. Microb. Technol , vol.63 , pp. 13-20
    • Gonçalves, D.L.1    Matsushika, A.2    Belisa, B.3    Goshima, T.4    Bon, E.P.5    Stambuk, B.U.6
  • 81
    • 0030891998 scopus 로고    scopus 로고
    • Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
    • Reifenberger, E.; Boles, E.; Ciriacy, M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 1997, 245, 324–333.
    • (1997) Eur. J. Biochem , vol.245 , pp. 324-333
    • Reifenberger, E.1    Boles, E.2    Ciriacy, M.3
  • 83
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
    • [CrossRef][PubMed]
    • Sedlak, M.; Ho, N.W. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 2004, 21, 671–684. [CrossRef][PubMed]
    • (2004) Yeast , vol.21 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.2
  • 84
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • [CrossRef][PubMed]
    • Hamacher, T.; Becker, J.; Gárdonyi, M.; Hahn-Hägerdal, B.; Boles, E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148, 2783–2788. [CrossRef][PubMed]
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gárdonyi, M.3    Hahn-Hägerdal, B.4    Boles, E.5
  • 85
    • 0037209777 scopus 로고    scopus 로고
    • Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
    • [PubMed]
    • Lee, W.J.; Kim, M.D.; Ryu, Y.W.; Bisson, L.F.; Seo, J.H. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2002, 60, 186–191. [PubMed]
    • (2002) Appl. Microbiol. Biotechnol , vol.60 , pp. 186-191
    • Lee, W.J.1    Kim, M.D.2    Ryu, Y.W.3    Bisson, L.F.4    Seo, J.H.5
  • 86
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Subtil, T.; Boles, E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5. [CrossRef][PubMed]
    • (2012) Biotechnol. Biofuels
    • Subtil, T.1    Boles, E.2
  • 87
    • 33646252240 scopus 로고    scopus 로고
    • Two glucose/xylose transporter genes from the yeast Candida intermedia: First molecular characterization of a yeast xylose-H+ symporter
    • [CrossRef][PubMed]
    • Leandro, M.; Gonçalves, P.; Spencer-Martins, I. Two glucose/xylose transporter genes from the yeast Candida intermedia: First molecular characterization of a yeast xylose-H+ symporter. Biochem. J. 2006, 395, 543–549. [CrossRef][PubMed]
    • (2006) Biochem. J , vol.395 , pp. 543-549
    • Leandro, M.1    Gonçalves, P.2    Spencer-Martins, I.3
  • 88
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl
    • [CrossRef][PubMed]
    • Saloheimo, A.; Rauta, J.; Stasyk, O.V.; Sibirny, A.A.; Penttilä, M.; Ruohonen, L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 2007, 74, 1041–1052. [CrossRef][PubMed]
    • (2007) Microbiol. Biotechnol , vol.74 , pp. 1041-1052
    • Saloheimo, A.1    Rauta, J.2    Stasyk, O.V.3    Sibirny, A.A.4    Penttilä, M.5    Ruohonen, L.6
  • 89
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • [CrossRef][PubMed]
    • Du, J.; Li, S.; Zhao, H. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 2010, 6, 2150–2156. [CrossRef][PubMed]
    • (2010) Mol. Biosyst , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 90
    • 79958211835 scopus 로고    scopus 로고
    • Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
    • [CrossRef][PubMed]
    • Young, E.; Poucher, A.; Comer, A.; Bailey, A.; Alper, H. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 2011, 77, 3311–3319. [CrossRef][PubMed]
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 3311-3319
    • Young, E.1    Poucher, A.2    Comer, A.3    Bailey, A.4    Alper, H.5
  • 91
    • 84891922490 scopus 로고    scopus 로고
    • Rewiring yeast sugar transporter preference through modifying a conserved protein motif
    • [CrossRef][PubMed]
    • Young, E.M.; Tong, A.; Bui, H.; Spofford, C.; Alper, H.S. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc. Natl. Acad. Sci. USA 2013, 111, 131–136. [CrossRef][PubMed]
    • (2013) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 131-136
    • Young, E.M.1    Tong, A.2    Bui, H.3    Spofford, C.4    Alper, H.S.5
  • 93
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
    • [CrossRef]
    • Wieczorke, R.; Krampe, S.; Weierstall, T.; Freidel, K.; Hollenberg, C.P.; Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999, 464, 123–128. [CrossRef]
    • (1999) FEBS Lett , vol.464 , pp. 123-128
    • Wieczorke, R.1    Krampe, S.2    Weierstall, T.3    Freidel, K.4    Hollenberg, C.P.5    Boles, E.6
  • 94
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • [CrossRef][PubMed]
    • Farwick, A.; Bruder, S.; Schadeweg, V.; Oreb, M.; Boles, E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA 2014, 111, 5159–5164. [CrossRef][PubMed]
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 95
    • 84868565867 scopus 로고    scopus 로고
    • Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates
    • [CrossRef][PubMed]
    • Oreb, M.; Dietz, H.; Farwick, A.; Boles, E. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 2012, 3, 347–351. [CrossRef][PubMed]
    • (2012) Bioengineered , vol.3 , pp. 347-351
    • Oreb, M.1    Dietz, H.2    Farwick, A.3    Boles, E.4
  • 96
    • 0032961329 scopus 로고    scopus 로고
    • Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis
    • [CrossRef][PubMed]
    • Weierstall, T.; Hollenberg, C.P.; Boles, E. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 1999, 31, 871–883. [CrossRef][PubMed]
    • (1999) Mol. Microbiol , vol.31 , pp. 871-883
    • Weierstall, T.1    Hollenberg, C.P.2    Boles, E.3
  • 98
    • 84930205130 scopus 로고    scopus 로고
    • Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metabol
    • [CrossRef][PubMed]
    • Wang, C.; Bao, X.; Li, Y.; Jiao, C.; Hou, J.; Zhang, Q.; Zhang, W.; Liu, W.; Shen, Y. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metabol. Eng. 2015, 30, 79–88. [CrossRef][PubMed]
    • (2015) Eng , vol.30 , pp. 79-88
    • Wang, C.1    Bao, X.2    Li, Y.3    Jiao, C.4    Hou, J.5    Zhang, Q.6    Zhang, W.7    Liu, W.8    Shen, Y.9
  • 99
    • 84886089702 scopus 로고    scopus 로고
    • XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii
    • [CrossRef][PubMed]
    • Ferreira, D.; Nobre, A.; Silva, M.L.; Faria-Oliveira, F.; Tulha, J.; Ferreira, C.; Lucas, C. XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii. FEMS Yeast Res. 2013, 13, 585–596. [CrossRef][PubMed]
    • (2013) FEMS Yeast Res , vol.13 , pp. 585-596
    • Ferreira, D.1    Nobre, A.2    Silva, M.L.3    Faria-Oliveira, F.4    Tulha, J.5    Ferreira, C.6    Lucas, C.7
  • 100
    • 77956223286 scopus 로고    scopus 로고
    • Two dimensional comprehensive study: Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7
    • [CrossRef][PubMed]
    • Kasahara, T.; Kasahara, M. A two dimensional comprehensive study: Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7. J. Biol. Chem. 2010, 285, 26263–26268. [CrossRef][PubMed]
    • (2010) J. Biol. Chem , vol.285 , pp. 26263-26268
    • Kasahara, T.1    Kasahara, M.A.2
  • 101
    • 80053609137 scopus 로고    scopus 로고
    • Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7
    • [CrossRef][PubMed]
    • Kasahara, T.; Shimogawara, K.; Kasahara, M. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Biochemistry 2011, 50, 8674–8681. [CrossRef][PubMed]
    • (2011) Biochemistry , vol.50 , pp. 8674-8681
    • Kasahara, T.1    Shimogawara, K.2    Kasahara, M.3
  • 102
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • [CrossRef][PubMed]
    • Nijland, J.G.; Shin, H.Y.; de Jong, R.M.; de Waal, P.P.; Klaassen, P.; Driessen, A.J. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol. Biofuels 2014, 7. [CrossRef][PubMed]
    • (2014) Biotechnol. Biofuels
    • Nijland, J.G.1    Shin, H.Y.2    De Jong, R.M.3    De Waal, P.P.4    Klaassen, P.5    Driessen, A.J.6
  • 104
    • 84890284546 scopus 로고    scopus 로고
    • Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
    • [CrossRef][PubMed]
    • Ask, M.; Bettiga, M.; Duraiswamy, V.; Olsson, L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
    • (2013) Biotechnol. Biofuels
    • Ask, M.1    Bettiga, M.2    Duraiswamy, V.3    Olsson, L.4
  • 105
    • 84883114857 scopus 로고    scopus 로고
    • Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    • [CrossRef][PubMed]
    • Demeke, M.M.; Dumortier, F.; Li, Y.; Broeckx, T.; Foulquie-Moreno, M.R.; Thevelein, J.M. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol. Biofuels 2013, 6. [CrossRef][PubMed]
    • (2013) Biotechnol. Biofuels
    • Demeke, M.M.1    Dumortier, F.2    Li, Y.3    Broeckx, T.4    Foulquie-Moreno, M.R.5    Thevelein, J.M.6
  • 107
    • 84888032956 scopus 로고    scopus 로고
    • Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors
    • [CrossRef][PubMed]
    • Wang, X.; Jin, M.; Balan, V.; Jones, A.D.; Li, X.; Li, B.-Z.; Dale, B.E.; Yuan, Y.-J. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol. Bioeng. 2014, 111, 152–164. [CrossRef][PubMed]
    • (2014) Biotechnol. Bioeng , vol.111 , pp. 152-164
    • Wang, X.1    Jin, M.2    Balan, V.3    Jones, A.D.4    Li, X.5    Li, B.-Z.6    Dale, B.E.7    Yuan, Y.-J.8
  • 108
    • 84860907188 scopus 로고    scopus 로고
    • Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose
    • [CrossRef][PubMed]
    • Bergdahl, B.; Heer, D.; Sauer, U.; Hahn-Hägerdal, B.; van Niel, E.W. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose.Biotechnol. Biofuels 2012, 5. [CrossRef][PubMed]
    • (2012) Biotechnol. Biofuels
    • Bergdahl, B.1    Heer, D.2    Sauer, U.3    Hahn-Hägerdal, B.4    Van Niel, E.W.5
  • 109
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • [CrossRef][PubMed]
    • Smith, J.; van Rensburg, E.; Görgens, J.F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014, 14. [CrossRef][PubMed]
    • (2014) BMC Biotechnol
    • Smith, J.1    Van Rensburg, E.2    Görgens, J.F.3
  • 110
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • [CrossRef][PubMed]
    • Bellissimi, E.; van Dijken, J.P.; Pronk, J.T.; van Maris, A.J.A. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009, 9, 358–364. [CrossRef][PubMed]
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    Van Dijken, J.P.2    Pronk, J.T.3    Van Maris, A.J.A.4
  • 111
    • 27944495636 scopus 로고    scopus 로고
    • Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce
    • [CrossRef]
    • Alkasrawi, M.; Rudolf, A.; Lidén, G.; Zacchi, G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym. Microb. Technol. 2006, 38, 279–286. [CrossRef]
    • (2006) Enzym. Microb. Technol , vol.38 , pp. 279-286
    • Alkasrawi, M.1    Rudolf, A.2    Lidén, G.3    Zacchi, G.4
  • 112
    • 84945492016 scopus 로고    scopus 로고
    • Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates
    • [CrossRef][PubMed]
    • Tomás-Pejó, E.; Olsson, L. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microb. Biotechnol. 2015, 8, 99–105. [CrossRef][PubMed]
    • (2015) Microb. Biotechnol , vol.8 , pp. 99-105
    • Tomás-Pejó, E.1    Olsson, L.2
  • 113
    • 75749088467 scopus 로고    scopus 로고
    • Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells
    • [CrossRef]
    • Zhao, J.; Xia, L. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J. 2010, 49, 28–32. [CrossRef]
    • (2010) Biochem. Eng. J , vol.49 , pp. 28-32
    • Zhao, J.1    Xia, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.