메뉴 건너뛰기




Volumn , Issue , 2011, Pages 69-72

Multi-scale mining of fMRI data with hierarchical structured sparsity

Author keywords

[No Author keywords available]

Indexed keywords

AGGLOMERATIVE CLUSTERING; BRAIN ACTIVATION; BRAIN ACTIVITY; COGNITIVE INFORMATION; CURSE OF DIMENSIONALITY; FMRI DATA; FUNCTIONAL MAGNETIC RESONANCE IMAGING; MENTAL REPRESENTATIONS; MULTISCALES; NEURAL POPULATIONS; PREDICTION ACCURACY; PREDICTION FUNCTION; REFERENCE METHOD; REGULARIZATION PROCESS; REGULARIZATION TECHNIQUE; SPATIAL PRIORS; UNIVARIATE;

EID: 80051994858     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PRNI.2011.15     Document Type: Conference Paper
Times cited : (24)

References (23)
  • 3
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading": Detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • DOI 10.1016/S1053-8119(03)00049-1
    • D. D. Cox, R. L. Savoy, Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage 19 (2) (2003) 261-270. (Pubitemid 39665678)
    • (2003) NeuroImage , vol.19 , Issue.2 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 5
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • DOI 10.1016/j.neuroimage.2005.01.048, PII S1053811905000893
    • S. LaConte, S. Strother, V. Cherkassky, J. Anderson, X. Hu, Support vector machines for temporal classification of block design fMRI data, NeuroImage 26 (2) (2005) 317 - 329. (Pubitemid 40719814)
    • (2005) NeuroImage , vol.26 , Issue.2 , pp. 317-329
    • LaConte, S.1    Strother, S.2    Cherkassky, V.3    Anderson, J.4    Hu, X.5
  • 6
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • M. K. Carroll, G. A. Cecchi, I. Rish, R. Garg, A. R. Rao, Prediction and interpretation of distributed neural activity with sparse models, NeuroImage 44 (1) (2009) 112 - 122.
    • (2009) NeuroImage , vol.44 , Issue.1 , pp. 112-122
    • Carroll, M.K.1    Cecchi, G.A.2    Rish, I.3    Garg, R.4    Rao, A.R.5
  • 7
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. Roy. Stat. Soc. B 67 (2005) 301.
    • (2005) J. Roy. Stat. Soc. B , vol.67 , pp. 301
    • Zou, H.1    Hastie, T.2
  • 9
    • 0037303913 scopus 로고    scopus 로고
    • How accurate is magnetic resonance imaging of brain function?
    • DOI 10.1016/S0166-2236(02)00039-5, PII S0166223602000395
    • K. Ugurbil, L. Toth, D.-S. Kim, How accurate is magnetic resonance imaging of brain function?, Trends in Neurosciences 26 (2) (2003) 108 - 114. (Pubitemid 36110545)
    • (2003) Trends in Neurosciences , vol.26 , Issue.2 , pp. 108-114
    • Ugurbil, K.1    Toth, L.2    Kim, D.-S.3
  • 11
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • DOI 10.1002/hbm.20210
    • B. Thirion, G Flandin, P. Pinel, A. Roche, P. Ciuciu, J.-B. Poline, Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Hum. Brain Mapp. 27 (8) (2006) 678-693. (Pubitemid 44182456)
    • (2006) Human Brain Mapping , vol.27 , Issue.8 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.-B.6
  • 12
    • 80052007274 scopus 로고    scopus 로고
    • A supervised clustering approach for extracting predictive information from brain activation images
    • V. Michel, E. Eger, C. Keribin, J.-B. Poline, B. Thirion, A supervised clustering approach for extracting predictive information from brain activation images, MMBIA10.
    • MMBIA10
    • Michel, V.1    Eger, E.2    Keribin, C.3    Poline, J.-B.4    Thirion, B.5
  • 13
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J. H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 58 (301) (1963) 236-244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 14
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim, E. P. Xing, Tree-guided group Lasso for multi-task regression with structured sparsity, in: Proc. ICML, 2010.
    • (2010) Proc. ICML
    • Kim, S.1    Xing, E.P.2
  • 15
  • 16
    • 4043141423 scopus 로고    scopus 로고
    • Maps in the brain: What can we learn from them?
    • DOI 10.1146/annurev.neuro.27.070203.144226
    • D. B. Chklovskii, A. A. Koulakov, Maps in the brain: What can we learn from them?, Annual Review of Neuroscience 27 (1) (2004) 369-392. (Pubitemid 39056072)
    • (2004) Annual Review of Neuroscience , vol.27 , pp. 369-392
    • Chklovskii, D.B.1    Koulakov, A.A.2
  • 17
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • S. C. Johnson, Hierarchical clustering schemes, Psychometrika 2 (1967) 241-254.
    • (1967) Psychometrika , vol.2 , pp. 241-254
    • Johnson, S.C.1
  • 18
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, B. Yu, The composite absolute penalties family for grouped and hierarchical variable selection, Ann. Stat. 37 (6A) (2009) 3468-3497.
    • (2009) Ann. Stat. , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 21
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imag. Sci. 2 (1) (2009) 183-202.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 22
    • 57349088146 scopus 로고    scopus 로고
    • Graded size sensitivity of object exemplar evoked activity patterns in human loc subregions
    • E. Eger, C. Kell, A. Kleinschmidt, Graded size sensitivity of object exemplar evoked activity patterns in human loc subregions, J. Neurophysiol. 100(4):2038-47.
    • J. Neurophysiol , vol.100 , Issue.4 , pp. 2038-2047
    • Eger, E.1    Kell, C.2    Kleinschmidt, A.3
  • 23
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou, The adaptive Lasso and its oracle properties, J. Am. Stat. Assoc. 101 (476)(2006) 1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.