-
1
-
-
4344705249
-
Statistical parametric maps in functional imaging: A general linear approach
-
K. Friston, A. Holmes, K. Worsley, J. Poline, C. Frith, R. Frackowiak, Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping 2 (1995) 189-210. (Pubitemid 124008664)
-
(1994)
Human Brain Mapping
, vol.2
, Issue.4
, pp. 189-210
-
-
Friston, K.J.1
Holmes, A.P.2
Worsley, K.J.3
Poline, J.-P.4
Frith, C.D.5
Frackowiak, R.S.J.6
-
2
-
-
0032198134
-
Inferring behavior from functional brain images
-
S. Dehaene, G. Le Clec'H, L. Cohen, J.-B. Poline, P.-F. van de Moortele, D. Le Bihan, Inferring behavior from functional brain images, Nature Neuroscience 1 (1998) 549.
-
(1998)
Nature Neuroscience
, vol.1
, pp. 549
-
-
Dehaene, S.1
Le Clec'H, G.2
Cohen, L.3
Poline, J.-B.4
Van De Moortele, P.-F.5
Le Bihan, D.6
-
3
-
-
0041737619
-
Functional magnetic resonance imaging (fMRI) "brain reading": Detecting and classifying distributed patterns of fMRI activity in human visual cortex
-
DOI 10.1016/S1053-8119(03)00049-1
-
D. D. Cox, R. L. Savoy, Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage 19 (2) (2003) 261-270. (Pubitemid 39665678)
-
(2003)
NeuroImage
, vol.19
, Issue.2
, pp. 261-270
-
-
Cox, D.D.1
Savoy, R.L.2
-
4
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
5
-
-
19344370474
-
Support vector machines for temporal classification of block design fMRI data
-
DOI 10.1016/j.neuroimage.2005.01.048, PII S1053811905000893
-
S. LaConte, S. Strother, V. Cherkassky, J. Anderson, X. Hu, Support vector machines for temporal classification of block design fMRI data, NeuroImage 26 (2) (2005) 317 - 329. (Pubitemid 40719814)
-
(2005)
NeuroImage
, vol.26
, Issue.2
, pp. 317-329
-
-
LaConte, S.1
Strother, S.2
Cherkassky, V.3
Anderson, J.4
Hu, X.5
-
6
-
-
55149117963
-
Prediction and interpretation of distributed neural activity with sparse models
-
M. K. Carroll, G. A. Cecchi, I. Rish, R. Garg, A. R. Rao, Prediction and interpretation of distributed neural activity with sparse models, NeuroImage 44 (1) (2009) 112 - 122.
-
(2009)
NeuroImage
, vol.44
, Issue.1
, pp. 112-122
-
-
Carroll, M.K.1
Cecchi, G.A.2
Rish, I.3
Garg, R.4
Rao, A.R.5
-
7
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. Roy. Stat. Soc. B 67 (2005) 301.
-
(2005)
J. Roy. Stat. Soc. B
, vol.67
, pp. 301
-
-
Zou, H.1
Hastie, T.2
-
8
-
-
63649090636
-
Interpretable classifiers for fMRI improve prediction of purchases
-
L. Grosenick, S. Greer, B. Knutson, Interpretable classifiers for fMRI improve prediction of purchases, IEEE Transactions on Neural Systems and Rehabilitation Engineering 16 (6) (2009) 539-548.
-
(2009)
IEEE Transactions on Neural Systems and Rehabilitation Engineering
, vol.16
, Issue.6
, pp. 539-548
-
-
Grosenick, L.1
Greer, S.2
Knutson, B.3
-
9
-
-
0037303913
-
How accurate is magnetic resonance imaging of brain function?
-
DOI 10.1016/S0166-2236(02)00039-5, PII S0166223602000395
-
K. Ugurbil, L. Toth, D.-S. Kim, How accurate is magnetic resonance imaging of brain function?, Trends in Neurosciences 26 (2) (2003) 108 - 114. (Pubitemid 36110545)
-
(2003)
Trends in Neurosciences
, vol.26
, Issue.2
, pp. 108-114
-
-
Ugurbil, K.1
Toth, L.2
Kim, D.-S.3
-
10
-
-
84974676850
-
Improved detection sensitivity in functional MRI data using a brain parcelling technique
-
G Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache, J.-B. Poline, Improved detection sensitivity in functional MRI data using a brain parcelling technique, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI'02), 2002, pp. 467-474.
-
(2002)
Medical Image Computing and Computer-assisted Intervention (MICCAI'02)
, pp. 467-474
-
-
Flandin, G.1
Kherif, F.2
Pennec, X.3
Malandain, G.4
Ayache, N.5
Poline, J.-B.6
-
11
-
-
33746835024
-
Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
-
DOI 10.1002/hbm.20210
-
B. Thirion, G Flandin, P. Pinel, A. Roche, P. Ciuciu, J.-B. Poline, Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Hum. Brain Mapp. 27 (8) (2006) 678-693. (Pubitemid 44182456)
-
(2006)
Human Brain Mapping
, vol.27
, Issue.8
, pp. 678-693
-
-
Thirion, B.1
Flandin, G.2
Pinel, P.3
Roche, A.4
Ciuciu, P.5
Poline, J.-B.6
-
12
-
-
80052007274
-
A supervised clustering approach for extracting predictive information from brain activation images
-
V. Michel, E. Eger, C. Keribin, J.-B. Poline, B. Thirion, A supervised clustering approach for extracting predictive information from brain activation images, MMBIA10.
-
MMBIA10
-
-
Michel, V.1
Eger, E.2
Keribin, C.3
Poline, J.-B.4
Thirion, B.5
-
13
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
J. H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 58 (301) (1963) 236-244.
-
(1963)
J. Am. Stat. Assoc.
, vol.58
, Issue.301
, pp. 236-244
-
-
Ward, J.H.1
-
14
-
-
77956548668
-
Tree-guided group lasso for multi-task regression with structured sparsity
-
S. Kim, E. P. Xing, Tree-guided group Lasso for multi-task regression with structured sparsity, in: Proc. ICML, 2010.
-
(2010)
Proc. ICML
-
-
Kim, S.1
Xing, E.P.2
-
15
-
-
77956506018
-
Proximal methods for sparse hierarchical dictionary learning
-
R. Jenatton, J. Mairal, G Obozinski, F Bach, Proximal methods for sparse hierarchical dictionary learning, in: Proc. ICML, 2010.
-
(2010)
Proc. ICML
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
16
-
-
4043141423
-
Maps in the brain: What can we learn from them?
-
DOI 10.1146/annurev.neuro.27.070203.144226
-
D. B. Chklovskii, A. A. Koulakov, Maps in the brain: What can we learn from them?, Annual Review of Neuroscience 27 (1) (2004) 369-392. (Pubitemid 39056072)
-
(2004)
Annual Review of Neuroscience
, vol.27
, pp. 369-392
-
-
Chklovskii, D.B.1
Koulakov, A.A.2
-
17
-
-
0014129195
-
Hierarchical clustering schemes
-
S. C. Johnson, Hierarchical clustering schemes, Psychometrika 2 (1967) 241-254.
-
(1967)
Psychometrika
, vol.2
, pp. 241-254
-
-
Johnson, S.C.1
-
18
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
P. Zhao, G. Rocha, B. Yu, The composite absolute penalties family for grouped and hierarchical variable selection, Ann. Stat. 37 (6A) (2009) 3468-3497.
-
(2009)
Ann. Stat.
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
21
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imag. Sci. 2 (1) (2009) 183-202.
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
22
-
-
57349088146
-
Graded size sensitivity of object exemplar evoked activity patterns in human loc subregions
-
E. Eger, C. Kell, A. Kleinschmidt, Graded size sensitivity of object exemplar evoked activity patterns in human loc subregions, J. Neurophysiol. 100(4):2038-47.
-
J. Neurophysiol
, vol.100
, Issue.4
, pp. 2038-2047
-
-
Eger, E.1
Kell, C.2
Kleinschmidt, A.3
-
23
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H. Zou, The adaptive Lasso and its oracle properties, J. Am. Stat. Assoc. 101 (476)(2006) 1418-1429.
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
|