메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1335-1343

Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation

Author keywords

Alzheimer's disease; Brain network; FDGPET; Neuroimaging; Sparse inverse covariance estimation

Indexed keywords

ALZHEIMER'S DISEASE; BRAIN NETWORK; FDGPET; NEUROIMAGING; SPARSE INVERSE COVARIANCE ESTIMATION;

EID: 70350625345     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557162     Document Type: Conference Paper
Times cited : (55)

References (30)
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Ressearch, 9:485-516, 2008.
    • (2008) Journal of Machine Learning Ressearch , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 3
    • 34250698998 scopus 로고    scopus 로고
    • Convex optimization techniques for fitting sparse Gaussian graphical models
    • O. Banerjee, L. El Ghaoui, A. d'Aspremont, and G. Natsoulis. Convex optimization techniques for fitting sparse Gaussian graphical models. In ICML, pages 89-96, 2006.
    • (2006) ICML , pp. 89-96
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3    Natsoulis, G.4
  • 4
    • 34247503334 scopus 로고    scopus 로고
    • Sparse inverse covariance estimates for hyperspectral image classification. Geoscience and Remote Sensing
    • A. Berge, A.C. Jensen, and A.H.S. Solberg. Sparse inverse covariance estimates for hyperspectral image classification. Geoscience and Remote Sensing, IEEE Transactions on, 45(5):1399-1407, 2007.
    • (2007) IEEE Transactions on , vol.45 , Issue.5 , pp. 1399-1407
    • Berge, A.1    Jensen, A.C.2    Solberg, A.H.S.3
  • 5
    • 0033677172 scopus 로고    scopus 로고
    • Factored sparse inverse covariance matrices
    • J.A. Bilmes. Factored sparse inverse covariance matrices. In ICASSP, pages 1009-1012, 2000.
    • (2000) ICASSP , pp. 1009-1012
    • Bilmes, J.A.1
  • 6
    • 47249127654 scopus 로고    scopus 로고
    • Covariance selection for nonchordal graphs via chordal embedding
    • J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for nonchordal graphs via chordal embedding. Optimization Methods Software, 23(4):501-520, 2008.
    • (2008) Optimization Methods Software , vol.23 , Issue.4 , pp. 501-520
    • Dahl, J.1    Vandenberghe, L.2    Roychowdhury, V.3
  • 8
    • 0001038826 scopus 로고
    • Covariance selection
    • A.P. Dempster. Covariance selection. Biometrics, 28(1):157-175, 1972.
    • (1972) Biometrics , vol.28 , Issue.1 , pp. 157-175
    • Dempster, A.P.1
  • 10
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution
    • D.L. Donoho. For most large underdetermined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7):907-934, 2006.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 11
    • 0016823810 scopus 로고
    • Minimental state: A practical method for grading the cognitive state of patients for the clinician
    • M.F. Folstein, S. Folstein, and P.R. McHugh. Minimental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3):189-198, 1975.
    • (1975) Journal of Psychiatric Research , vol.12 , Issue.3 , pp. 189-198
    • Folstein, M.F.1    Folstein, S.2    McHugh, P.R.3
  • 12
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 8(1):1-10, 2007.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 1-10
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301(5629):102-105, 2003.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 15
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalised normal likelihood
    • J.Z. Huang, N. Liu, M. Pourahmadi, and L. Liu. Covariance matrix selection and estimation via penalised normal likelihood. Biometrika, 93(1):85-98, 2006.
    • (2006) Biometrika , vol.93 , Issue.1 , pp. 85-98
    • Huang, J.Z.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 16
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, Clarendon
    • S.L. Lauritzen. Graphical models. Oxford University Press, Clarendon, 1996.
    • (1996) Graphical models
    • Lauritzen, S.L.1
  • 17
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • H. Li and J. Gui. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302-317, 2005.
    • (2005) Biostatistics , vol.7 , Issue.2 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 18
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Y. Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Lin, Y.1
  • 19
    • 0021271971 scopus 로고
    • Mental and clinical diagnosis of alzheimer's disease: Report of the nincdsadrda work group under the auspices of the department of health and human services task force on alzheimers disease
    • G. McKhann, D. Drachman, and M. Folstein. Mental and clinical diagnosis of alzheimer's disease: report of the nincdsadrda work group under the auspices of the department of health and human services task force on alzheimers disease. Neurology, 34(7):939-944, 1984.
    • (1984) Neurology , vol.34 , Issue.7 , pp. 939-944
    • McKhann, G.1    Drachman, D.2    Folstein, M.3
  • 20
  • 21
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251, 2005.
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 22
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 23
    • 33845742477 scopus 로고    scopus 로고
    • Small-world networks and functional connectivity in Alzheimer's disease
    • C.J. Stam, B.F. Jones, G. Nolte, M. Breakspear, and P. Scheltens. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex, 17:92-99, 2007.
    • (2007) Cereb Cortex , vol.17 , pp. 92-99
    • Stam, C.J.1    Jones, B.F.2    Nolte, G.3    Breakspear, M.4    Scheltens, P.5
  • 24
    • 46249131887 scopus 로고    scopus 로고
    • K. Supekar, V. Menon, D. Rubin, M. Musen, and M.D. Greicius. Network analysis of intrinsic functional brain connectivity in alzheimer's disease. PLoS Computational Biology, 4(6):e1000100, 2008.
    • K. Supekar, V. Menon, D. Rubin, M. Musen, and M.D. Greicius. Network analysis of intrinsic functional brain connectivity in alzheimer's disease. PLoS Computational Biology, 4(6):e1000100, 2008.
  • 25
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • J. Tegner, M.K. Yeung, J. Hasty, and J.J. Collins. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences, 100(10):5944-5949, 2003.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.10 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 27
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for nondifferentiable maximation
    • P. Tseng. Convergence of block coordinate descent method for nondifferentiable maximation. J. Opt. Theory and Applications, 109(3):474-494, 2001.
    • (2001) J. Opt. Theory and Applications , vol.109 , Issue.3 , pp. 474-494
    • Tseng, P.1
  • 28
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
    • N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15(1):273-289, 2002.
    • (2002) NeuroImage , vol.15 , Issue.1 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.