메뉴 건너뛰기




Volumn 52, Issue 1, 2007, Pages 374-393

Relaxed Lasso

Author keywords

q norm penalisation; Bridge estimation; Dimensionality reduction; High dimensionality; Lasso

Indexed keywords

COMPUTATIONAL METHODS; CONVERGENCE OF NUMERICAL METHODS; DATA REDUCTION; PROBLEM SOLVING;

EID: 34548286564     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.12.019     Document Type: Article
Times cited : (476)

References (14)
  • 1
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman L. Better subset regression using the nonnegative garrote. Technometrics 37 (1995) 373-384
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 3
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via penalized likelihood
    • Fan J., and Li R. Variable selection via penalized likelihood. J. Amer. Statist. Assoc. 96 (2001) 1348-1360
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 4
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan J., and Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 (2004) 928-961
    • (2004) Ann. Statist. , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 5
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • Frank I., and Friedman J. A statistical view of some chemometrics regression tools (with discussion). Technometrics 35 (1993) 109-148
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 6
    • 0001033261 scopus 로고
    • Robust regression: asymptotics, conjectures, and Monte Carlo
    • Huber P. Robust regression: asymptotics, conjectures, and Monte Carlo. Ann. Statist. 1 (1973) 799-821
    • (1973) Ann. Statist. , vol.1 , pp. 799-821
    • Huber, P.1
  • 7
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight K., and Fu W. Asymptotics for lasso-type estimators. Ann. Statist. 28 (2000) 1356-1378
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 9
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen N., and Bühlmann P. High dimensional graphs and variable selection with the lasso. Ann. Statist. 34 (2006) 1436-1462
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 11
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 12
    • 23744505130 scopus 로고    scopus 로고
    • Square root penalty: adaptation to the margin in classification and in edge estimation
    • Tsybakov A., and van de Geer S. Square root penalty: adaptation to the margin in classification and in edge estimation. Ann. Statist. 33 (2005) 1203-1224
    • (2005) Ann. Statist. , vol.33 , pp. 1203-1224
    • Tsybakov, A.1    van de Geer, S.2
  • 13
    • 33747357771 scopus 로고    scopus 로고
    • High dimensional data: p ≫ n in mathematical statistics and bio-medical applications
    • van de Geer S., and van Houwelingen H. High dimensional data: p ≫ n in mathematical statistics and bio-medical applications. Bernoulli 10 (2004) 939-943
    • (2004) Bernoulli , vol.10 , pp. 939-943
    • van de Geer, S.1    van Houwelingen, H.2
  • 14
    • 34548232960 scopus 로고    scopus 로고
    • Zhao, P., Yu, B., 2004. Boosted lasso. Technical Report 678, University of California, Berkeley.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.