메뉴 건너뛰기




Volumn , Issue , 2008, Pages 848-855

The Group-Lasso for generalized linear models: Uniqueness of solutions and efficient algorithms

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; ROBOT LEARNING; SOLUTIONS;

EID: 56449115709     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (148)

References (15)
  • 3
    • 41149099117 scopus 로고    scopus 로고
    • Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries
    • Dahinden, C., Parmigiani, G., Emerick, M., & Bühlmann, P. (2007). Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries. BMC Bioinfonnatics, 8, 476.
    • (2007) BMC Bioinfonnatics , vol.8 , pp. 476
    • Dahinden, C.1    Parmigiani, G.2    Emerick, M.3    Bühlmann, P.4
  • 5
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Kim, Y., Kim, J., & Kim, Y. (2006). Blockwise sparse regression. Statistica Sinica, 16, 375-390.
    • (2006) Statistica Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 8
    • 33947525717 scopus 로고    scopus 로고
    • Consistent feature selection for pattern recognition in polynomial tune
    • Nilsson, R., Peña, J., Björkegren, J., & Tegnér, J. (2007). Consistent feature selection for pattern recognition in polynomial tune. JMLR, 8, 589-612.
    • (2007) JMLR , vol.8 , pp. 589-612
    • Nilsson, R.1    Peña, J.2    Björkegren, J.3    Tegnér, J.4
  • 10
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, K., & Keerthi, S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19, 2246-2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, K.1    Keerthi, S.2
  • 11
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B, 58, 267-288.
    • (1996) J. Roy. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 85041988327 scopus 로고
    • On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models
    • Wedderburn, R. W. M. (1973). On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models. Biometrika, 63, 27-32.
    • (1973) Biometrika , vol.63 , pp. 27-32
    • Wedderburn, R.W.M.1
  • 14
    • 2442441507 scopus 로고    scopus 로고
    • Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
    • Yeo, G., & Burge, C. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comp. Biology, 11, 377-394.
    • (2004) J. Comp. Biology , vol.11 , pp. 377-394
    • Yeo, G.1    Burge, C.2
  • 15
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B, 49-67.
    • (2006) J. Roy. Stat. Soc. B , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.