메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1465-1472

High-dimensional graphical model selection using ℓ 1- regularized logistic regression

Author keywords

1 regularization; Concentration; Convex risk minimization; Graphical models; High dimensional asymptotics; Markov random fields; Model selection; Structure learning

Indexed keywords

ASYMPTOTICS; GRAPHICAL MODEL; MARKOV RANDOM FIELDS; MODEL SELECTION; RISK MINIMIZATION; STRUCTURE-LEARNING;

EID: 84864034065     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (120)

References (12)
  • 2
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. Info. Theory, 14(3):462-467, 1968.
    • (1968) IEEE Trans. Info. Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 5
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3), 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.3
    • Meinshausen, N.1    Bühlmann, P.2
  • 6
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, l1 vs. l2 regularization, and rotational invariance
    • A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In International Conference on Machine Learning, 2004.
    • (2004) International Conference on Machine Learning
    • Ng, A.Y.1
  • 9
    • 0037214793 scopus 로고    scopus 로고
    • Maximum likelihood bounded tree-width Markov networks
    • N. Srebro. Maximum likelihood bounded tree-width Markov networks. Artificial Intel- ligence, 143(1):123-138, 2003.
    • (2003) Artificial Intel- Ligence , vol.143 , Issue.1 , pp. 123-138
    • Srebro, N.1
  • 10
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals
    • March
    • J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals. IEEE Trans. Info. Theory, 51(3):1030-1051, March 2006.
    • (2006) IEEE Trans. Info. Theory , vol.51 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 12
    • 84864038699 scopus 로고    scopus 로고
    • Model selection with the lasso
    • Technical report, UC Berkeley, Department of Statistics, March
    • P. Zhao and B. Yu. Model selection with the lasso. Technical report, UC Berkeley, Department of Statistics, March 2006. Accepted to Journal of Machine Learning Research.
    • (2006) Journal of Machine Learning Research
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.