|
Volumn , Issue , 2009, Pages 1721-1724
|
A map approach to learning sparse Gaussian Markov networks
|
Author keywords
1 regularization; fMRI data analysis; Markov networks; Maximum a posteriory probability (MAP); Sparse optimization
|
Indexed keywords
BRAIN-IMAGING DATA;
CONVEX PROBLEMS;
EMPIRICAL RESULTS;
FMRI DATA ANALYSIS;
GAUSSIANS;
MAP APPROACH;
MARKOV NETWORKS;
MAXIMUM A POSTERIORI PROBABILITIES;
MAXIMUM A POSTERIORY PROBABILITY (MAP);
OPEN PROBLEMS;
OPTIMAL SELECTION;
OPTIMIZATION METHOD;
REAL-LIFE APPLICATIONS;
REGULARIZATION PARAMETERS;
SPARSE OPTIMIZATION;
SYNTHETIC DATA;
ACOUSTICS;
MAXIMUM LIKELIHOOD ESTIMATION;
PROBABILITY;
SIGNAL PROCESSING;
OPTIMIZATION;
|
EID: 70349207200
PISSN: 15206149
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ICASSP.2009.4959935 Document Type: Conference Paper |
Times cited : (10)
|
References (9)
|