메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1721-1724

A map approach to learning sparse Gaussian Markov networks

Author keywords

1 regularization; fMRI data analysis; Markov networks; Maximum a posteriory probability (MAP); Sparse optimization

Indexed keywords

BRAIN-IMAGING DATA; CONVEX PROBLEMS; EMPIRICAL RESULTS; FMRI DATA ANALYSIS; GAUSSIANS; MAP APPROACH; MARKOV NETWORKS; MAXIMUM A POSTERIORI PROBABILITIES; MAXIMUM A POSTERIORY PROBABILITY (MAP); OPEN PROBLEMS; OPTIMAL SELECTION; OPTIMIZATION METHOD; REAL-LIFE APPLICATIONS; REGULARIZATION PARAMETERS; SPARSE OPTIMIZATION; SYNTHETIC DATA;

EID: 70349207200     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2009.4959935     Document Type: Conference Paper
Times cited : (10)

References (9)
  • 1
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2007.
    • (2007) Biostatistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 2
    • 0003846041 scopus 로고
    • A tutorial on learning Bayesian networks
    • Tech. Report MSR-TR-95-06. Microsoft Research
    • D. Heckerman. A tutorial on learning Bayesian networks, Tech. Report MSR-TR-95-06. Microsoft Research, 1995.
    • (1995)
    • Heckerman, D.1
  • 3
    • 70349192138 scopus 로고    scopus 로고
    • Learning Markov Network Structure via Sparse Ensemble-of-Trees Models
    • submitted
    • Y. Lin, D.D. Lee, Y. Kim, and B. Taskar. Learning Markov Network Structure via Sparse Ensemble-of-Trees Models. submitted, 2008.
    • (2008)
    • Lin, Y.1    Lee, D.D.2    Kim, Y.3    Taskar, B.4
  • 4
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34(3):1436-1462, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 6
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • March
    • O.Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9:485-516, March 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 7
    • 70349226059 scopus 로고    scopus 로고
    • Pittsburgh EBC Group. PBAIC Homepage: http://www.ebc.pitt.edu/2007/ competition.html, 2007.
    • Pittsburgh EBC Group. PBAIC Homepage: http://www.ebc.pitt.edu/2007/ competition.html, 2007.
  • 9
    • 33947115409 scopus 로고    scopus 로고
    • Model Selection and Estimation in the Gaussian Graphical Model
    • M. Yuan and Y. Lin. Model Selection and Estimation in the Gaussian Graphical Model. Biometrika, 94(1):19-35, 2007.
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.