메뉴 건너뛰기




Volumn 36, Issue 2, 2008, Pages 614-645

High-dimensional generalized linear models and the Lasso

Author keywords

Lasso; Oracle inequality; Sparsity

Indexed keywords


EID: 51049121146     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053607000000929     Document Type: Article
Times cited : (529)

References (27)
  • 1
    • 0037561860 scopus 로고    scopus 로고
    • A Bennet concentration inequality and its application to suprema of empirical processes
    • MR1890640
    • BOUSQUET, O. (2002). A Bennet concentration inequality and its application to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334 495-550. MR1890640
    • (2002) C. R. Math. Acad. Sci. Paris , vol.334 , pp. 495-550
    • BOUSQUET, O.1
  • 2
    • 33746056860 scopus 로고    scopus 로고
    • 1-penalized least squares. In Proceedings of 19th Annual Conference on Learning Theory, COLT 2006. Lecture Notes in Comput. Sci. 4005 379-391. Springer. Berlin. MR2280619
    • 1-penalized least squares. In Proceedings of 19th Annual Conference on Learning Theory, COLT 2006. Lecture Notes in Comput. Sci. 4005 379-391. Springer. Berlin. MR2280619
  • 4
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • MR2312149
    • BUNEA, F., TSYBAKOV, A. B. and WEGKAMP, M. H. (2007b). Sparsity oracle inequalities for the Lasso. Electron. J. Statist. 1 169-194. MR2312149
    • (2007) Electron. J. Statist , vol.1 , pp. 169-194
    • BUNEA, F.1    TSYBAKOV, A.B.2    WEGKAMP, M.H.3
  • 5
    • 51049104696 scopus 로고    scopus 로고
    • Penalized likelihood for sparse contingency tables with an application to full length cDNA libraries
    • To appear
    • DAHINDEN, C., PARMIGIANI, G., EMERICK, M. C. and BÜHLMANN, P. (2008). Penalized likelihood for sparse contingency tables with an application to full length cDNA libraries. BMC Bioinformatics. To appear.
    • (2008) BMC Bioinformatics
    • DAHINDEN, C.1    PARMIGIANI, G.2    EMERICK, M.C.3    BÜHLMANN, P.4
  • 6
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • MR1331258
    • DONOHO, D. L. ( 1995). De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41 613-627. MR1331258
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • DONOHO, D.L.1
  • 7
    • 33744552752 scopus 로고    scopus 로고
    • 1-norm near-solution approximates the sparsest near-solution
    • MR2222440
    • 1-norm near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59 907-934. MR2222440
    • (2006) Comm. Pure Appl. Math , vol.59 , pp. 907-934
    • DONOHO, D.L.1
  • 8
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • MR2217606
    • 1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 797-829. MR2217606
    • (2006) Comm. Pure Appl. Math , vol.59 , pp. 797-829
    • DONOHO, D.L.1
  • 9
    • 33845612972 scopus 로고    scopus 로고
    • 1 constraint
    • MR2291503
    • 1 constraint. Ann. Statist. 34 2367-2386. MR2291503
    • (2006) Ann. Statist , vol.34 , pp. 2367-2386
    • GREENSHTEIN, E.1
  • 10
    • 51049089410 scopus 로고    scopus 로고
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York. MR1851606
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York. MR1851606
  • 11
    • 51049120359 scopus 로고    scopus 로고
    • LEDOUX, M. (1996). Talagrand deviation inequalities for product measures. ESAIM Probab. Statist. 163-87. MR1399224
    • LEDOUX, M. (1996). Talagrand deviation inequalities for product measures. ESAIM Probab. Statist. 163-87. MR1399224
  • 12
    • 51049105594 scopus 로고    scopus 로고
    • LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin. MR1102015
    • LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin. MR1102015
  • 13
    • 0036872087 scopus 로고    scopus 로고
    • Adaptive estimation in regression, using soft thresholding type penalties
    • LOUBES, J.-M. and VAN DE GEER, S. (2002). Adaptive estimation in regression, using soft thresholding type penalties. Statist. Neerl. 56 453-478.
    • (2002) Statist. Neerl , vol.56 , pp. 453-478
    • LOUBES, J.-M.1    VAN DE GEER, S.2
  • 14
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in Talagrand's concentration inequalities for empirical processes
    • MR1782276
    • MASSART, P. (2000a). About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 863-884. MR1782276
    • (2000) Ann. Probab , vol.28 , pp. 863-884
    • MASSART, P.1
  • 15
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • MR1813803
    • MASSART, P. (2000b). Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. (6) 9 245-303. MR1813803
    • (2000) Ann. Fac. Sci. Toulouse Math. (6) , vol.9 , pp. 245-303
    • MASSART, P.1
  • 16
    • 51049088917 scopus 로고    scopus 로고
    • MEIER, L.. VAN DE GEER, S. and BÜHLMANN, P. (2008). The group Lasso for logistic regression. Research Report 131, ETH Zürich. J. Roy. Statist. Soc. Ser. B. To appear.
    • MEIER, L.. VAN DE GEER, S. and BÜHLMANN, P. (2008). The group Lasso for logistic regression. Research Report 131, ETH Zürich. J. Roy. Statist. Soc. Ser. B. To appear.
  • 18
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • MEINSHAUSEN, N.1    BÜHLMANN, P.2
  • 19
    • 34548106491 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Technical Report 720, Dept. Statistics, UC Berkeley
    • MEINSHAUSEN, N. and YU, B. (2007). Lasso-type recovery of sparse representations for high-dimensional data. Technical Report 720, Dept. Statistics, UC Berkeley.
    • (2007)
    • MEINSHAUSEN, N.1    YU, B.2
  • 20
    • 51049100925 scopus 로고    scopus 로고
    • ROCKAFELLER, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
    • ROCKAFELLER, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
  • 22
    • 0001287271 scopus 로고    scopus 로고
    • Regression analysis and selection via the Lasso
    • MR 1379242
    • TIBSHIRANI, R. (1996). Regression analysis and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR 1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 23
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • MR2051002
    • TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. MR2051002
    • (2004) Ann. Statist , vol.32 , pp. 135-166
    • TSYBAKOV, A.B.1
  • 25
    • 23744510605 scopus 로고    scopus 로고
    • Adaptive quantile regression
    • M. G. Akritas and D. N. Politis, eds, North-Holland, Amsterdam
    • VAN DE GEER, S. (2003). Adaptive quantile regression. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. N. Politis, eds.) 235-250. North-Holland, Amsterdam.
    • (2003) Recent Advances and Trends in Nonparametric Statistics , pp. 235-250
    • VAN DE GEER, S.1
  • 26
    • 34548097951 scopus 로고    scopus 로고
    • Model-selection consistency of the Lasso in high-dimensional linear regression
    • Technical Report 2006-003, Dept. Statistics, Rutgers Univ
    • ZHANG, C.-H. and HUANG, J. (2006). Model-selection consistency of the Lasso in high-dimensional linear regression. Technical Report 2006-003, Dept. Statistics, Rutgers Univ.
    • (2006)
    • ZHANG, C.-H.1    HUANG, J.2
  • 27
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2563
    • ZHAO, P.1    YU, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.