메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 755-763

Newton-like methods for sparse inverse covariance estimation

Author keywords

[No Author keywords available]

Indexed keywords

INVERSE COVARIANCE; ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHMS; LIMITED MEMORY BFGS; NEWTON LIKE METHODS; OBJECTIVE FUNCTIONS; OPTIMIZATION METHOD; QUADRATIC APPROXIMATION; TWO PHASE ALGORITHM;

EID: 84877779852     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (63)

References (26)
  • 2
    • 0001038826 scopus 로고
    • Covariance selection
    • A. P. Dempster. Covariance selection. Biometrics, 28:157-75, 1972.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 3
    • 84877736378 scopus 로고    scopus 로고
    • Gaussian Markov random fields: Theory and applications
    • J. D. Picka. Gaussian Markov random fields: theory and applications. Technometrics, 48(1):146-147, 2006.
    • (2006) Technometrics , vol.48 , Issue.1 , pp. 146-147
    • Picka, J.D.1
  • 4
    • 33749250772 scopus 로고    scopus 로고
    • Convex optimization techniques for fitting sparse Gaussian graphical models
    • ACM
    • O. Banerjee, L. El Ghaoui, A. d'Aspremont, and G. Natsoulis. Convex optimization techniques for fitting sparse Gaussian graphical models. In ICML, pages 89-96. ACM, 2006.
    • (2006) ICML , pp. 89-96
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3    Natsoulis, G.4
  • 6
    • 84867583748 scopus 로고    scopus 로고
    • Sparse covariance estimation under kronecker product structure
    • Kyoto, Japan
    • T. Tsiligkaridis and A. O. Hero III. Sparse covariance estimation under Kronecker product structure. In ICASSP 2006 Proceedings, pages 3633-3636, Kyoto, Japan, 2012.
    • (2012) ICASSP 2006 Proceedings , pp. 3633-3636
    • Tsiligkaridis, T.1    Hero III, A.O.2
  • 7
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9:485-516, 2008.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 12
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical LASSO
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical LASSO. Biostatistics, 9(3):432, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 78649406151 scopus 로고    scopus 로고
    • SINCO - A greedy coordinate ascent method for sparse inverse covariance selection problem
    • K. Scheinberg and I. Rish. SINCO - a greedy coordinate ascent method for sparse inverse covariance selection problem. Technical report, IBM RC24837, 2009.
    • (2009) Technical Report, IBM RC24837
    • Scheinberg, K.1    Rish, I.2
  • 17
    • 84860633052 scopus 로고    scopus 로고
    • An inexact interior point method for L1-regularized sparse covariance selection
    • L. Li and K. C. Toh. An inexact interior point method for L1-regularized sparse covariance selection. Mathematical Programming Computation, 2(3):291-315, 2010.
    • (2010) Mathematical Programming Computation , vol.2 , Issue.3 , pp. 291-315
    • Li, L.1    Toh, K.C.2
  • 18
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society B, 58(1):267-288, 1996.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413-1457, 2004.
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 21
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 22
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117(1):387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , Issue.1 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 23
    • 34547984768 scopus 로고    scopus 로고
    • Scalable training of L1-regularized log-linear models
    • ACM
    • G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In ICML, pages 33-40. ACM, 2007.
    • (2007) ICML , pp. 33-40
    • Andrew, G.1    Gao, J.2
  • 24
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190-1208, 1995.
    • (1995) SIAM Journal on Scientific Computing , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 25
    • 84904481564 scopus 로고    scopus 로고
    • Maximum likelihood estimation of Gaussian graphical models: Numerical implementation and topology selection
    • Preprint
    • J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation of gaussian graphical models: numerical implementation and topology selection. UCLA Preprint, 2005.
    • (2005) UCLA
    • Dahl, J.1    Roychowdhury, V.2    Vandenberghe, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.