-
3
-
-
0001019707
-
Learning Bayesian networks is NP-Complete
-
D. Chickering. Learning Bayesian networks is NP-Complete. In AI/Stats V, 1996.
-
(1996)
AI/Stats V
-
-
Chickering, D.1
-
4
-
-
3242708140
-
Least angle regression
-
B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Johnstone, I.2
Hastie, T.3
Tibshirani, R.4
-
5
-
-
0037262841
-
Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks
-
N. Friedman and D. Koller. Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning, 50:95-126, 2003.
-
(2003)
Machine Learning
, vol.50
, pp. 95-126
-
-
Friedman, N.1
Koller, D.2
-
6
-
-
36349016698
-
-
N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The sparse candidate algorithm. In UAI, 1999.
-
N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In UAI, 1999.
-
-
-
-
7
-
-
0002123103
-
Dependency networks for density estimation, collaborative filtering, and data visualization
-
D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for density estimation, collaborative filtering, and data visualization. J. of Machine Learning Research, 1:49-75, 2000.
-
(2000)
J. of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
8
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995.
-
(1995)
Machine Learning
-
-
Heckerman, D.1
Geiger, D.2
Chickering, M.3
-
9
-
-
70049111780
-
Efficient structure learning of Markov networks using L1-regularization
-
S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using L1-regularization. In NIPS, 2007.
-
(2007)
NIPS
-
-
Lee, S.-I.1
Ganapathi, V.2
Koller, D.3
-
10
-
-
34547966875
-
Efficient L1 Regularized Logistic Regression
-
S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient L1 Regularized Logistic Regression. In AAAI, 2006.
-
(2006)
AAAI
-
-
Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.4
-
11
-
-
0030245966
-
Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters
-
P. Larran̄aga and M. Poza. Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(9):912-926, 1996.
-
(1996)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.18
, Issue.9
, pp. 912-926
-
-
Larran̄aga, P.1
Poza, M.2
-
12
-
-
36348973539
-
Using modified lasso regression to learn large undirected graphs in a probabilistic framework
-
Fan Li and Yiming Yang. Using modified lasso regression to learn large undirected graphs in a probabilistic framework. In AAAI, 2005.
-
(2005)
AAAI
-
-
Li, F.1
Yang, Y.2
-
13
-
-
33747163541
-
High dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34:1436-1462, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
15
-
-
36348998710
-
-
M. Park and T. Hastie. L1 regularization path algorithm for generalized linear models. Technical report, Dept. Statistics, Stanford, 2006.
-
M. Park and T. Hastie. L1 regularization path algorithm for generalized linear models. Technical report, Dept. Statistics, Stanford, 2006.
-
-
-
-
16
-
-
0001457227
-
Counting labeled acyclic digraphs
-
F. Harary, editor, Academic Press
-
R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273. Academic Press, 1973.
-
(1973)
New Directions in the Theory of Graphs
, pp. 239-273
-
-
Robinson, R.W.1
-
17
-
-
33746035971
-
The maxmin hill-climbing bayesian network structure learning algorithm
-
To appear
-
I. Tsamardinos, L. Brown, and C. Aliferis. The maxmin hill-climbing bayesian network structure learning algorithm. Machine learning, 2006. To appear.
-
(2006)
Machine learning
-
-
Tsamardinos, I.1
Brown, L.2
Aliferis, C.3
-
18
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B, 58(1):267-288, 1996.
-
(1996)
J. Royal. Statist. Soc B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
19
-
-
36348929435
-
Ordering-based search: A simple and effective algorithm for learning bayesian networks
-
M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In UAI, pages 584-590, 2005.
-
(2005)
UAI
, pp. 584-590
-
-
Teyssier, M.1
Koller, D.2
-
21
-
-
33645035051
-
Model Selection and Estimation in Regression with Grouped Variables
-
M. Yuan and Y. Lin. Model Selection and Estimation in Regression with Grouped Variables. J. Royal. Statist. Soc B, 68(19):49-67, 2006.
-
(2006)
J. Royal. Statist. Soc B
, vol.68
, Issue.19
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|