메뉴 건너뛰기




Volumn 2, Issue , 2007, Pages 1278-1283

Learning graphical model structure using L1-regularization paths

Author keywords

[No Author keywords available]

Indexed keywords

DATASETS; DECOMPOSABILITY; GRAPHICAL MODELS; REGULARIZATION;

EID: 36348990694     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (112)

References (21)
  • 3
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-Complete
    • D. Chickering. Learning Bayesian networks is NP-Complete. In AI/Stats V, 1996.
    • (1996) AI/Stats V
    • Chickering, D.1
  • 5
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks
    • N. Friedman and D. Koller. Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning, 50:95-126, 2003.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 6
    • 36349016698 scopus 로고    scopus 로고
    • N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The sparse candidate algorithm. In UAI, 1999.
    • N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In UAI, 1999.
  • 8
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995.
    • (1995) Machine Learning
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 9
    • 70049111780 scopus 로고    scopus 로고
    • Efficient structure learning of Markov networks using L1-regularization
    • S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using L1-regularization. In NIPS, 2007.
    • (2007) NIPS
    • Lee, S.-I.1    Ganapathi, V.2    Koller, D.3
  • 10
    • 34547966875 scopus 로고    scopus 로고
    • Efficient L1 Regularized Logistic Regression
    • S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient L1 Regularized Logistic Regression. In AAAI, 2006.
    • (2006) AAAI
    • Lee, S.1    Lee, H.2    Abbeel, P.3    Ng, A.4
  • 11
    • 0030245966 scopus 로고    scopus 로고
    • Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters
    • P. Larran̄aga and M. Poza. Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(9):912-926, 1996.
    • (1996) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 912-926
    • Larran̄aga, P.1    Poza, M.2
  • 12
    • 36348973539 scopus 로고    scopus 로고
    • Using modified lasso regression to learn large undirected graphs in a probabilistic framework
    • Fan Li and Yiming Yang. Using modified lasso regression to learn large undirected graphs in a probabilistic framework. In AAAI, 2005.
    • (2005) AAAI
    • Li, F.1    Yang, Y.2
  • 13
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34:1436-1462, 2006.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 15
    • 36348998710 scopus 로고    scopus 로고
    • M. Park and T. Hastie. L1 regularization path algorithm for generalized linear models. Technical report, Dept. Statistics, Stanford, 2006.
    • M. Park and T. Hastie. L1 regularization path algorithm for generalized linear models. Technical report, Dept. Statistics, Stanford, 2006.
  • 16
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • F. Harary, editor, Academic Press
    • R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273. Academic Press, 1973.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 17
    • 33746035971 scopus 로고    scopus 로고
    • The maxmin hill-climbing bayesian network structure learning algorithm
    • To appear
    • I. Tsamardinos, L. Brown, and C. Aliferis. The maxmin hill-climbing bayesian network structure learning algorithm. Machine learning, 2006. To appear.
    • (2006) Machine learning
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 18
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B, 58(1):267-288, 1996.
    • (1996) J. Royal. Statist. Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 19
    • 36348929435 scopus 로고    scopus 로고
    • Ordering-based search: A simple and effective algorithm for learning bayesian networks
    • M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In UAI, pages 584-590, 2005.
    • (2005) UAI , pp. 584-590
    • Teyssier, M.1    Koller, D.2
  • 21
    • 33645035051 scopus 로고    scopus 로고
    • Model Selection and Estimation in Regression with Grouped Variables
    • M. Yuan and Y. Lin. Model Selection and Estimation in Regression with Grouped Variables. J. Royal. Statist. Soc B, 68(19):49-67, 2006.
    • (2006) J. Royal. Statist. Soc B , vol.68 , Issue.19 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.