메뉴 건너뛰기




Volumn 15, Issue 2, 2003, Pages 349-396

Dictionary learning algorithms for sparse representation

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; LEARNING; PHYSIOLOGY; STATISTICS;

EID: 0037313218     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976603762552951     Document Type: Article
Times cited : (734)

References (58)
  • 2
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4), 803-851.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 6
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • Comon, P. (1994). Independent component analysis: A new concept? Signal Processing, 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 10
    • 85013502775 scopus 로고
    • On minimum entropy segmentation
    • C. Chui, L. Montefusco, & L. Puccio (Eds.). San Diego, CA: Academic Press
    • Donoho, D. (1994). On minimum entropy segmentation. In C. Chui, L. Montefusco, & L. Puccio (Eds.), Wavelets: Theory, algorithms, and applications (pp. 233-269). San Diego, CA: Academic Press.
    • (1994) Wavelets: Theory, Algorithms, and Applications , pp. 233-269
    • Donoho, D.1
  • 13
    • 33750403428 scopus 로고    scopus 로고
    • Frame design using FOCUSS with method of optimal directions (MOD)
    • Tronheim, Norway: IEEE
    • Engan, K., Rao, B., & Kreutz-Delgado, K. (1999). Frame design using FOCUSS with method of optimal directions (MOD). In Proc. NORSIG-99. Tronheim, Norway: IEEE.
    • (1999) Proc. NORSIG-99
    • Engan, K.1    Rao, B.2    Kreutz-Delgado, K.3
  • 15
    • 0000929221 scopus 로고
    • What is the goal of sensory coding
    • Field, D. (1994). What is the goal of sensory coding. Neural Computation, 6, 559-599.
    • (1994) Neural Computation , vol.6 , pp. 559-599
    • Field, D.1
  • 16
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • Girolami, M. (2001). A variational method for learning sparse and overcomplete representations. Neural Computation, 13, 2517-2532.
    • (2001) Neural Computation , vol.13 , pp. 2517-2532
    • Girolami, M.1
  • 18
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • Gorodnitsky, I., & Rao, B. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Processing, 45(3), 600-616.
    • (1997) IEEE Trans. Signal Processing , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.1    Rao, B.2
  • 19
    • 0001632418 scopus 로고
    • The use of the L-curve in the regularization of discrete ill-posed problems
    • Hansen, P. C., & O'Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Set. Comput., 14, 1487-1503.
    • (1993) SIAM J. Set. Comput. , vol.14 , pp. 1487-1503
    • Hansen, P.C.1    O'Leary, D.P.2
  • 24
    • 0006489268 scopus 로고    scopus 로고
    • A general approach to sparse basis selection: Majorization, concavity, and affine scaling
    • (Full Report with Proofs) San Diego: University of California
    • Kreutz-Delgado, K., & Rao, B. (1997). A general approach to sparse basis selection: Majorization, concavity, and affine Scaling (Full Report with Proofs) (Center for Information Engineering Report No. UCSD-CIE-97-7-1). San Diego: University of California. Available on-line at: http://dsp.ucsd.edu/̃kreutz.
    • (1997) Center for Information Engineering Report No. UCSD-CIE-97-7-1 , vol.UCSD-CIE-97-7-1
    • Kreutz-Delgado, K.1    Rao, B.2
  • 27
  • 28
    • 0032677420 scopus 로고    scopus 로고
    • Sparse basis selection, ICA, and majorization: Towards a unified perspective
    • Phoenix, AZ
    • Kreutz-Delgado, K., & Rao, B. (1999). Sparse basis selection, ICA, and majorization: Towards a unified perspective. In Proc. 1999 ICASSP. Phoenix, AZ.
    • (1999) Proc. 1999 ICASSP
    • Kreutz-Delgado, K.1    Rao, B.2
  • 29
    • 0033348156 scopus 로고    scopus 로고
    • Novel algorithms for learning overcomplete Dictionaries
    • Pacific Grove, CA: IEEE
    • Kreutz-Delgado, K., Rao, B., & Engan, K. (1999). Novel algorithms for learning overcomplete Dictionaries. In Proc. 1999 Asilomar Conference. Pacific Grove, CA: IEEE.
    • (1999) Proc. 1999 Asilomar Conference
    • Kreutz-Delgado, K.1    Rao, B.2    Engan, K.3
  • 31
    • 0043170656 scopus 로고    scopus 로고
    • Learning overcomplete dictionaries: Convex/Schur-convex (CSC) log-priors, factorial codes, and independent/dependent component analysis (I/DCA)
    • Pasadena, CA
    • Kreutz-Delgado, K., Rao, B., Engan, K., Lee, T.-W., & Sejnowski, T. (1999b). Learning overcomplete dictionaries: Convex/Schur-convex (CSC) log-priors, factorial codes, and independent/dependent component analysis (I/DCA). In Proc. 6th Joint Symposium on Neural Computation. Pasadena, CA.
    • (1999) Proc. 6th Joint Symposium on Neural Computation
    • Kreutz-Delgado, K.1    Rao, B.2    Engan, K.3    Lee, T.-W.4    Sejnowski, T.5
  • 32
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources
    • Lee, T.-W., Girolami, M., & Sejnowski, T. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 11(2), 417-441.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.3
  • 33
    • 0032606945 scopus 로고    scopus 로고
    • A probabilistic framework for the adaptation and comparison of image codes
    • Lewicki, M. S., & Olshausen, B. A. (1999). A probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Am. A, 16(7), 1587-1601.
    • (1999) J. Opt. Soc. Am. A , vol.16 , Issue.7 , pp. 1587-1601
    • Lewicki, M.S.1    Olshausen, B.A.2
  • 34
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki, M. S., & Sejnowski, T. J. (2000). Learning overcomplete representations. Neural Computation, 12(2), 337-365.
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 35
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Trans. ASSP, 41(12), 3397-3415.
    • (1993) IEEE Trans. ASSP , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 38
    • 0000772267 scopus 로고
    • Nonlinear neurons in the low noise limit: A factorial code maximizes information transfer
    • Nadal, J.-P., & Parga, N. (1994). Nonlinear neurons in the low noise limit: A factorial code maximizes information transfer. Network, 5, 565-581.
    • (1994) Network , vol.5 , pp. 565-581
    • Nadal, J.-P.1    Parga, N.2
  • 39
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 40
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Olshausen, B., & Field, D. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37, 3311-3325.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 41
    • 0030285552 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixture of sources via an independent component analysis
    • Pham, D. (1996). Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Trans. Signal Processing, 44(11), 2768-2779.
    • (1996) IEEE Trans. Signal Processing , vol.44 , Issue.11 , pp. 2768-2779
    • Pham, D.1
  • 42
    • 0035062596 scopus 로고    scopus 로고
    • Resolution, separation of retinal ganglion cells, and cortical magnification in humans
    • Popovic, Z., & Sjöstrand, J. (2001). Resolution, separation of retinal ganglion cells, and cortical magnification in humans. Vision Research, 41, 1313-1319.
    • (2001) Vision Research , vol.41 , pp. 1313-1319
    • Popovic, Z.1    Sjöstrand, J.2
  • 44
    • 0031640362 scopus 로고    scopus 로고
    • Signal processing with the sparseness constraint
    • New York: IEEE
    • Rao, B. (1998). Signal processing with the sparseness constraint. In Proc. 1998 ICASSP. New York: IEEE.
    • (1998) Proc. 1998 ICASSP
    • Rao, B.1
  • 46
    • 0029725779 scopus 로고    scopus 로고
    • Affine scaling transformation based methods for computing low complexity sparse solutions
    • New York: IEEE
    • Rao, B., & Gorodnitsky, I. (1997). Affine scaling transformation based methods for computing low complexity sparse solutions. In Proc. 1996 ICASSP (Vol. 2, pp. 1783-1786). New York: IEEE.
    • (1997) Proc. 1996 ICASSP , vol.2 , pp. 1783-1786
    • Rao, B.1    Gorodnitsky, I.2
  • 50
    • 0032712352 scopus 로고    scopus 로고
    • An affine scaling methodology for best basis selection
    • Rao, B., & Kreutz-Delgado, K. (1999). An affine scaling methodology for best basis selection. IEEE Trans. Signal Processing, 1, 187-202.
    • (1999) IEEE Trans. Signal Processing , vol.1 , pp. 187-202
    • Rao, B.1    Kreutz-Delgado, K.2
  • 51
    • 0032090128 scopus 로고    scopus 로고
    • Independent component analysis: Source assessment and separation, a Bayesian approach
    • Roberts, S. (1998). Independent component analysis: Source assessment and separation, a Bayesian approach. IEE (Brit.) Proc. Vis. Image Signal Processing, 145(3), 149-154.
    • (1998) IEE (Brit.) Proc. Vis. Image Signal Processing , vol.145 , Issue.3 , pp. 149-154
    • Roberts, S.1
  • 52
    • 0004267646 scopus 로고
    • Princeton, NJ: Princeton University Press
    • Rockafellar, R. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
    • (1970) Convex Analysis
    • Rockafellar, R.1
  • 54
    • 0030871225 scopus 로고    scopus 로고
    • Selective feature extraction via signal decomposition
    • Wang, K., Lee, C., & Juang, B. (1997). Selective feature extraction via signal decomposition. IEEE Signal Processing Letters, 4(1), 8-11.
    • (1997) IEEE Signal Processing Letters , vol.4 , Issue.1 , pp. 8-11
    • Wang, K.1    Lee, C.2    Juang, B.3
  • 55
    • 0019390123 scopus 로고
    • Pattern recognition as a quest for minimum entropy
    • Watanabe, S. (1981). Pattern recognition as a quest for minimum entropy. Pattern Recognition, 13(5), 381-387.
    • (1981) Pattern Recognition , vol.13 , Issue.5 , pp. 381-387
    • Watanabe, S.1
  • 57
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • Zhu, S., Wu, Y., & Mumford, D. (1997). Minimax entropy principle and its application to texture modeling. Neural Computation, 9, 1627-1660.
    • (1997) Neural Computation , vol.9 , pp. 1627-1660
    • Zhu, S.1    Wu, Y.2    Mumford, D.3
  • 58
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • Zibulevsky, M., & Pearlmutter, B. A. (2001). Blind source separation by sparse decomposition in a signal dictionary. Neural Computation, 13(4), 863-882.
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.