메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 1153-1194

Honest variable selection in linear and logistic regression models via l1 and l1+l2 penalization

Author keywords

Consistent; Elastic net; Generalized linear models; High dimensions; L1 and l1+l2 regularization; Lasso; Logistic regression; Penalty; Regression; Sparse; Variable selection

Indexed keywords


EID: 84888203819     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/08-EJS287     Document Type: Article
Times cited : (119)

References (26)
  • 1
    • 0000937686 scopus 로고
    • Tests for linear trends in proportions and frequencies
    • Armitage, P. (1955) Tests for linear trends in proportions and frequencies. Biometrics, 11 (3), 375-386.
    • (1955) Biometrics , vol.11 , Issue.3 , pp. 375-386
    • Armitage, P.1
  • 3
    • 77955148645 scopus 로고    scopus 로고
    • Consistent selection via the Lasso for high dimensional approximating regression models
    • Bunea, F. (2008) Consistent selection via the Lasso for high dimensional approximating regression models. The IMS Collections 3 122-137.
    • (2008) The IMS Collections , vol.3 , pp. 122-137
    • Bunea, F.1
  • 8
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • Donoho, D. L., Elad, M. And Temlyakov, V. N. (2006) Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6-18.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. And Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96(456), 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 33845612972 scopus 로고    scopus 로고
    • Best subset selection, persistence in high-dimensional statistical learning and optimization under constraint
    • Greenshtein, E. (2006) Best subset selection, persistence in high-dimensional statistical learning and optimization under constraint. The Annals of Statististics 34(5), 2367-2386.
    • (2006) The Annals of Statististics , vol.34 , Issue.5 , pp. 2367-2386
    • Greenshtein, E.1
  • 12
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • Lounici, K. (2008) Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. The Electronic Journal of Statistics 2, 90-102.
    • (2008) The Electronic Journal of Statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 13
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. And Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics 34 (3), 1436-1462.
    • (2006) The Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 16
  • 18
    • 34547483052 scopus 로고    scopus 로고
    • How to compare different loss functions and their risks
    • Steinwart, I. (2007) How to compare different loss functions and their risks. Constructive Approximation 26, 225-287.
    • (2007) Constructive Approximation , vol.26 , pp. 225-287
    • Steinwart, I.1
  • 19
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • van de Geer, S. (2008) High-dimensional generalized linear models and the Lasso. The Annals of Statistics 36 (2), 614-645.
    • (2008) The Annals of Statistics , vol.36 , Issue.2 , pp. 614-645
    • Van De Geer, S.1
  • 21
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. And Yu, B. (2007). On model selection consistency of Lasso. Journal of Machine Learning Research 7, 2541-2567.
    • (2007) Journal of Machine Learning Research , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 25
  • 26
    • 66349111215 scopus 로고    scopus 로고
    • Lasso type classifiers with a reject option
    • Wegkamp, M. H. (2007) Lasso type classifiers with a reject option. Electronic Journal of Statistics 1, 155-168.
    • (2007) Electronic Journal of Statistics , vol.1 , pp. 155-168
    • Wegkamp, M.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.