메뉴 건너뛰기




Volumn 27, Issue 4, 2012, Pages 538-557

A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers

Author keywords

Group Lasso; High dimensional statistics; L1 regularization; Lasso; M estimator; Nuclear norm; Sparsity

Indexed keywords


EID: 84871600478     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-STS400     Document Type: Article
Times cited : (930)

References (82)
  • 1
    • 84872015802 scopus 로고    scopus 로고
    • Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
    • AGARWAL, A., NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. Ann. Statist. 40 1171-1197.
    • (2011) Ann. Statist. , vol.40 , pp. 1171-1197
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.J.3
  • 2
    • 80555158386 scopus 로고    scopus 로고
    • Self-concordant analysis for logistic regression
    • BACH, F. (2010). Self-concordant analysis for logistic regression. Electron. J. Stat. 4 384-414.
    • (2010) Electron. J. Stat. , vol.4 , pp. 384-414
    • Bach, F.1
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • BACH, F. R. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9 1179-1225.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 4
    • 46249124832 scopus 로고    scopus 로고
    • Consistency of trace normminimization
    • BACH, F. R. (2008). Consistency of trace normminimization. J. Mach. Learn. Res. 9 1019-1048.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1019-1048
    • Bach, F.R.1
  • 7
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604.
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 8
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 9
    • 84888203819 scopus 로고    scopus 로고
    • 2 penalization
    • BUNEA, F. (2008). Honest variable selection in linear and logistic regression models via l1 and l1 +l2 penalization. Electron. J. Stat. 2 1153-1194.
    • (2008) Electron. J. Stat. , vol.2 , pp. 1153-1194
    • Bunea, F.1
  • 11
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1 169-194.
    • (2007) Electron. J. Stat. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 12
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • BUNEA, F., TSYBAKOV, A. B. and WEGKAMP, M. H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674-1697.
    • (2007) Ann. Statist. , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 13
    • 79960129520 scopus 로고    scopus 로고
    • Technical report, Wharton School of Business, Univ. Pennsylvania. Available at
    • CAI, T. and ZHOU, H. (2010). Optimal rates of convergence for sparse covariance matrix estimation. Technical report, Wharton School of Business, Univ. Pennsylvania. Available at http://www-stat.wharton.upenn.edu/~tcai/paper/html/Sparse-Covariance-Matrix.html.
    • (2010) Optimal rates of convergence for sparse covariance matrix estimation
    • Cai, T.1    Zhou, H.2
  • 14
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 15
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • CANDÈS, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization. Found. Comput. Math. 9 717- 772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 16
  • 21
    • 22144471532 scopus 로고    scopus 로고
    • Neighborliness of randomly projected simplices in high dimensions
    • (electronic)
    • DONOHO, D. L. and TANNER, J. (2005). Neighborliness of randomly projected simplices in high dimensions. Proc. Natl. Acad. Sci. USA 102 9452-9457 (electronic).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 9452-9457
    • Donoho, D.L.1    Tanner, J.2
  • 22
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • EL KAROUI, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756.
    • (2008) Ann. Statist. , vol.36 , pp. 2717-2756
    • El Karoui, N.1
  • 23
    • 0142257025 scopus 로고    scopus 로고
    • Ph.D. thesis, Stanford. Available at
    • FAZEL, M. (2002). Matrix rank minimization with applications. Ph.D. thesis, Stanford. Available at http://faculty. washington.edu/mfazel/thesis-final.pdf.
    • (2002) Matrix rank minimization with applications
    • Fazel, M.1
  • 24
    • 0010982216 scopus 로고
    • Statistical Analysis of Observations of Increasing Dimension
    • Kluwer Academic, Dordrecht. Translated from the Russian
    • GIRKO, V. L. (1995). Statistical Analysis of Observations of Increasing Dimension. Theory and Decision Library. Series B: Mathematical and Statistical Methods 28. Kluwer Academic, Dordrecht. Translated from the Russian.
    • (1995) Theory and Decision Library. Series B: Mathematical and Statistical Methods. , pp. 28
    • Girko, V.L.1
  • 25
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 26
    • 81255189015 scopus 로고    scopus 로고
    • Robust matrix decomposition with sparse corruptions
    • HSU, D., KAKADE, S. M. and ZHANG, T. (2011). Robust matrix decomposition with sparse corruptions. IEEE Trans. Inform. Theory 57 7221-7234.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 7221-7234
    • Hsu, D.1    Kakade, S.M.2    Zhang, T.3
  • 27
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • HUANG, J. and ZHANG, T. (2010). The benefit of group sparsity. Ann. Statist. 38 1978-2004.
    • (2010) Ann. Statist. , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 28
    • 71149113559 scopus 로고    scopus 로고
    • Group Lasso with overlap and graph Lasso. International Conference on Machine Learning (ICML), Haifa
    • JACOB, L., OBOZINSKI, G. and VERT, J. P. (2009). Group Lasso with overlap and graph Lasso. In International Conference on Machine Learning (ICML) 433-440, Haifa, Israel.
    • (2009) Israel , pp. 433-440
    • Jacob, L.1    Obozinski, G.2    Vert, J.P.3
  • 32
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • KIM, Y., KIM, J. and KIM, Y. (2006). Blockwise sparse regression. Statist. Sinica 16 375-390.
    • (2006) Statist. Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 34
    • 78650166948 scopus 로고    scopus 로고
    • Sparsity in multiple kernel learning
    • KOLTCHINSKII, V. and YUAN, M. (2010). Sparsity in multiple kernel learning. Ann. Statist. 38 3660-3695.
    • (2010) Ann. Statist. , vol.38 , pp. 3660-3695
    • Koltchinskii, V.1    Yuan, M.2
  • 35
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • LAM, C. and FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37 4254-4278.
    • (2009) Ann. Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 36
    • 84859318676 scopus 로고    scopus 로고
    • Hyperspectral image data analsysis as a high-dimensional signal processing problem
    • LANDGREBE, D. (2008). Hyperspectral image data analsysis as a high-dimensional signal processing problem. IEEE Signal Processing Magazine 19 17-28.
    • (2008) IEEE Signal Processing Magazine , vol.19 , pp. 17-28
    • Landgrebe, D.1
  • 38
    • 72549110327 scopus 로고    scopus 로고
    • Interior-point method for nuclear norm approximation with application to system identification
    • LIU, Z. and VANDENBERGHE, L. (2009). Interior-point method for nuclear norm approximation with application to system identification. SIAM J. Matrix Anal. Appl. 31 1235- 1256.
    • (2009) SIAM J. Matrix Anal. Appl. , vol.31 , pp. 1235-1256
    • Liu, Z.1    Vandenberghe, L.2
  • 41
    • 84859831899 scopus 로고    scopus 로고
    • Two proposals for robust PCA using semidefinite programming
    • MCCOY, M. and TROPP, J. (2011). Two proposals for robust PCA using semidefinite programming. Electron. J. Stat. 5 1123-1160.
    • (2011) Electron. J. Stat. , vol.5 , pp. 1123-1160
    • Mccoy, M.1    Tropp, J.2
  • 42
    • 0004163930 scopus 로고
    • 2nd ed. Academic Press, Boston, MA
    • MEHTA, M. L. (1991). Random Matrices, 2nd ed. Academic Press, Boston, MA.
    • (1991) Random Matrices
    • Mehta, M.L.1
  • 44
    • 42649092921 scopus 로고    scopus 로고
    • A note on the Lasso for Gaussian graphical model selection
    • MEINSHAUSEN, N. (2008). A note on the Lasso for Gaussian graphical model selection. Statist. Probab. Lett. 78 880-884.
    • (2008) Statist. Probab. Lett. , vol.78 , pp. 880-884
    • Meinshausen, N.1
  • 45
    • 33747163541 scopus 로고    scopus 로고
    • Highdimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). Highdimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 46
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • MEINSHAUSEN, N. and YU, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. 37 246-270.
    • (2009) Ann. Statist. , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 47
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group lasso estimator for linear models
    • NARDI, Y. and RINALDO, A. (2008). On the asymptotic properties of the group lasso estimator for linear models. Electron. J. Stat. 2 605-633.
    • (2008) Electron. J. Stat. , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 50
    • 79957634445 scopus 로고    scopus 로고
    • ∞-regularization
    • NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Simultaneous support recovery in high-dimensional regression: Benefits and perils of _1,∞-regularization. IEEE Trans. Inform. Theory 57 3481-3863.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 3481-3863
    • Negahban, S.1    Wainwright, M.J.2
  • 51
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39 1069-1097.
    • (2011) Ann. Statist. , vol.39 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 52
    • 84862020232 scopus 로고    scopus 로고
    • Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise
    • NEGAHBAN, S. and WAINWRIGHT, M. J. (2012). Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. J. Mach. Learn. Res. 13 1665-1697.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1665-1697
    • Negahban, S.1    Wainwright, M.J.2
  • 53
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • OBOZINSKI, G., WAINWRIGHT, M. J. and JORDAN, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Ann. Statist. 39 1-47.
    • (2011) Ann. Statist. , vol.39 , pp. 1-47
    • Obozinski, G.1    Wainwright, M.J.2    Jordan, M.I.3
  • 54
    • 0002728031 scopus 로고
    • The spectrum of random matrices
    • PASTUR, L. A. (1972). The spectrum of random matrices. Teoret. Mat. Fiz. 10 102-112.
    • (1972) Teoret. Mat. Fiz. , vol.10 , pp. 102-112
    • Pastur, L.A.1
  • 55
    • 77956925453 scopus 로고    scopus 로고
    • Restricted eigenvalue properties for correlated Gaussian designs
    • RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2010). Restricted eigenvalue properties for correlated Gaussian designs. J. Mach. Learn. Res. 11 2241-2259.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 56
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over _q -balls
    • RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2011). Minimax rates of estimation for high-dimensional linear regression over _q -balls. IEEE Trans. Inform. Theory 57 6976- 6994.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 57
    • 84857824105 scopus 로고    scopus 로고
    • Minimax-optimal rates for sparse additive models over kernel classes via convex programming
    • RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2012). Minimax-optimal rates for sparse additive models over kernel classes via convex programming. J. Mach. Learn. Res. 13 389-427.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 389-427
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 59
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using _1-regularized logistic regression
    • RAVIKUMAR, P.,WAINWRIGHT, M. J. and LAFFERTY, J. D. (2010). High-dimensional Ising model selection using _1-regularized logistic regression. Ann. Statist. 38 1287-1319.
    • (2010) Ann. Statist. , vol.38 , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 60
    • 80555142374 scopus 로고    scopus 로고
    • High-dimensional covariance estimation by minimizing _1-penalized log-determinant divergence
    • RAVIKUMAR, P.,WAINWRIGHT, M. J., RASKUTTI, G. and YU, B. (2011). High-dimensional covariance estimation by minimizing _1-penalized log-determinant divergence. Electron. J. Stat. 5 935-980.
    • (2011) Electron. J. Stat. , vol.5 , pp. 935-980
    • Ravikumar, P.1    Wainwright, M.J.2    Raskutti, G.3    Yu, B.4
  • 61
    • 84856009825 scopus 로고    scopus 로고
    • A simpler approach to matrix completion
    • RECHT, B. (2011). A simpler approach to matrix completion. J. Mach. Learn. Res. 12 3413-3430.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3413-3430
    • Recht, B.1
  • 62
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • RECHT, B., FAZEL, M. and PARRILO, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 471-501.
    • (2010) SIAM Rev , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 63
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional low-rank matrices
    • ROHDE, A. and TSYBAKOV, A. B. (2011). Estimation of high-dimensional low-rank matrices. Ann. Statist. 39 887- 930.
    • (2011) Ann. Statist. , vol.39 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.B.2
  • 64
  • 66
    • 68249141421 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • STOJNIC, M., PARVARESH, F. and HASSIBI, B. (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57 3075-3085.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 3075-3085
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 67
  • 69
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation
    • Special issue on "Sparse approximations in signal and image processing."
    • TROPP, J. A., GILBERT, A. C. and STRAUSS, M. J. (2006). Algorithms for simultaneous sparse approximation. Signal Process. 86 572-602. Special issue on "Sparse approximations in signal and image processing."
    • (2006) Signal Process , vol.86 , pp. 572-602
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 71
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • VAN DE GEER, S. A. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36 614-645.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.A.1
  • 72
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • VAN DE GEER, S. A. and BÜHLMANN, P. (2009). On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 1360-1392.
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 73
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for highdimensional and noisy sparsity recovery using _1-constrained quadratic programming (Lasso)
    • WAINWRIGHT, M. J. (2009). Sharp thresholds for highdimensional and noisy sparsity recovery using _1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 74
    • 73849097267 scopus 로고    scopus 로고
    • Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting
    • WAINWRIGHT, M. J. (2009). Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans. Inform. Theory 55 5728-5741.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 5728-5741
    • Wainwright, M.J.1
  • 75
    • 0000840166 scopus 로고
    • Characteristic vectors of bordered matrices with infinite dimensions
    • WIGNER, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2) 62 548- 564.
    • (1955) Ann. of Math. (2) , vol.62 , pp. 548-564
    • Wigner, E.P.1
  • 77
    • 34249004618 scopus 로고    scopus 로고
    • Dimension reduction and coefficient estimation in multivariate linear regression
    • YUAN, M., EKICI, A., LU, Z. and MONTEIRO, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 329-346.
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 329-346
    • Yuan, M.1    Ekici, A.2    Lu, Z.3    Monteiro, R.4
  • 78
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 79
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in high-dimensional linear regression
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 80
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • ZHAO, P.,ROCHA, G. and YU, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Statist. 37 3468-3497.
    • (2009) Ann. Statist. , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 81
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.