메뉴 건너뛰기




Volumn 69, Issue 4, 2007, Pages 659-677

L1-regularization path algorithm for generalized linear models

Author keywords

Generalized linear model; Lasso; Path algorithm; Predictor corrector method; Regularization; Variable selection

Indexed keywords


EID: 34547849507     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2007.00607.x     Document Type: Article
Times cited : (680)

References (28)
  • 2
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • Cox, D. R. (1972) Regression models and life-tables (with discussion). J. R. Statist. Soc. B, 34, 187 220.
    • (1972) J. R. Statist. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 3
    • 84950420123 scopus 로고
    • Covariance analysis of heart transplant survival data. J. Am. Statist. Ass.
    • Crowley, J. Hu, M. (1977) Covariance analysis of heart transplant survival data. J. Am. Statist. Ass., 72, 27 36.
    • (1977) , vol.72 , pp. 27-36
    • Crowley, J.1    Hu, M.2
  • 5
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth, D. (1993) Bias reduction of maximum likelihood estimates. Biometrika, 80, 27 38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 9
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, T., Rosset, S., Tibshirani, R. Zhu, J. (2004) The entire regularization path for the support vector machine. J. Mach. Learn. Res., 5, 1391 1415.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 11
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze, G. Schemper, M. (2002) A solution to the problem of separation in logistic regression. Statist. Med., 21, 2409 2419.
    • (2002) Statist. Med. , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 15
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M., Presnell, B. Turlach, B. (2000) A new approach to variable selection in least squares problems. IMA J. Numer. Anal., 20, 389 403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 16
    • 33745784116 scopus 로고    scopus 로고
    • Tracking curved regularized optimization solution paths
    • In. Cambridge: MIT Press.
    • Rosset, S 2004) Tracking curved regularized optimization solution paths. In Neural Information Processing Systems. Cambridge: MIT Press.
    • (2004) Neural Information Processing Systems.
    • Rosset, S.1
  • 18
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Rosset, S., Zhu, J. Hastie, T. (2004) Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res., 5, 941 973.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 19
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S. Keerthi, S. (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19, 2246 2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 20
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9, 1135 1151.
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 21
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • B
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267 288.
    • (1996) J. R. Statist. Soc. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • Tibshirani, R. (1997) The lasso method for variable selection in the cox model. Statist. Med., 16, 385 395.
    • (1997) Statist. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 23
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani, R., Hastie, T., Narasimhan, B. Chu, G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natn. Acad. Sci. USA, 99, 6567 6572.
    • (2002) Proc. Natn. Acad. Sci. USA , vol.99 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 24
    • 33845269628 scopus 로고    scopus 로고
    • Technical Report. University of California at Berkeley, Berkeley.
    • Zhao, P. Yu, B. (2004) Boosted lasso. Technical Report. University of California at Berkeley, Berkeley.
    • (2004) Boosted Lasso
    • Zhao, P.1    Yu, B.2
  • 25
    • 34547825177 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu, J. Hastie, T. (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics, 46, 505 510.
    • (2004) Biostatistics , vol.46 , pp. 505-510
    • Zhu, J.1    Hastie, T.2
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • B
    • Zou, H. Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301 320.
    • (2005) J. R. Statist. Soc. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.